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Distinct lines of research in both humans and animals point to a specific role of the hippocampus in both spatial and epi-
sodic memory function. The discovery of concept cells in the hippocampus and surrounding medial temporal lobe (MTL)
regions suggests that the MTL maps physical and semantic spaces with a similar neural architecture. Here, we studied the
emergence of such maps using MTL microwire recordings from 20 patients (9 female, 11 male) navigating a virtual environ-
ment featuring salient landmarks with established semantic meaning. We present several key findings. The array of local field
potentials in the MTL contains sufficient information for above-chance decoding of subjects’ instantaneous location in the
environment. Closer examination revealed that as subjects gain experience with the environment the field potentials come to
represent both the subjects’ locations in virtual space and in high-dimensional semantic space. Similarly, we observe a learn-
ing effect on temporal sequence coding. Over time, field potentials come to represent future locations, even after controlling
for spatial proximity. This predictive coding of future states, more so than the strength of spatial representations per se, is
linked to variability in subjects’ navigation performance. Our results thus support the conceptualization of the MTL as a
memory space, representing both spatial- and nonspatial information to plan future actions and predict their outcomes.
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Significance Statement

Using rare microwire recordings, we studied the representation of spatial, semantic, and temporal information in the human
MTL. Our findings demonstrate that subjects acquire a cognitive map that simultaneously represents the spatial and semantic
relations between landmarks. We further show that the same learned representation is used to predict future states, implicat-
ing MTL cell assemblies as the building blocks of prospective memory functions.

Introduction
Ever since Tolman (1948) introduced the idea of a cognitive
map, researchers have debated its scope beyond the domain of
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hippocampus act as pointers in a spatial cognitive map (O'Keefe,
1976; O’Keefe and Nadel, 1978), how do they relate to the epi-
sodic and semantic memory deficits seen in human patients with
lesions or resections of the hippocampus and surrounding
medial temporal lobe (MTL) cortex (Scoville and Milner, 1957)?
O’Keefe and Nadel (1978) discussed the possibility that the
human MTL maps semantic space like it maps physical space,
but it was not until decades later that researchers discovered
hippocampal concept cells (Quiroga, 2012; Reber et al., 2019)
that fire for particular concepts in high-dimensional semantic
space. Finally, time cells fire at particular times in a sequence of
events (MacDonald et al., 2011; Eichenbaum, 2014; Umbach et
al., 2020; Reddy et al., 2021). Together, these cells provide all
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components for the formation and retrieval of episodic memo-
ries, by defining what happened, where, and when (Tulving,
2001; Miller et al., 2013; Kunz et al., 2021).

However, few studies have examined spatial, semantic, and
temporal representations in combination. Moreover, it remains
largely unclear how these different representations change dur-
ing learning and how they relate to behavior. Here, we address
this gap by analyzing microwire recordings from the human
MTL. Patients who were undergoing clinical seizure monitoring
learned to navigate a virtual environment while instructed to
successively find different target stores. Using a multivariate
decoding approach, we asked whether the MTL would independ-
ently represent spatial, temporal, and semantic information while
subjects moved through the virtual city. In addition, we aimed to
characterize learning-related changes to these representations.
Whereas place fields in rodents navigating small vista spaces
become established within a few minutes (Frank et al., 2004), we
reasoned that representational changes in a complex environ-
ment with several distinct start and target locations may occur
on a slower time scale. Finally, we asked how representations
of space and temporal sequences relate to subjects’ behavior.
Navigation performance in a novel environment tends to be
variable and improve over time (Manning et al., 2014). However,
it remains unclear how variability in behavior relates to variabili-
ty in neural activity in human MTL populations.

To address these questions, we first trained a location decoder
on the spectral features of the local field potential (LFP). The
micro LFP is particularly well suited for this approach. It can be
recorded on a large number of MTL channels (i.e., eight micro-
wires extending from the tip of each MTL depth electrode, even
in the absence of large isolated spikes), while also providing high
temporal stability, in particular across recording sessions. We
trained our decoder to predict the subject’s location, defined as
the label of the target store closest to the subject’s instantaneous
position.

We chose to define location in this manner to capture both
semantic and spatial aspects of the subject’s position; each land-
mark is associated with a particular location in space and also
has a predefined semantic meaning. We can thus derive a mea-
sure of representational content from the classifier output
probabilities. If the MTL represents spatial location, the in-
stantaneous probability for a particular store should depend
on the spatial distance between the subject’s current location
and that store; if the MTL represents semantic space, the prob-
ability should depend on the semantic distance between the
two locations. Similarly, we assessed temporal information. If
the MTL tracks the sequence of past events (MacDonald et al.,
2011; Hsieh et al., 2014), the probability assigned to a store
should depend on the time elapsed since the subject passed
that store. We assumed that if subjects learned the associa-
tions between the stores they would also predict upcoming
locations along their path. If these predictions are represented
in the MTL, the probability should further depend on the time
that will pass before a subject reaches a store.

Materials and Methods

Participants

Twenty patients (9 female, 11 male) with medication-resistant epilepsy
undergoing clinical seizure monitoring at Thomas Jefferson University
Hospital in Philadelphia and the University Clinic in Freiburg,
Germany, participated in the study. The study protocol was approved by
the Institutional Review Board at each hospital, and subjects gave written
informed consent. Subjects were implanted with Behnke-Fried Macro-
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Micro Depth Electrodes (AdTech) in the MTL. The location of these
electrodes was determined based on clinical considerations.

