Modeling Retest Effects in a Longitudinal Measurement Burst Study of Memory

Adam W. Broitman · Michael J. Kahana · M. Karl Healey

Abstract

Longitudinal designs must deal with the confound between increasing age and increasing task experience (i.e., retest effects). Most existing methods for disentangling these factors rely on large sample sizes and are impractical for smaller scale projects. Here, we show that a measurement burst design combined with a model of retest effects can be used to study age-related change with modest sample sizes. A combined model of age-related change and retest-related effects was developed. In a simulation experiment, we show that with sample sizes as small as \(n = 8 \), the model can reliably detect age effects of the size reported in the longitudinal literature while avoiding false positives when there is no age effect. We applied the model to data from a measurement burst study in which eight subjects completed a burst of seven sessions of free recall every year for 5 years. Six additional subjects completed a burst only in years 1 and 5. They should, therefore, have smaller retest effects but equal age effects. The raw data suggested slight improvement in memory over 5 years. However, applying the model to the yearly-testing group revealed that a substantial positive retest effect was obscuring stability in memory performance. Supporting this finding, the control group showed a smaller retest effect but an equal age effect. Measurement burst designs combined with models of retest effects allow researchers to employ longitudinal designs in areas where previously only cross-sectional designs were feasible.

Keywords
Free recall · Memory models · Stability · Aging · Practice effects

Introduction

Inferring age-related cognitive change from cross-sectional designs is fraught with well-known inferential problems (Baltes 1968). Longitudinal designs, in principle, provide a more direct measure of within-individual cognitive change and are therefore an important complement to cross-sectional research (Hoffman et al. 2011). But longitudinal studies generally introduce retest effects (e.g., practice effects), which can obscure age-related effects (Salthouse 2016; Hoffman et al. 2011).

Techniques have been developed to disentangle age and retest effects in typical longitudinal designs where each outcome variable is measured once per subject at each wave of the study (e.g., Salthouse 2016; Nilsson 2003). This typical longitudinal design is not appropriate, however, when the outcome variable of interest cannot be reliably assessed with a single measurement from each subject. For example, episodic memory performance is notoriously variable within a single individual due to endogenous fluctuations over time in the processes that support memory function (Kahana et al. 2018); therefore, a single measurement does not provide an accurate assessment of a subject’s ability. This within-subject variability can be overcome by collecting multiple measurements from each subject spread across several days of testing sessions.

In our cross-sectional work on age-related memory impairment (Healey and Kahana 2016), we have taken exactly this multi-session approach by having subjects complete 112 lists of the free recall task spread over seven sessions. Extending this multi-trial design to a longitudinal study would constitute what has been termed a “measurement burst” design (Nesselroade 1991; Sliwinski 2008): A burst is composed of multiple tests separated by a...
short time (e.g., days) with successive bursts being separated by a longer time (e.g., a year). This intensive testing makes it impractical to undertake a longitudinal study with a sample large enough to apply most existing methods of estimating retest effects.

Sliwinski et al. (2010) introduced a method to separate age and retest effects in measurement burst designs. This method involves modeling changes in performance across retests as the combined output of a function of age and a non-linear function of number of retests. This model allows researchers to rigorously disentangle age effects from retest effects. To date, it has been applied primarily to working memory and processing speed tasks tasks where the primary measure is reaction time, such as digit comparison and n-back (e.g., Munoz et al. 2015). We develop a closely related model that can be used for tasks where the primary measure is accuracy. As a test case, we use episodic memory performance, but the model could be applied to many other situations including reasoning and decision making. We will explore how the performance of the model (i.e., type I and II error) is influenced by anticipated effect size, sample size, and number of measurements per burst. This allows us to provide researchers a principled way to make design choices regarding these factors—a missing element in the existing literature on measurement burst designs.

