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Abstract

We examined oscillatory power in electroencephalographic recordings obtained while
younger (18-30 years) and older (60+ years) adults studied lists of words for later recall.
Power changed in a highly consistent way from word-to-word across the study period.
Above 14 Hz, there were virtually no age differences in these neural gradients. But
gradients below 14 Hz reliably discriminated between age groups. Older adults with the
best memory performance showed the largest departures from the younger adult pattern
of neural activity. These results suggest that age differences in the dynamics of neural
activity across an encoding period reflect changes in cognitive processing that may
compensate for age-related decline.

Introduction 1

Memory impairments are among the most common complaints of older adults [1]. Much 2

effort has been devoted to identifying the neurocognitive causes of age related memory 3

decline [2, 3]. But one potential source of age differences has received little attention: 4

the ability to sustain encoding processes across a series of events or items that unfold 5

over time [4]. For example, the people you meet during a job interview, the grocery list 6

your spouse dictates over the phone, or which of your medications you have already 7

taken today. 8

Researchers have studied this aspect of memory using the free recall task, in which 9

participants study a list of sequentially presented items (e.g., words) and then recall the 10

items in any order. The nature of the encoding processes in which participants engage 11

changes from item-to-item as the list is studied [5]. These changes unfold in the brain 12

without any obvious behavioral correlates—they can only be inferred from which items 13

are subsequently remembered and forgotten. Perhaps for this reason, most cognitive 14

aging theories are silent about the contribution of encoding dynamics to memory 15

impairments [3, 6–8]. 16

We argue, however, that there are two general categories of item-to-item changes in 17

cognitive processing that are likely to show age differences. The first category is 18

processes that become less efficient as the list progresses with time due to fatigue [9]. 19

The second category is processes that ramp up as the list goes on such as rehearsing 20

early items in the list [10]. Although differences in such processes are difficult to detect 21

from behavior, they should leave a signature in how neural activity changes while 22

studying a list. 23

We seek to provide an initial test of the hypothesis that there are age differences in 24

the dynamics of neural activity across the encoding period of a free recall list and that 25
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these processing differences may either contribute to, or compensate for, age-related 26

memory impairment. Our approach was to examine electroencephalographic (EEG) 27

recordings taken while participants study lists for free recall. We analyzed the data by 28

converting raw EEG into the frequency domain and examining how spectral power 29

changes across time during the study period. We then tested for age differences in these 30

across-time changes in spectral power. Finally, we tested whether the neural age 31

differences could predict behavioral age differences in memory performance. 32

Materials and methods 33

The data are from the Penn Electrophysiology of Encoding and Retrieval Study 34

(PEERS), an ongoing project aiming to assemble a large database on memory ability in 35

older and younger adults. 36

0.1 Participants 37

The present analyses are based on the 172 younger adults (age 17–30) and 36 older 38

adults (age 61-85 years) who had completed Experiment 1 of PEERS as of September 39

2015. Participants were recruited through a two–stage process. First, we recruited 40

right-handed native English speakers for a single session. Participants who did not make 41

an excess of eye movements during item presentation epochs of the introductory session 42

and had a recall probability of less than 0.8 were invited to participate in the full study. 43

Approximately half of the subjects recruited for the preliminary session moved on to the 44

full study. Older adults were pre-screened for signs of pathology using a detailed 45

medical history and the Short Blessed Test [11]. 46

0.2 PEERS Experiment 47

The analyses reported here focus on the free recall data from PEERS Experiment 1, 48

which consisted of 7 sessions each of which included 16 free recall lists. For each list, 16 49

words were presented one at a time on a computer screen followed by an immediate free 50

recall test. Each session ended with a recognition test. The first session and half of the 51

remaining sessions were randomly chosen to include a final free recall test before 52

recognition, in which participants recalled words from any of the lists from the session. 53

The recognition data are not examined here, but details on these data can be found in 54

prior publications [9]. 55

Each word was accompanied by a cue to perform one of two judgment tasks (“Will 56

this item fit into a shoebox?” or “Does this word refer to something living or not 57

living?”) or no encoding task. The current task was indicated by the color and typeface 58

of the presented item. There were three conditions: no-task lists (participants did not 59

have to perform judgments with the presented items), single-task lists (all items were 60

presented with the same task), and task-shift lists (items were presented with either 61

task). The first two lists were task-shift lists, and each list started with a different task. 62

The next fourteen lists contained four no-task lists, six single-task lists (three of each of 63

the task), and four task-shift lists. List and task order were counterbalanced across 64

sessions and participants. 65

Each stimulus was drawn from a pool of 1638 words. Lists were constructed such 66

that varying degrees of semantic relatedness occurred at both adjacent and distant 67

serial positions. Semantic relatedness was determined using the Word Association Space 68