Experimental design and statistical analyses

Behavioral task. Subjects played the role of a bicycle courier in a spa-
tial memory task, delivering parcels to stores located within a virtual
town (consisting of roads, stores, and task-irrelevant buildings; Fig. 1).
Subjects completed a variable number of delivery days (mean = 9.8; min-
imum, 2; maximum, 22) across one or multiple experimental sessions
(mean = 2.45; minimum, 1; maximum, 4) of variable duration (mean =
56.3 min; minimum, 14.2; maximum, 124.9). On each delivery day, sub-
jects were first instructed to deliver a series of objects to specific stores in
the city (see below). Then, after navigating to the last store, subjects were
tested on their memory for these objects. In the current study, we used
data from the navigation phases only; data from the recall periods for an
overlapping sample of subjects has been reported previously (Miller et
al.,, 2013; Herweg et al., 2020). Subjects completed slightly different ver-
sions of this paradigm, the details of which are described in the following
paragraphs. We believe these task adaptations to be negligible in terms
of the scope of the article and report all results collapsed over all sub-
jects/versions. One of the differences was the spatial layout and visual
implementation of the city. Figure 1 shows the newest version of the task
(N =5); Miller et al. (2013; N = 11) and Herweg et al. (2020; N = 4) pro-
vide a depiction of the older versions. The tasks were programmed and
displayed to subjects using the Panda Experiment Programming Library
(Solway et al., 2013), which is a Python-based wrapper around the open
source game engine Panda3d (with 3D models created using Autodesk
Maya) or the Unity game engine.

Before starting the first delivery day, subjects viewed a static or rotat-
ing rendering of each store in front of a black background (later referred
to as “store familiarization”). Each store had a unique storefront and a
sign that distinguished it from task-irrelevant buildings. Each delivery
day consisted of a navigation phase (Fig. 1) and a recall phase (data not
shown). For the navigation phase, 13 stores were chosen pseudoran-
domly from a total number of 16 or 17 stores. Subjects were informed
about their upcoming goal by on-screen instructions (e.g., “Please find
the hardware store.”) and navigated to each store using the joystick or
buttons on a game pad. The mapping between store names and store
locations/visual appearance were random for most subjects (15 unique
mappings were used across 20 subjects). The layout, however, was always
fixed across experimental sessions (ie., each subject experienced the
same city layout across sessions). On arrival at the first 12 stores, subjects
were presented with an audio of a voice naming the object or an image
of the object they just delivered. Object presentation was followed by the
next on-screen navigation instruction. On arrival at the final store, where
no item was presented, the screen went black, and subjects heard a beep
tone. After the beep, they had 30 or 90 s to recall as many objects as they
could remember in any order. A final free recall phase followed on the
last delivery day within each session.

To ensure that subjects did not spend extensive time searching for a
store, waypoints helped a subset of subjects (N = 4 subjects) navigate.
Considering each intersection as a decision point, arrows pointing in the
direction of the target store appeared on the street after three bad deci-
sions (i.e., decisions that increased the distance to the target store). In a
different version of the task (N = 5 subjects), subjects had to complete a
pointing task before navigation to each store. From their current loca-
tion, they were asked to use the game pad to point an arrow in a
straight-line path to where they thought the target store was located.
This task served a similar purpose as the waypoints because it provided
subjects with feedback on the correct direction of the target store before
navigation.

Most subjects (N = 16) completed an initial learning session before
the first delivery day session in which the store familiarization phase was
followed by a town familiarization phase. Here, subjects were instructed
to navigate from store to store without delivering parcels or later recall-
ing objects, visiting each store three times in pseudorandom order (each
store was visited once before any repeat visit). LFP data during the learn-
ing session was available only for a subset of subjects (N = 4). For these
subjects, data from the very first round of navigation was not used in the
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Figure 1.  Multivariate decoding of location. a, Subjects navigated to a series of target stores in a virtual city. b, The stores served as meaningful labels for different locations, and we thus
assigned each coordinate in the environment to the closest store (based on Euclidean distance). The resulting borders along with a subject’s example path from the hardware store to the bike
shop (white arrow) are illustrated in b. ¢, Snapshots taken during navigation for the three exemplary locations outlined with colored rectangles, which were labeled as hardware store (yellow),
gym (teal; Note that the pharmacy is in view despite being farther away.), and pharmacy (pink). d, We extracted spectral power in 10 log-spaced frequencies between 3 and 200 Hz for each 1
s epoch of field potential recordings. e, The Niequeny X Netectroge LFP power matrices served as inputs to a multinomial logistic regression dassifier predicting the subject’s instantaneous loca-
tion for each 1 s epoch. In a second step, we used the classifier output probabilities to infer whether the MTL represents virtual space, semantic space, and the temporal sequence of visited
locations. To do this, we analyzed the relation between the predicted probabilities for each store and the spatial, semantic, or temporal distance between that store and the subject’s true loca-
tion (see Figure 2). f, We used logarithmic loss to assess decoding performance. A log loss of zero indicates perfect classification performance with no uncertainty (i.e., a consistent classifier
output of 100% for the true class). We z-scored classification performance relative to a chance distribution derived from classifiers trained on randomly shifted labels. A z-score of zero (dashed
black line) indicates chance performance, lower values indicate performance exceeding chance. Left, The distribution of z-scored performance across delivery days (outliers removed for visualiza-
tion) for each subject, along with the subject-specific average (green points). Average z-scored performance across subjects (green bar == SEM) was significantly better than chance. Right, The
aggregate distribution and average (gray dashed line) across all delivery days.
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analyses. For some subjects (N = 4), a single town familiarization trial
was repeated at the beginning of all following sessions before the first
delivery day.