Model-Based Analysis of Age and Retest Effects

Several existing models have been applied to quantify the accumulation of retest effects in multi-session studies, such as those described in Anderson et al. (1999) and in Sliwinski et al. (2010). Both of these models provided good fits and similar results when applied to our data during preliminary analyses. We selected the Anderson et al. (1999) model because it includes a single term that allows retest effects to accumulate when sessions are close together in time (i.e., within a measurement burst) and then dissipate when there are long gaps between sessions (i.e., in the months between measurement bursts).

In our adaptation of this model, memory performance on day i ($i = 1$ for the first session), denoted by p_i, is a function of both the linear effects of age-related episodic memory change and the power-law effects of test experience:

$$p_i = \beta_0 + \beta_{\text{age}}(\text{Age}) + \left(\beta_{\text{retest}} - \frac{\beta_{\text{retest}}}{\sum_{j = 1}^{i - 1} r_j} \right) + \epsilon_i. \quad (1)$$

The model includes four free parameters: β_0, β_{age}, β_{retest}, and d. β_0 is an intercept which represents the subject’s performance in the absence of any age-related change or test experience. β_{age} is the amount by which performance changes daily as a result of aging. Performance on day i improves as a result of previous test experience up to a maximum retest benefit of β_{retest}. However, the benefit from a session on any previous day, j, dissipates as the amount of time separating days j and i increases, with the exact benefit given by r_j^{-d}, where $t = 1 + i - j$ (i.e., how far back in time day j is), and d modulates the rate at which retest effects dissipate with the passage of time. r_j^{-d} is calculated for the session on day i, and all previous sessions are then summed—the larger the sum, the closer the actual retest effect is to the maximum of β_{retest}. To summarize the determinants of the total retest effect, it increases as the number of previous sessions increases, it decreases as the amount of time separating previous sessions from day i increases, and it decreases as the value of the d parameter increases. Finally, an error term, ϵ_i, captures the deviation of the model from the data.

We begin by fitting this model to the initial results of a measurement burst longitudinal study in which eight subjects completed seven sessions of the free recall task each year for 4 to 5 years. Next, we report a series of simulations which show that the model provides over 80% power to detect realistically sized age effects with sample sizes as small as $n = 8$. Finally, we apply the model to a second group of subjects who received less task experience (only two bursts of free recall) but had aged by the same amount. The results show that the model is sensitive to differences in level of retest experience.

Method

The data are from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS, Healey and Kahana 2014, 2016; Healey et al. 2014; Lohnas and Kahana 2013, 2014; Miller et al. 2012), an ongoing project aiming to assemble a large database on memory ability in older and younger adults. The full methods of the PEERS study, which include some manipulations that we do not consider in this paper, are described in the supplemental materials. Here, we focus on the details relevant to our analyses.

Subjects

Original Cross-Sectional PEERS Sample

The full PEERS older adult sample includes 39 individuals who completed an initial cross-sectional study (Healey and Kahana 2016). All subjects were recruited from the Philadelphia area. Potential subjects were excluded if they suffered from any medical conditions or regularly took medications that might affect cognitive performance.

Yearly-Testing Sample

Twelve older adults from the original sample were recruited for annual testing. The age of subjects ranged from 62 to
73 years (M = 66.87) at the start of the experiment. The subjects took 1.6 – 19.0 weeks (M = 3.9) to complete each burst. Four of these subjects have been excluded from the current analyses due to insufficient data (three subjects decided to leave the study, and one has passed away). Of the eight subjects (three male, five female) included in the present analyses, two have completed four annual waves of testing and six have completed five waves. Subjects were required to have a high school diploma in order to be considered for the study. The included subjects reported having an additional 2 to 9 years of education after high school (M = 5.6 years). Seven of these subjects identified themselves as white, and the remaining subject did not report their race or ethnicity.