(WAS) model [12]. WAS similarity values were used to group words into four similarity 69

bins (high similarity: cos θ between words ¿ 0.7; medium-high similarity, 0.4 ¡ cos θ ¡ 70

0.7; medium-low similarity, 0.14 < cos θ ¡ 0.4; low similarity, cos θ ¡ 0.14). Two pairs of 71
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items from each of the four groups were arranged such that one pair occurred at 72

adjacent serial positions and the other pair was separated by at least two other items. 73

For each list, there was a 1500 ms delay before the first word appeared on the screen. 74

Each item was on the screen for 3000 ms, followed by jittered (i.e., variable) 75

inter-stimulus interval of 800-1200 ms (uniform distribution). If the word was associated 76

with a task, participants indicated their response via a keypress. After the last item in 77

the list, there was a jittered delay of 1200-1400 ms, after which a tone sounded, a row of 78

asterisks appeared, and the participant was given 75 seconds to attempt to recall aloud 79

any of the just-presented items. 80

0.3 Electrophysiological Recordings and Data Processing 81

We used Netstation to record EEG from Geodesic Sensor Nets (Electrical Geodesics, 82

Inc.) with 129 electrodes digitized at 500 Hz by either the Net Amps 200 or 300 83

amplifier and referenced to Cz. Recordings were then rereferenced to the average of all 84

electrodes except those with high impedance or poor scalp contact. To eliminate 85

electrical line noise, a fourth order 2 Hz stopband butterworth notch filter was applied 86

at 60 Hz. 87

To correct artifacts such as eye blinks or electrodes with poor contacts we used 88

independent component analysis (ICA [13]) and an artifact detection/correction 89

algorithm based on [14]. Manual identification of artifactual independent components 90

(IC) can be unreliable [14] and would be impractical given the number and length of 91

sessions in the current study. Therefore, we used an automatic artifact correction 92

algorithm [14]. The algorithm starts with raw EEG. For each channel, several statistics 93

were used to identify channels with severe artifacts. First, electrodes should be 94

moderately correlated with other electrodes due to volume conduction, thus the mean 95

correlation between the channel and all other channels was calculated, and these means 96

were z-scored across electrodes. Channels with z-scores less than -3 were rejected. 97

Second, electrodes with very high or low variance across a session are likely dominated 98

by noise or have poor contact with the scalp, therefore the variance was calculated for 99

each electrode and z-scored across electrodes. Electrodes with a |z| >= 3 were rejected. 100

Finally, we expect many electrical signals to be autocorrelated but signals generated by 101

the brain versus noise likely have different forms of autocorrelation. Therefore, the 102

Hurst exponent, which is a measure of long-range autocorrelation was calculated for 103

each electrode and electrodes with a |z| >= 3 were rejected. Electrodes that were 104

marked as bad by this procedure were interpolated using EEGLAB’s [15] spherical 105

spline interpolation algorithm. The maximum number of ICs that can be reliably 106

estimated depends on the number of samples recorded for each channel. We extracted 107

c = floor(
√
L/k) ICs where L is the number of samples in the session and k is a 108

constant set to 25 (for a discussion of k, see [14,16]) or the number of non-interpolated 109

channels, which ever was smaller. We then ran EEGLAB’s implementation of infomax 110

ICA [13,15] on the first c principal components of the EEG matrix to decompose it into 111

ICs. 112

ICs that capture blinks or saccades should be highly correlated with the raw signal 113

from the EOG electrodes. Therefore, for each IC we computed the absolute value of its 114

correlation with each of the six EOG electrodes, retained the maximum of those values 115

and z-scored the maximum correlations across ICs. ICs with |z| >= 3 were rejected. ICs 116

that capture artifacts isolated to single electrodes (e.g., an electrode shifting or 117

”popping off”) should have high weights for the implicated electrodes but low weights 118

for other electrodes. To identify such ICs, we calculated the kurtosis of the weights 119

across electrodes and excluded any IC with a z-score above +3. Finally, ICs capturing 120

white noise should have a nearly flat power spectrum (vs. the 1/f spectrum expected for 121

neural signals). Therefore, we calculated the absolute value of the slope of the power 122
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spectrum for the frequencies included in the analyses (2–200 Hz) and rejected ICs with 123

z >= −3 (i.e., the ones closest to zero slope). Rejected ICs were removed from the 124

matrix and the remaining IC activation time courses were projected back into electrode 125

space. All subsequent analyses were carried out on this corrected EEG data. 126

To compute spectral power, the corrected EEG data time series for an entire session 127

was convolved with Morlet wavelets (wave number = 6) at each of 60 frequencies 128

logarithmically spaced between 2 Hz and 200 Hz. The resulting power time series were 129

downsampled to 10 Hz. We then defined encoding events by extracting the time period 130

from -200 ms to 3000 ms relative to each item’s presentation. For each frequency, a 131

participant’s raw power values were z-scored across encoding events separately for each 132

session and each encoding task (no-task, single-task, and task-shift) to remove the 133

effects of these variables. Z-scored power was then averaged across the -200 ms to 3000 134

ms encoding interval to provide one power value for each study event. 135

Results 136

To test for age differences in the dynamics of encoding, we examined 137

Electroencephalographic (EEG) signals recorded while the participants studied the lists. 138