Behavioral analyses of navigation performance. Behavioral data were
analyzed using Python version 3.6. As a measure of navigation perform-
ance, we computed the excess path length ratio. This is the actual length
of a subject’s path (i.e., from the initial instruction “Please find the hard-
ware store” to arrival at that store) divided by the shortest possible path
between the start and arrival locations. A value of one indicates perfect
performance, higher values indicate a suboptimal path. We used a mixed
linear model with a random subject intercept to assess the effect of deliv-
ery day number on navigation performance. We performed a likelihood
ratio test between a model including the fixed effect of delivery day num-
ber and an intercept-only model to test for a significant main effect.

Microwire data acquisition and preprocessing. LFPs were recorded
from the inner microwire bundle of Behnke-Fried Macro-Micro Depth
Electrodes (AdTech) located in the MTL (including hippocampus, N =
17 subjects; parahippocampal gyrus, N = 12 subjects; amygdala, N = 12
subjects). Data were recorded at a sampling rate of 20,000 or 30,000 Hz
using the NeuroPort system (Blackrock Neurotech), a Neuralynx system,
or an Inomed system. Data from the eight recording wires on each bun-
dle were referenced online to a ninth designated reference wire. If the
reference wire had low signal quality, one of the regular recording wires
was used as an online reference instead. No rereferencing was performed
off-line. Coordinates of the radiodense macroelectrode contacts were
derived from a postimplant CT or MRI scan and then registered with
the preimplant MRI scan in MNI space using SPM or Advanced
Normalization Tools (ANTSs; Avants et al., 2008). For seven subjects,
microwire bundles were localized manually by a neurologist or a radiol-
ogist. For the other 13 subjects, microwire bundles were localized by
extrapolating 0.5cm (the approximate length the microwires extend
from the tip of the electrode) from the location of the most distal macro-
electrode contact. Labels were derived using the probabilistic Harvard
Oxford atlas with a threshold of 25%.

LFP data were analyzed using Python version 3.6 along with the
Python Time Series Analysis (https://github.com/pennmem/ptsa_new)
and MNE (Gramfort et al., 2014) software packages. LFP data were
aligned with behavioral data via pulses sent from the behavioral testing
laptop to the recording system. A zero-phase notch filter was applied to
filter line noise at 50 Hz (for data recorded in Germany) or 60 Hz (for
data recorded in the United States) and harmonics up to 240 Hz (stop-
band width, frequency/200). Based on the finding that data cleaning can
decrease statistical power for multivariate decoding of memory states
from intracranial EEG data (Meisler et al., 2019), we performed no addi-
tional data cleaning. Instead, we performed a set of additional analysis to
assess whether the presence of artifacts affects any of our results (see
below, Artifacts). To extract LFP power, continuous data were down-
sampled to 1000 Hz and convolved with complex Morlet wavelets (5
cycles) for 10 approximately log-spaced frequencies between 3 and
200 Hz. When using exact log spacing (i.e., 3, 5, 8, 12, 19, 31, 50, 79, 125,
and 200 Hz), some frequencies would have been close to line noise fre-
quencies or their harmonics at 50, 60, 100, 120, 150, 180, and 200 Hz.
We therefore shifted these frequencies to ensure a 10 Hz distance to the
closest line noise frequency. The extracted frequencies were 3, 5, 8, 12,
19, 31, 40, 79, 130, and 210 Hz. After convolution, data were log trans-
formed and averaged over 1 s nonoverlapping epochs.

Multivariate classification . We used L2 penalized multinomial logis-
tic regression to decode a subject’s current location across these 1 s navi-
gation epochs. As features we used the Neiectrode * Nifrequency LFP power
feature matrices. All epochs were labeled using the stores in the environ-
ment (N classes = N stores). Specifically, for each of the 1 s epochs we
determined the subject’s current location by finding the store with the
shortest Euclidean distance to the subject’s instantaneous position. As
these labels may change over successive samples within a 1 s epoch, we
assigned each epoch the most frequent label of the set of labels for that
epoch. The average number of epochs per class (i.e., store) was 182.5
(minimum, 16; maximum, 1033). The average ratio between the most
and least frequently occurring classes per subject was 10:1 (minimum,
3:1; maximum, 41:1). Class imbalance is a concern in classification

J. Neurosci., May 10, 2023 - 43(19):3538-3547 - 3541

analyses because a classifier may perform well if it exhibits a simple bias
toward predicting the majority class. We address this issue in two ways.
When computing classifier performance, we weighted samples inversely
proportional to their class frequency. In addition, we z-scored perform-
ance against a permutation distribution that exhibits the same class
imbalance as the original data (see below). If a classifier performs better
on the original than on the permuted data, this difference cannot be
explained by class imbalance.

We assessed classifier performance using a nested leave-one-deliv-
ery-day-out cross-validation procedure (each delivery day includes navi-
gation to 13 stores and lasted several minutes). To make sure that test
and training data were sufficiently separated in time, we never tested the
classifier on data from the initial learning session. Because navigation in
the learning session was continuous and not separated from one another
by a recall phase or a short break, these data were only used for classifier
training. Nested cross-validation was used to optimize the penalty pa-
rameter C using a grid search with 20 log-spaced values between
log10(1074) and log;(200). To this end, the training data within each
outer cross-validation fold was again divided into inner leave-one-deliv-
ery-day-out cross-validation folds. The classifier was trained on each
inner training set for all 20 C values. The optimal C for a given outer
fold was chosen as the C that maximized classifier performance across
the inner test sets. For each inner and outer fold, all data were z-scored
with respect to the mean and SD of the respective training set. Samples
were weighted inversely proportional to their class frequency to avoid
bias toward more frequently occurring classes.