Practice-Control Sample

During the fifth year of data collection, we recruited six additional older adults from the original sample to return for a 5-year follow-up, allowing us to measure performance in subjects who were less well practiced. Subjects were selected for enrollment based on their availability to return for additional testing. Although subjects were not randomly assigned to the yearly-testing and practice-control samples from the outset of the study, this control sample still provides a useful comparison. These practice-control subjects (four male, two female; four white, one black, one race not reported) ranged from 62 to 79 years (M = 66.83) at the start of the experiment, reported having 4 – 15 years of education after high school (M = 6.8), and they completed each burst in 1.1 – 6.3 weeks (M = 3.7).

PEERS Experiment

Each measurement burst was comprised of seven sessions of the free recall task. At the beginning of each burst, the Recent Life Changes Questionnaire (Miller and Rahe 1997) was administered to collect information about any potential changes in each subject’s health or personal lives. No subjects included in the current analyses developed a medical condition that would have excluded them from initial participation.

Each session included 16 free recall lists. For each list, 16 words were presented one at a time on a computer screen followed by an immediate free recall test. Each stimulus was drawn from a pool of 1638 words. Lists were constructed such that varying degrees of semantic relatedness occurred at both adjacent and distant serial positions.

For each list, there was a 1500 ms delay before the first word appeared on the screen. Each item was on the screen for 3000 ms, followed by a jittered (i.e., variable) inter-stimulus interval of 800 – 1200 ms (uniform distribution). After the last item in the list, a tone sounded, and a row of asterisks appeared. The subject was then given 75 s to recall aloud any of the just-presented items. Trained experimenters scored recall accuracy from audio recordings of subjects’ recalls.

Results

Behavioral Results: Measurement Burst Study

The solid gray lines in Fig. 1a show changes in free recall performance (proportion of words recalled) across sessions and years for the yearly-testing sample. The data show little sign of declining memory performance across years. In fact, there is a modest increase from year 1 to year 5. To quantify this trend, we began by conducting a linear regression for each subject using the number of days that had elapsed since their first session (defining session 1 as day 1) to predict their memory performance in individual sessions. This provided us with a slope (change in memory performance each day) for each subject. We then multiplied this slope by 365 to obtain an estimate of yearly memory change, which we report in Fig. 1b.

The left-most bar in Fig. 1b shows that the average slope was 0.0058 (i.e., on a 0 to 1.0 scale, performance increased by 0.0058 per year), with 95% a confidence interval that includes zero. Thus, there is a small, non-significant increase across years.

Although performance increased only slightly across years, examining performance within each measurement burst (i.e., the seven sessions for a given year in Fig. 1a) shows large increases from the first to the last session, suggesting strong retest effects. To quantify these retest effects, we used the model described in the Introduction to simultaneously fit age-related change and the accumulation of task experience.

We fit the model separately to the free recall performance of each individual subject by minimizing the \(\chi^2 \) difference value between the model predictions and observed data using the equation \(\chi^2 = \sum_{i=1}^{n} \left(\frac{p_i - \bar{p}_i}{SE_{\bar{p}_i}} \right)^2 \), where n is the total number of sessions completed by the subject, \(p_i \) the actual performance on day i, \(\bar{p}_i \) is the model’s prediction for day i, and \(SE_{\bar{p}_i} \) is the standard error of \(p_i \) calculated across the lists of day i. To minimize \(\chi^2 \), for each subject, we first ran a grid search by selecting 120 values for each of the four model parameters (evenly spaced between zero and one for \(\beta_{age} \), \(-0.025 - 0.025 \) change in recall probability per year for \(\beta_{age} \), \(-0.5 - 0.5 \) for \(\beta_{retest} \), and \(0.1 - 1.0 \) for \(d \)). We then evaluated the parameter sets defined by the intersections of the grid, for a total of \(120^4 \) parameter sets. Then for each of the 1000 best fitting sets from the grid search, we used the Interior Point method to find the local minimum and
took the best of these local minima as the overall best fitting parameter set.\(^1\)

Each subject’s best fitting parameter values were used to derive model-predicted performance across sessions. These predictions (averaged across subjects) are shown by the black lines in Fig. 1a. The means of the best fitting parameter values are shown in Table 1.