We analyzed spectral power derived from the EEG signals as past research has shown 139

that effective memory encoding is correlated with spectral power in specific frequency 140

bands [17] and that spectral power shows reliable age differences during memory 141

tasks [2]. 142

Figure 1A shows the gradient of spectral power across serial positions in six 143

frequency bands. For younger adults, these gradients are in close agreement with those 144

found in previous work [18]. In the 16–26 Hz, 28–42 Hz, and 44–200 Hz bands, both 145

younger and older adults show high initial power followed by a rapid decline across serial 146

positions, with little age difference. By contrast, the 2–3 Hz, 4–8 Hz, and 10–14 Hz 147

bands all show clear age differences. Just as at higher frequencies, older adults exhibit a 148

steep decline in power across serial positions at lower frequencies, but younger adults 149

exhibit a shallower decline (in the 2–3 Hz band) or a net increase across serial positions 150

(in the 4–8 Hz and 10–14 Hz bands). That is, older adults show higher power than 151

younger adults early in a study list, but the age difference reverses for late-list items. 152

Fig 1. Age differences in spectral power gradients. A: Spectral power in six
frequency bands across serial positions for younger adults versus older adults. Error
bars are one standard error of the mean. B: ROC curves created by varying the
threshold value of ∆EEG (the change from the power level at the first serial position to
the average power of the last 5 items) used to classify a participant as a younger or
older adult. Significance was assessed by comparing the observed AUC value with a null
distribution created by permuting ∆EEG values across participants 50000 times and
running the analysis on each permuted dataset. Note that the y-axis scale differs across
panels.

To determine if these neural gradients reliably predict age, we began by condensing 153

the gradients into a single number for each participant by computing the change from 154

the power level at the first serial position to the average power of the last 5 items: 155

∆EEG =

∑LL
i=k SPi

LL− k + 1
− SP1, (1)

where SPi is power during the ith list item, LL is the total number of items in a list 156

(here LL = 16), and k is the first item included in the late-item average (k = 5 for the 157
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analyses reported here). We then tested whether ∆EEG distinguishes older from 158

younger adults by examining receiver operating characteristic (ROC) curves created by 159

varying the criterion value of ∆EEG used to classify a participant as younger versus 160

older. These curves (Figure 1B) show that the 2–3 Hz, 4–8 Hz, and 10–14 Hz gradients 161

were all highly reliable biomarkers of age group. Significance was assessed by finding 162

where the area under the curve (AUC) for the actual ROC curves lay in a null AUC 163

distribution formed by permuting ∆EEG across participants 50000 times and computing 164

a ROC for each permuted dataset. 165

How do these age differences in neural dynamics relate to age age differences in 166

memory ability? To explore this question, we conducted a median split analysis 167

comparing the older adults with the highest memory scores to the older adults with the 168

lowest memory scores (see the inset in the first panel of Figure 2). As shown in 169

Figure 2, these subgroups showed distinct neural gradients. 170

In the 2–3 Hz, 4–8 Hz, and 10–14 Hz bands, the older adults with the largest 171

memory impairments showed neural gradients that were more similar to the younger 172

adult pattern of shallowly decreasing (2–3 Hz) or gradual increasing (4–8 Hz and 10–14 173

Hz) power across serial positions. That is, the best preforming older adults looked least 174

like younger adults at the neural level. A similar situation is observed at higher 175

frequencies. Young adults show a steep decrease in power in the 28–42 Hz and 46–200 176

Hz bands, as do the impaired older adults. But the non-impaired older adults show a 177

shallower decrease. Again, the non-impaired older adults depart most strikingly from 178

the younger adult pattern of neural dynamics. 179

Fig 2. Spectral power in 6 frequency bands across serial positions for older
adults with recall probabilities above (non-impaired) versus below
(impaired) the older adult median. Error bars are one standard error of the mean.
The inset in the first panel shows kernel density estimates of the distributions of overall
probability of recall values for each group. Note that the y-axis scale differs across
panels.