We evaluated performance using logarithmic (or cross-entropy) loss
(again weighting every sample inversely by its class frequency), which is
defined as the negative logarithm of the probability assigned to the true
class. Log loss therefore produces high values, when the assigned proba-
bility for the true class approaches zero (i.e., a confident incorrect classi-
fication) and values close to zero when the assigned probability for the
true class approaches one (i.e., a confident correct classification). The
value of log loss that corresponds to chance depends on the number of
classes, that is, stores. The number of stores in the environment was vari-
able across subjects (Ngjores = 16 or 17). We therefore used a permutation
procedure (Npermutations = 200) to z-score the log loss for each delivery
day against its individual chance distribution. Specifically, we repeatedly
trained the classifier on a shuffled version of the training data. On each
permutation, the true y vector (i.e., location labels) was flipped and cir-
cularly shifted by a random number of elements in the vector before the
entire nested cross-validation scheme was repeated (Valente et al., 2021).
This procedure removes any true relation between features and to-be-
predicted labels while keeping the autocorrelation of the to-be-predicted
labels unchanged. We then z-scored true classifier performance for each
delivery day using the mean and SD of the random distribution of that
delivery day. A z-score <0 indicates above-chance performance, and a
z-scores >0 indicates below-chance performance.

A one-sample t test across subjects was used to compare average z-
scored classifier performance to chance. To evaluate the importance of
activity from different MTL subregions, we additionally trained the
classifier on a reduced feature set, which included only wire bundles in
the hippocampus, parahippocampal gyrus, or amygdala. Likewise, we
trained separate classifiers on LFP power in frequencies below or above
30Hz. We used a ¢ test across subjects to assess the effect of frequency
band and a mixed linear model with a random subject intercept to assess
the effect of subregion on classifier performance. A mixed-effects model
is better suited for the latter effect because not all subjects had electrodes
in all brain regions of interest. In the mixed model, we assessed signifi-
cance of the single fixed effect (brain region) using a likelihood ratio test
between the full model (main effect included) and an intercept-only
model. All tests were two sided.

Analyses of classifier output probabilities

Classifier output probabilities from the test sets were z-scored with
respect to their permutation distribution (see above). We then used a
mixed linear model with a random intercept for class (i.e., unique loca-
tions) nested in subject to assess the effect of spatial distance, temporal
distance, and semantic distance, as well as their interactions with epoch
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number or navigation performance on classifier output probabilities. We
excluded from this analysis all probabilities for the subject’s true loca-
tion, meaning that no statistical effect could be driven by a change in
classifier accuracy. For each class (i.e., store) and each 1 s epoch, spatial
distance was calculated as the Euclidean distance between the subject’s
current position and the location of the respective store. Temporal dis-
tance was calculated as the absolute temporal distance in seconds
between the current epoch and the last or next epoch during which the
subject was or will be located at the respective store. An additional bi-
nary regressor was included to model past versus future time points.
Because there was less data for long temporal distances, we only included
data points with an absolute temporal distance <30 s, meaning distances
for stores that the subject has visited within the previous 30 s or is about
to visit in the next 30 s. Semantic distance was calculated as the
Euclidean distance in word2vec space (Mikolov et al., 2013) between the
name of a given store and the name of the store at which the subject is
currently located. We assessed significance of fixed effects using likeli-
hood ratio tests between a full model (all main effects or all main effects
and all interaction terms) and a reduced model (main effect or interac-
tion effect in question removed).

Artifacts. We detected interictal epileptiform discharges (IEDs) and
other artifacts based on extreme voltage values. We defined extreme val-
ues using the interquartile range (IQR) as a robust measure of dispersion
(Tukey, 1977). IEDs are very large in amplitude compared with the
ongoing EEG. Consistent with prior work (Herweg et al., 2020), we
therefore used a conservative threshold of 5 times the IQR above the
75th percentile or 5 times the IQR below the 25th percentile to mark
individual time points as artifactual. We then computed an index reflect-
ing the percentage of artifactual data points for each epoch, averaged
over microwire channels.

To assess whether the presence of artifacts had an impact on our abil-
ity to decode location, we averaged this artifact index over epochs, result-
ing in a single number per subject, which we correlated with decoding
performance. We also asked whether artifacts may inflate the effect of
spatial, semantic, or temporal distance on classifier output probabilities.
This may, for instance, be the case if artifacts are temporally clustered
and result in increased similarity in temporally proximate epochs. To
rule out any such influence, we repeated the analyses assessing the effects
of spatial/semantic/temporal distance on classifier output while adding
the epochwise artifact index and its interaction with the respective dis-
tance measure as a predictor. If IEDs or other artifacts are inflating the
effect of temporal/semantic/spatial distance, we would expect to see an
interaction between the respective distance measure and the artifact
index such that a higher artifact index is linked to stronger distance
modulation.

Data availability

Data that can be shared without compromising research partici-
pant privacy/consent is available at http://memory.psych.upenn.
edu/Electrophysiological_Data. Analysis code is available at http://
memory.psych.upenn.edu/Electrophysiological_Data.