To determine the extent to which age and retest effects influence performance, we directly compared the model predictions with the across-session slope observed in the raw data (Fig. 1b). To do so, we used the model fits to statistically isolate retest effects on the one hand and aging effects on the other hand by using one component of the model at a time (the age component or the practice component) to predict performance. To isolate retest effects for a subject, we used their fitted values of the intercept, \(\beta_0\), and the retest-related parameters \(\beta_{\text{retest}}\) and \(d\) to compute the component of performance, \(\hat{p}_{\text{retest}}^i\), that can be predicted by test experience alone:

\[
\hat{p}_{\text{retest}}^i = \beta_0 + \left(\beta_{\text{retest}} - \beta_{\text{retest}} \sum_j (t_j - d)\right).
\]

\(^1\)Rather than fitting each subject separately, as we have done, one could instead fit all subjects simultaneously within a hierarchical model in which hyper-parameters specify the distributions and covariance structure of the individual-level parameters. For applications where the nature of the distributions (e.g., Gaussian vs. exGaussian, unimodal vs. bimodal, etc.) can be reasonably hypothesised a priori, such a hierarchical approach would be ideal. In situations where the nature of the distributions is unknown, fitting individual subjects and examining the resulting empirical distributions would be more appropriate.

The raw slope across sessions (which reflects both retest effects and age effects) was positive as shown in the left-most bar of Fig. 1b. To compare retest effects with this raw slope, we computed a slope across sessions for the \(\hat{p}_{\text{pretest}}^i\) values predicted from retest effects alone. This slope, shown in the middle bar of Fig. 1b, is positive with a 95% confidence interval far above zero, suggesting that practice effects contribute to the positive slope in the raw data.

Similarly, to isolate the age effect for each subject, we used their fitted values of the intercept, \(\beta_0\), and the age parameter, \(\beta_{\text{age}}\), to compute the component of performance, \(\hat{p}_{\text{age}}^i\), that can be predicted by age alone:

\[
\hat{p}_{\text{age}}^i = \beta_0 + \beta_{\text{age}}(\text{Age}).
\]

We then computed a slope across sessions for the \(\hat{p}_{\text{age}}^i\) values predicted from age alone, which is shown in the right-most bar in Fig. 1b. This age effect slope is not different than zero (the 95% confidence interval extends well below zero) and is significantly lower than the \(\hat{p}_{\text{pretest}}^i\) slope, \(t(7) = -6.48, p < .01\). These results confirm that positive retest effects were obscuring age-related stability.

A null age effect combined with a small sample size naturally raises concerns about statistical power. In the next

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Yearly-testing</th>
<th>Practice-Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>.51 (.39)</td>
<td>.38 (.36)</td>
</tr>
<tr>
<td>(\beta_{\text{age}})</td>
<td>-0.0014 (.0055)</td>
<td>-0.0014 (.0058)</td>
</tr>
<tr>
<td>(\beta_{\text{retest}})</td>
<td>.14 (.05)</td>
<td>.09 (.10)</td>
</tr>
<tr>
<td>(d)</td>
<td>.35 (.22)</td>
<td>.46 (.22)</td>
</tr>
</tbody>
</table>
section, we report a series of analyses that measure the power and type I error rate of our model-based analysis.

Establishing Power and Type I Error Rate

Although previous studies (Sliwinski et al. 2010; Munoz et al. 2015) have applied similar models to a variety of existing datasets, there are no clear guidelines on how to make key decisions when designing a new measurement burst study. Here, we conduct a simulation study to explore how design factors such as sample size, number of sessions per burst, and anticipated effect sizes influence type I error rate (false alarms) and statistical power. To do so, we created simulated datasets with known levels of age-related change, retest effects, and noise and then tested the model’s ability to detect the age effects given different sample sizes and numbers of sessions per burst.