ROC analyses on ∆EEG values, analogous to those reported in Figure 1, revealed 180

that no individual frequency band reliably discriminated impaired from non-impaired 181

older adults (.06 < p < .20). However, the younger adult pattern is not fully described 182

by any individual frequency band, instead it is characterized by gradual increases across 183

serial positions at 10–14 Hz and sharp decreases for higher frequencies. To capture this 184

pattern we computed the difference between ∆EEG in each lower frequency band, Fi, 185

and the 46–100 Hz band: 186

∆EEGFi
−∆EEG44−200Hz

. (2)

Figure 3A compares this measure among younger adults, impaired older adults, and 187

non-impaired older adults for each of the frequency bands. To ease interpretation the 188

∆EEGFi
−∆EEG44−200Hz

values, the small curves next to each data point show the full 189

gradients across serial positions for the current frequency (Fi, solid lines) and 44–200 Hz 190

(dotted lines). ∆EEGFi
−∆EEG44−200Hz

represents the difference in the rate of change 191

of these two gradients. At all frequencies, the impaired older adults are numerically 192

closer to the younger adult pattern than are the non-impaired older adults. We 193

conducted an ROC analysis on the ability of this measure to distinguish the two older 194

adult subgroups. The measure for the 2–3 Hz, 4–8 Hz, and 10–14 Hz bands reliably 195

discriminated impaired from non-impaired older adults (Figure 3B). That is, larger 196

deviation from the younger adult pattern of neural dynamics across an encoding episode 197

is a biomarker of successful aging. 198
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Fig 3. Spectral power distinguishes between impaired and non-impaired
older adult. A: Mean values of ∆EEGFi

−∆EEG44−200Hz
for the 2–3 Hz, 4–8 Hz, 10–14

Hz, 16–26 Hz, and 28–42 Hz bands for the younger adults, older adults with recall
probabilities above (non-impaired) the older adult median, and older adults below
(impaired) the older adult median. Error bars are one standard error of the mean. To
ease interpretation of the ∆EEGFi

−∆EEG44−200Hz
values, the small curves next to each

data point show the full gradients across serial positions for the current frequency (Fi,
solid lines) and 44–200 Hz (dotted lines). ∆EEGFi

−∆EEG44−200Hz
represents the

difference in the rate of change of these two gradients. B: ROC curves created by
varying the threshold value of ∆EEGFi

−∆EEG44−200Hz
used to classify a participant as

an impaired versus a non-impaired older adult. Significance was assessed by comparing
the observed AUC value with a null distribution created by permuting
∆EEGFi

−∆EEG44−200Hz
values across participants 50000 times and running the

analysis on each permuted dataset.

Discussion 199

We found evidence of age differences in how neural activity changes while encoding a 200

series of events. For both older and younger adults, high frequency oscillatory power 201

(16–200 Hz) declined rapidly across events [18]. By contrast, power at lower frequencies 202

showed marked age differences. Whereas older adults exhibited rapid power declines at 203

both high and low frequencies, younger adults exhibited shallower decreases (2–3 Hz) 204

and even rapid increases (10–14 Hz) at low frequencies. The rate and direction of 205

change of the gradient at these low frequencies was a highly reliable biomarker of age, as 206

revealed by ROC analyses. These results add neural dynamics across encoding periods 207

to the growing list of age differences in electrophysiology [2, 19–23]. Intriguingly, older 208

adults who preformed best on the memory task showed the largest deviation from the 209

younger adult pattern, particularly in the 4–14 Hz range. This finding complements 210

previous work that has suggested that some aspects of age-related differences in 211

processing compensates for, rather than contributes to, behavioral impairments [24–28]. 212

Here we provide evidence for the general hypothesis that there are age differences in 213

the neural dynamics of encoding. We hope these preliminary results will be useful both 214

in guiding basic science and in designing assessments to detect signs of memory 215

impairment. To conclude, we highlight two important questions for future work and 216

provide some speculations on promising answers. 217

The first question is which cognitive processes are linked to the observed age 218

difference in neural dynamics? Two general categories of processes strike us as likely 219

candidates: processes that become less efficient as the list progresses with time due to 220

fatigue [5] and processes that ramp up as the list goes on such as rehearsing early items 221

in the list. 222

The second question is why would age differences in such processes compensate for, 223

rather than exacerbate, memory impairment? In the case of fading efficiency, if older 224

adults are aware they will fatigue across a list, it might make sense for them to strongly 225

engage encoding processes for early items to ensure that at least some items are 226

well-encoded. In the case of rehearsal, it is known that older adults are less likely to 227

rehearse items [10], perhaps because they are impaired at the retrieval processes [4] 228

needed to think back to early list items [29]. If rehearsal is likely to fail, older adults 229

may be well-served by instead focusing on encoding the current item. Indeed, alpha 230

power (corresponding to the 10–14 Hz band used here) has been linked to holding more 231

items in mind [30] and increases in 10–14 Hz power younger adults show across a list 232

may be an index of elaborative encoding or rehearsal [18]. Therefore, the lack of 10–14 233

Hz increases in our group of non-impaired older adults may indicate that they are not 234
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attempting to engage in elaborative encoding or rehearsal. 235
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