Results

We analyzed MTL microwire recordings from 20 patients under-
going clinical seizure monitoring, who navigated a virtual city to
deliver objects to different target stores (Fig. 1a—c). Subjects com-
pleted a variable number of delivery days (mean = 9.8; mini-
mum, 2; maximum, 22) across one or multiple experimental
sessions (mean = 2.45; minimum, 1; maximum 4) of variable du-
ration (mean = 56.3 min; minimum = 14.2 maximum, 124.9).
On each delivery day, subjects first navigated to a series of 13
stores that were pseudorandomly selected from the total number
of stores (16-17) without replacement. On-screen instructions
informed subjects of their upcoming goal (e.g., “Please find the
hardware store.”). Subjects navigated to each store using the joy-
stick or buttons on a game pad. On arrival at each of the first 12
stores, they were presented with the object they just delivered.
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Then, after navigating to the final 13th store, subjects were tested
on their memory for these objects. Here, we report data from the
navigation phase only; retrieval data from an overlapping set of
subjects have been published previously (Miller et al, 2013;
Herweg et al.,, 2020). In total, subjects contributed an average
of 62 min of navigation data (minimum, 24; maximum, 146).
We quantified subjects’ navigation performance using a ratio
between their path length for each delivery and the shortest
available path for that delivery. Over time (i.e., delivery days),
subjects became more efficient at navigating to their target
stores [x*(1) = 7.77, p = 0.005], confirming that they acquired
knowledge for the spatial relations between the target stores.
We used a multinomial logistic regression classifier to decode
location from LFP spectral power. To train our decoder, we seg-
mented the LFP into 1 s epochs and labeled each epoch with the
target store that was closest to the subject’s instantaneous posi-
tion (Fig. 1b-e). We assessed significance of our model using a
permutation procedure in which we trained chance classifiers on
shuffled training labels (see above, Materials and Methods).

LFP spectral power provides sufficient information to
decode location

We find that the LFP contains sufficient information to pre-
dict the virtual location of human subjects with above-chance
accuracy (Fig. 1f; tq9y = —2.91, p = 0.009, Cohen’s d = —0.65;
10 log-spaced frequencies between 3 and 200 Hz). To deter-
mine whether decoding performance varied by MTL subre-
gion or frequency band, we trained separate classifiers on
microwire bundles located in the hippocampus (N = 17 sub-
jects), parahippocampal gyrus (N = 12 subjects), or amygdala
(N = 12 subjects). Similarly, we trained separate classifiers on
low-frequency (<30 Hz) or high-frequency (>30 Hz) features
only. When compared with chance, decoding was significant
in the hippocampus (f;6 = —2.86, p = 0.01, Cohen’s d =
—0.69; parahippocampal gyrus, f;;) = —1.90, p = 0.08,
Cohen’s d = —0.55; amygdala, ¢;;) = —0.97, p = 0.35, Cohen’s
d = —0.28) and for high-frequency features (f;9y = —3.50, p =
0.002, Cohen’s d = —0.78; low frequency, 9y = —0.85, p =
0.40, Cohen’s d = —0.19). However, when directly assessing
the effects of brain region and frequency band, there was no
effect of brain region [x%(2) = 3.29, p = 0.19; likelihood ratio
test comparing mixed-effects models; see above, Materials and
Methods] and no effect of frequency band (f(;9) = 0.80, p =
0.43, Cohen’s d = 0.25) on classifier performance. We there-
fore focused all following analyses on the LFP-based decoding
model trained on all frequencies and MTL subregions.

Having shown that we can predict the subject’s location from
LFP spectral power, we next asked whether the MTL represents
locations in physical or in semantic space. We define the former
using the locations of the landmarks (i.e., the target stores) in the
virtual environment and the latter using their locations in
word2vec space (Mikolov et al., 2013). Because all target stores
had established semantic meaning, our model could achieve high
performance based on either type of representation; the LFP
could be representing either the subject’s spatial distance or their
semantic distance to the stores [e.g., “at the landmark with coor-
dinates (x;, y;), which is spatially proximate to the landmark with
coordinates (x;, y;)” vs “at the pizzeria, which is semantically sim-
ilar to the bakery”].

Representation of virtual space strengthens over time
First, we examined representations of virtual space, using linear
mixed effects models (see Materials and Methods). Specifically,
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Figure 2.

Representations of space, time, and semantics strengthen with experience. a, A subject’s spatial distance from an example store, the gym, changes as the subject navigates. If the

MTL represents spatial location, classifier output probabilities for a given store should decrease with the subject’s distance to that store. b—I, We find this is the case; classifier output decreases
with the spatial distance between a given store and the subject’s true instantaneous position (b). Data are visualized after removing each subject’s estimated random effect. Error bars (b, ¢, f,
g, J, k) depict a 95% confidence interval. (c) The effect of spatial distance strengthens as subjects gain experience navigating. For visualization, we partition data into an early and a late phase
at the 60 min mark. d, Showing the effect (i.e., slope) for four smaller time bins (N = 20, 18, 10, 6), reveals strengthened representations of space after 90 min. The graph shows inverted
slopes estimated on the data from each bin. Positive values indicate higher classifier output for spatially proximate locations. The average slope for early and late time periods matches the
slope of the regression line depicted in ¢. Error bars (d, h, 1) depict SEM. e, Subjects move through semantic space as they navigate between stores. In this example, the subject is semantically
closer (in word2vec space) to the gym when located at the pharmacy compared with the toy store. We assessed the effect of semantic distance on classifier output for each store. f, There was
no overall effect of semantic distance on classifier output probability. g, h, The effect of semantic distance did, however, strengthen over time, suggesting that the MTL increasingly represents
the subject’s location in a task-relevant semantic space. i, Finally, we asked how classifier output for a given store relates to the elapsed time since the subject has visited that store (negative

distance) or to the time that will pass until the subject arrives at that store (positive distance).