To set a realistic level of age-related change in our simulations, we used data from the Betula project (Nilsson et al. 1997), which tracked cognitive performance of several hundred adults over 60 for several years on episodic memory tasks including sentence recall, verbal cued recall, and serial recall. The reported mean age-related change for adults over 60 across all episodic memory tasks was \(-0.0375\) SD units per year. We translated this value into a change in free recall performance by multiplying \(-0.0375\) by the standard deviation of the proportion of items recalled for all 39 older adult subjects who completed the original cross-sectional sample \((SD = 0.0872)\). This produced a \(\beta_{age}\) coefficient of \(-0.00327\), meaning that a normally aging subject who recalls 40% of the study items in a session of free recall can be expected to recall \(0.40 - (0.00327 \times 5) = 0.3837\) or 38.37% of the items in a similar free recall test after 5 years, assuming there are no practice effects. We created two other levels of simulated age effect: a “high” condition where \(\beta_{age}\) was set to 130% of the Betula project mean, and a “no effect” condition where \(\beta_{age}\) was set to zero (i.e., to test the false positive rate of the model).

In addition to varying the size of the age effect, we also varied the number of simulated subjects \((n = 4, n = 8, n = 12)\) and the number of sessions per burst \((5, 7, 9)\). This resulted in a \(3\) (effect size) \(\times 3\) (sample size) \(\times 3\) (number of sessions per burst) design. In all conditions, each simulated subject completed five bursts (i.e., a 5 year longitudinal measurement burst design). Each simulated subject was assigned a testing date vector in which the distance between bursts (400 days) as well as the distance between sessions within bursts (5 days) were set to the mean values observed in the PEERS data reported above. Baseline memory performance and practice accumulation effects were generated using the mean \(\beta_0\), \(\beta_{retest}\), and \(d\) parameter values reported for the yearly-testing sample in Table 1. To add realistic levels of noise to the simulated data, a random perturbation was added to each simulated data point. This perturbation was drawn from a normal distribution with a mean and standard deviation equal to the distribution of differences between each observation in our data set and each data point created by the optimized parameters.

We fit the model to each simulated subject by minimizing the root-mean squared deviation (RMSD) between the model predictions and the observed data \(\left(\text{we could not use } \chi^2 \text{ because whereas for actual subjects we can calculate } SE_{\hat{\beta}} \text{ across lists in a session, the model provides a single } p_i \text{ for each session, preventing us from estimating } SE_{\hat{\beta}}\right)\). As we did when fitting the actual data, for each simulated subject we first ran a grid search and then used the Interior Point method to find the local minimum at the best fitting points of the grid and took the best of these local minima as the overall best fitting parameter set. To make the simulation run time tractable, we reduced the size of the grid to \(5^4\) and ran Interior Point algorithm from the best fitting 50 parameter sets from the grid.² To determine if the model detected the presence of an age effect, we computed the slope across sessions of the \(\hat{\beta}_{age}^{\text{true}}\) values predicted from the recovered \(\beta_{age}\) parameter values and tested whether the mean across simulated subjects was significantly above zero via a one-tailed \(t\) test with \(\alpha = 0.05\).

We repeated this entire procedure (generating simulated data, fitting the model, testing for an age effect) 1000 times for each condition of the \(3 \times 3 \times 3\) design. Thus, we can estimate power in the high and medium age effect condition as the proportion of 1000 simulations where the age effect was detected by the \(t\) test. And we can estimate the type I error rate in the zero effect conditions as the proportion of false positives out of 1000.