J, Classifier output is higher for stores that a subject is about to visit than for those that have

been visited in the recent past. k, I, As with spatial and semantic distance, the effect of temporal distance increases over time, especially for stores on a subject’s future path, indicating that

with experience the MTL more strongly predicts a subject’s future trajectory.

we analyzed the distribution of classifier output probabilities for
all stores as a function of the subject’s instantaneous spatial dis-
tance to those stores (Note that this analysis included only incor-
rect stores, thus excluding the one store closest to the subject’s
instantaneous position.). If the MTL represents spatial relations,
the classifier should assign high probabilities to spatially proxi-
mate locations and low probabilities to spatially distant locations
(Fig. 2a; Note that this is independent of classifier performance,
which is calculated based on the probabilities assigned to the cor-
rect store.). We find that this is the case. Specifically, we observed
a significant effect of the spatial distance between a given store

and the subject’s true location on classifier output probabilities
for that respective store [Fig. 2b; z = —4.00, x*(1) = 15.99,
< 0.001].

In our task, spatial and temporal distance were correlated
(Tspatial.temporal = 0.71), but semantic distance was uncorrelated
with both of them (rsemantic,spatial = 0.05, T'semantic,temporal = 0.03).
To control for the positive correlation between spatial and tem-
poral distance, we ran a second model in addition to the individ-
ual model reported above, that included both spatial and
temporal distance as a predictor. Although this approach slightly
complicated the interpretation of null effects (they may be true
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null effects or observed because of the
shared variance in space and time), we rea-
soned that it provides a conservative means
to assess the independent contributions of
each predictor. If spatial distance explains
variability in classifier output independent
of time, then it should remain significant in
the joint model. Indeed, the effect of spatial
distance was significant in both models
[joint model, z = —2.75, )(2(1) =754,p =
0.006]. Together, these results indicate that
the LFP represents the subject’s spatial loca-
tion within a broad spatial map of the envi-
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ronment. Moreover, this effect remained Y
significant even after accounting for corre-
lations between movement through time
and space.

Next, we examined whether the neural
representation of spatial relations exhibits a
learning effect. Having shown that subjects
navigate more efficiently as they acquire spa-
tial knowledge of the environment, we
expected this behavioral improvement to be
reflected in a change of the representational
structure in the MTL. We find that the effect
of spatial distance on classifier output proba-
bilities strengthens over time, as shown by a significant interaction
of spatial distance and epoch number [individual, z = —7.23, x*(1)
= 5232, p<<0.001; joint, z = —3.61, yX(1) = 13.04, p<0.001;
Epoch number is a continuous index from start to end of the
experiment.]. This effect is illustrated in Figure 2¢, which shows
classifier output probabilities as a function of spatial distance for an
early and a late phase of navigation, split at the 60 min mark. Here,
early and late refer to the total time spent navigating from the begin-
ning to the end of the experiment. Figure 2d displays the slope of
this regression for four smaller time bins (30min increments),
revealing the strongest increase after 90 min of navigation. This
finding provides evidence that spatial representations in the human
MTL change over the course of learning. Specifically, spatial knowl-
edge manifests as increased representational similarity between
nearby locations or an increased tendency for the MTL to represent
proximate over distant spatial locations.

Figure 3.

Representation of semantic space strengthens over time

We next asked whether MTL activity reflects the semantic struc-
ture of the environment. To this end, we calculated the distances
in word2vec (Mikolov et al., 2013) semantic space between all
target stores and assessed their relationship with the classifier’s
predictions (Fig. 2e). We find no overall effect of semantic dis-
tance on classifier output probabilities [Fig. 2f; z = —1.54, P ¢))
=2.37,p=0.12].

As with spatial distance, we assessed whether the relation
between classifier output and semantic distance changes over
time. Whereas we had a strong expectation that subjects’ spatial
knowledge would increase over time, one may argue that seman-
tic information (e.g., the concept of a bakery) should have been
firmly established through prior experience and would thus not
be expected to change over the course of the experiment.
However, it is possible that MTL neural activity adapts to the
specific semantic subspace spanned by our task, reflecting
semantic similarity on fewer relevant dimensions. To evaluate
these alternative predictions, we asked whether the degree to
which the MTL represents the subject’s semantic distance to

0.4 0.6 0.8
Spatial distance

10  -30 -20 -10 0 10 20 30

Temporal distance (s)

far past future

Representation of time linked to navigation performance. a, Representations of space (i.e., the effect of spatial distance
on dassifier output) may not only change over time but may also be linked to navigation performance (visualized here for good vs
poor performance trials). We find that this is the case when assessing spatial distance individually but not when controlling for tem-
poral distance. Data are visualized after removing the estimated random effect for each subject. Error bars indicate 95% confidence
intervals. Inset, The average slopes across subjects = SEM. b, The interaction between navigation performance and temporal dis-
tance remains significant even after accounting for spatial distance, particularly for upcoming locations. The slope is steeper for good
compared with poor performance trials, particularly for future locations (right). Although general knowledge of the spatial layout of
the ity enables spatial planning, it seems that the ability to predict upcoming locations on specific routes most closely relates to
subjects’ navigation performance. Inset, The average slopes across subjects == SEM.

each store changes over time (i.e., the distance between the near-
est store and all other stores at each point in time). As with spa-
tial information, we find that the link between semantic distance
and classifier output strengthens over time [Fig. 2¢g,h; z = —16.77,
X’(1) = 281.07, p<0.001]. This means that the MTL increas-
ingly represents task-relevant semantic information the longer
subjects have been navigating the virtual environment.

Representation of temporal sequence strengthens over time
Finally, we asked whether the LFP represents the temporal
sequence of visited locations when controlling for the spatial
distance between them. We expected that representations of
stores would linger after they were visited and that the MTL
would come to predict upcoming locations along a subject’s
future trajectory. To address this question, we assessed the link
between classifier output for each store and the temporal dis-
tance between the current time point f and the last time a sub-
ject had visited that store f,_; (past) or the next time a subject
was going to visit that store ty4; (future; Fig. 2i). We find that
temporal distance does affect classifier output, when assessed
individually [Fig. 2j; z = —3.01, X)) = 9.06, p = 0.003] but not
when controlling for spatial distance [z = 0.02, Xz(l) < 0.01,
p = 0.99]. However, we also find that the effect of time is asym-
metric, in that future visits are more strongly represented than
those in a subject’s past [individual, z = 5.77, x*(1) = 33.24,
p <0.001; joint, z = 5.81, x*(1) = 33.71, p < 0.001]. So although
there seems to be no fine-grained sequence information, the
MTL broadly differentiates between upcoming and recently vis-
ited locations.

Although the MTL does not represent fine-grained sequence
information when including all data, we asked whether sequence
coding, and in particular the prediction of upcoming locations,
gets stronger over time. Because subjects need to know the city’s
spatial layout before being able to plan routes and predict future
states, we hypothesized that temporal sequence coding may
emerge later in the experiment. We could confirm this predic-
tion, in particular for locations on a subject’s future trajectory, as
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indicated by a three-way interaction of absolute temporal dis-
tance, epoch number, and future versus past visits [Fig. 2k,}; indi-
vidual, z = —4.20, x*(1) = 17.63, p <0.001]. This effect holds
when controlling for spatial distance [joint, z = —4.67, x*(1) =
21.78, p<<0.001]. The MTL thus predicts upcoming locations
more strongly, as subjects spend more time navigating the
environment.

Effects of spatial, semantic, and temporal distance cannot be

explained by artifacts

We conducted an additional set of analyses to ensure that arti-
facts, such as IEDs, did not affect our main results. We computed
an artifact index, reflecting the percentage of artifactual data
points for each epoch, averaged over microwire channels. This
index was smaller than 1% for all subjects, ranging from 0.0003
to 0.8% (mean = 0.3%). We observed no correlation between the
average artifact index for each subject and classifier performance
(r = 0.13, p = 0.59), demonstrating that artifacts in the data did
not systematically increase or decrease the classifier’s ability to
decode location.

We then asked whether artifacts may have inflated the effect
of spatial, semantic, or temporal distance on classifier output
probabilities. This may, for instance, be the case, if artifacts are
temporally clustered and result in increased similarity in tempo-
rally proximate epochs. To rule out any such influence, we
repeated the analyses assessing the effects of spatial, semantic,
and temporal distance on classifier output while adding the
epochwise artifact index and its interaction with the respective
distance measure as a predictor. A significant interaction
between artifact index and distance, with a higher artifact index
being linked to stronger distance modulation, would suggest that
artifacts contributed to the reported effects. We observed no
such interaction for spatial [z = 0.60, Xz(l) = 0.36, p = 0.55],
semantic [z = —0.82, ,\/2(1) = 0.67, p = 0.41], and temporal [z =
—1.36, )(2(1) = 1.85, p = 0.17] distance, demonstrating that our
findings cannot be explained by the presence of IEDs or other
artifacts.

Temporal sequence coding is linked to navigation
performance

Having shown that representations of time and space get sharper
over time, we wondered whether variance in the sharpness of
these representations may be linked to subjects’ navigation per-
formance. Do subjects navigate more efficiently when MTL ac-
tivity reflects the spatial layout of the environment and the
particular temporal sequence of visited locations? We find that
this is the case. While controlling for time on task (i.e., epoch
number), we observe a significant interaction between spatial
distance and excess path ratio on classifier output probabilities
[z =2.06, x*(1) = 4.25, p = 0.04], suggesting that the MTL rep-
resents the city’s spatial layout more strongly at times when
subjects navigate to their goal efficiently. Similarly, we find a
significant interaction between temporal distance and excess
path ratio on classifier output [z = 4.17, x>(1) = 17.34, p<
0.001], suggesting that temporal sequence is represented more
strongly during deliveries with high navigation performance.
As expected, we observed no such effect for semantic repre-
sentations, which were equally strong on trials with good and
poor performance [z = 0.37, Xz(l) =0.13, p = 0.71]. Again, we
repeated the analyses for time and space, including the other
factor, respectively, to see whether temporal and spatial dis-
tances explain independent variance. When controlling for
temporal distance, the effect of spatial distance disappears [z =
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—1.18, x*(1) = 1.39, p = 0.24]. The effect of temporal distance,
however, withstands correction for spatial distance [z = 3.82,
x>(1) =14.59, p <0.001] and is stronger for locations that lie
in the future compared with the past [three-way interaction,
z=1.69, x*(1) = 4.24, p = 0.04]. Together, these results suggest
that the MTL function that is most strongly linked to subjects’
navigation performance is the simulation of specific future
paths.