Figure 2 shows that power exceeded 80% in most cases with sample sizes of 8 and 12; however, it was consistently below 50% for sample sizes of 4 in the medium-aging condition. The one exception was the \(n = 8, 9\) session per burst, medium age effect condition in which power was 74.8%. Type I error rates in the zero effect conditions were uniformly below .05. With 25 sessions, the average type I error across all sample sizes was 3.7%, indicating that the type I error rate was successfully set below \(\alpha = 0.05\). When the number of sessions increased to 35 or 45, false alarm rates fell to below one percent. These simulations show that for episodic memory tasks, a sample size as small as eight provides ample power to detect age effects of the size

²We explored how the use of different fitting algorithms influenced power and false alarms. Fast heuristic algorithms \(\text{(e.g., multistart, Ugray et al. 2007)}\) provided slightly lower power and type I error rates whereas a slower but more exhaustive grid search provided higher power. We encourage researchers to consider this tradeoff when determining how to fit their own data.
Table 1 Results obtained with the model’s ability to discriminate practice and age effects (and to show the replicability of the main findings), we collected a second sample of data—from subjects who received less test experience but had aged by the same amount. Whereas the original sample completed seven sessions a year for 5 years, the practice-control sample completed seven sessions in year 1 but no further sessions until year 5. If the model is truly able to remove retest effects, providing a purer measure of age effects, then model estimates from the two samples should reveal different practice effects but equal age effects.

Figure 3 shows the results from the practice-control group. The raw slope across years was slightly negative, but this disguises a significant positive retest effect (the 95% confidence interval is slightly above zero) and a non-significant age effect. Supporting the ability of the model to distinguish practice from aging, the retest effect in this practice-control sample was significantly smaller than the retest effect in the yearly-testing sample, ($t(12) = -3.59, p < .01$), but the age effects in the two samples did not differ ($t(12) = -.01, n.s.$).
Discussion

Precisely measuring within-individual age-related change requires a longitudinal design. But the repeated testing inherent in traditional longitudinal designs tends to increase performance such that the rate of age-related decline will be underestimated unless retest effects are taken into account (Salthouse 2015, 2016; Nilsson 2003). This retest problem is exacerbated if the construct of interest requires intensive testing to be reliably measured.

We attempted to overcome this problem by using a measurement burst longitudinal design and applying a joint model of retest and age effects, as suggested by Sliwinski et al. (2010). The raw data showed a modest but non-significant increase in memory performance over 5 years of the study. But applying our model revealed significant and substantial retest effects. Indeed, once the retest effect was statistically removed, we found a slight (but non-significant) age-related decline in memory ability over 5 years, consistent with the results of some traditional longitudinal studies (Salthouse 2015, 2016). This finding of substantial practice effects and small age-related change was replicated in a second sample. Moreover, the model was also able to accurately detect that the second sample had received less test experience despite having aged by the same amount. A series of simulations revealed that rates of age-related memory change comparable with those reported in the literature can be detected with adequate power with samples as small as $n = 8$ and that increasing sample size modestly to $n = 12$ provides over 90% power.

This result demonstrates that longitudinal research need not be limited to projects that follow hundreds of subjects for decades. It is possible to conduct longitudinal studies with smaller samples for shorter periods of time, provided one combines an intensive measurement burst design with a model of retest effects. Of course, samples as small as the one used here will only be appropriate when the population of interest is fairly homogeneous. But our approach also makes it more tractable to work with populations that vary on factors such as level of education, economic status, or risk-factors for cognitive decline, by reducing the sample size required from each sub-group. The ability to conduct smaller longitudinal studies allows for designs that efficiently target specific research questions that have traditionally been the domain of cross-sectional work. Here, we applied the method to episodic memory performance, and Munoz et al. (2015) applied a similar method to reaction time data. This method could easily be adapted to other research domains such as age-related change in social or personality factors and even neural measurements.

Acknowledgments We thank Ada Aka, Elizabeth Crutchley, Patrick Crutchley, Kylie Hower, Joel Kuhn, Jonathan Miller, Logan O’Sullivan, and Isaac Pedisch for assistance conducting the study.

Funding Information This work was supported by the National Institute on Aging at the National Institutes of Health (grant number AG049233) and the National Institute of Mental Health at the National Institutes of Health (grant number MH55687).

Data Accessibility The data reported in this study as well as code for fitting the model can be freely accessed at https://cbcc.psy.msu.edu/data/BroEtal19_data.zip.

References

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.