Discussion

Here, we used a decoding-based approach to study neural repre-
sentations of places, concepts, and temporal sequences. As a first
step, we trained a location decoder on the micro LFP while sub-
jects navigated a virtual city. We find that the spectral features of
the micro LFP provide sufficient information to decode subjects’
instantaneous location in the virtual city with above-chance ac-
curacy. As such, our results provide the first demonstration of
location decoding from local field potentials in the human MTL,
and they are in line with a prior study in rodents showing that
hippocampal theta oscillations can predict rat position (Agarwal
et al., 2014). Because research suggests that the human hippo-
campus does not exhibit theta oscillations in the same continu-
ous way as that of rodents (Watrous et al., 2013; Aghajan et al,,
2017), and since the number of micro-electrodes is limited by
clinical considerations, we defined our feature set more broadly
including multiple MTL subregions (hippocampus, parahippo-
campal gyrus, and amygdala) and frequency bands. We find that
when working with subsets of the data classification did not dif-
fer between MTL regions or frequency bands. Similar findings
have been obtained with human single-unit recordings, showing
that place-selective neurons are not confined to the hippocampus
but can also be observed in the parahippocampal gyrus and
amygdala (Jacobs et al., 2013; Miller et al., 2013). It is, however,
possible that the regional nonspecificity can partly be explained
by the difficulty of precisely localizing microwire electrodes in
human subjects.

We used our trained decoding model to characterize the rep-
resentations that underlie successful decoding. As subjects move
around the virtual environment, navigating from store to store,
they change their virtual location, but because all stores have
pre-established semantic meaning, they also change their seman-
tic location (e.g., activating the concept of bakery). Our decoding
model has been trained in a way that is blind to this distinction
(i.e., using the stores as labels for different parts of the environ-
ment), meaning that it could achieve above-chance performance
based on either type of representation, spatial or semantic. By
analyzing the classifier output probabilities for each store at every
time point, we found that the MTL represents locations in both
virtual space (similar neural representations for spatially proxi-
mate stores) and semantic space (similar neural representations
for semantically similar stores).

Considering virtual space, we show that the classifier output
probabilities depend on the spatial distance between a subject’s
true location and each store. The classifier, on average, assigns a
high probability to the store that is closest to the subject’s true
location. For other locations, the classifier assigns decreasing
probabilities to stores that are farther from the subject’s true
location. The representational space spanned by MTL spectral
features, hence, mirrors the virtual space spanned by the land-
marks in the city. These results resemble similar findings
obtained with representational similarity analysis on fMRI data
from the human hippocampus (Deuker et al., 2016). Moreover,
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we observed evidence that the spatial coding effect strengthens
over time, providing a window into the learning-related changes
of representational structure in the MTL. The more time subjects
have spent navigating the virtual city, the more strongly the MTL
represents the city’s spatial layout. Whereas place fields in rats
foraging in small open environments are known to stabilize
within a few minutes of entering the environment (Wilson and
McNaughton, 1993; Frank et al., 2004), the changes we observed
here occurred over a duration of more than an hour. This time
scale is plausible given the complexity of the environment and
the fact that we observed concurrent increases in subjects’ spatial
navigation performance.

We further assessed whether the MTL additionally tracks
subjects’ movement through semantic space. Whereas we
observed no overall effect of semantic distance, we show that
task-relevant semantic information in the MTL increases over
time. For instance, while the subject is near the bakery, the clas-
sifier increasingly tends to assign high probabilities to related
stores such as the pizzeria. This finding complements previous
reports of concept coding in the human MTL (Quiroga, 2012;
Constantinescu et al., 2016). However, it may be surprising in
the context of our study, given that the concepts we used were
familiar to subjects at the outset (e.g., subjects did not have to
newly learn the association between bakery and pizzeria). So
why did semantic information increase over time? Our results
are consistent with the notion that concept coding in the MTL
is dynamic and task-dependent (Bottini and Doeller, 2020;
Theves et al, 2020). Specifically, we interpret the observed
effect as reflecting an increased focus on particular aspects in
high-dimensional semantic space. Each target store may be
invoking many semantically associated concepts at the begin-
ning of the experiment. As time progresses, subjects learn the
set of concepts that is relevant in the current context. They thus
begin to focus on the attributes of each concept that make it
similar or dissimilar from other concepts in the set (e.g., if all
stores were selling food, that attribute would not be helpful in
discriminating between them and may be disregarded). At the
level of MTL neural activity, this may explain why similar con-
cepts become more similar, and dissimilar concepts become
even less similar (Bottini and Doeller, 2020).

Finally, we assessed whether the MTL represents the temporal
sequence of visited locations. We find that the classifier assigns
higher probabilities to stores in temporal proximity, suggesting
that the MTL does represent the temporal sequence of events.
Furthermore, probabilities are higher for stores in a subject’s
future than for those visited in the recent past. However, when
we controlled for spatial distance, only this latter, broader signal
remained significant. There are two explanations for the absence
of an independent fine-grained effect of time. Spatial and tempo-
ral distance shared significant variance in our experiment, so
controlling for space while assessing the effects of time and vice
versa likely reduced the power to observe either effect. In addi-
tion, we show that the temporal effect gets stronger over time
and thus likely depends on learning. The effect may therefore
be small when considering all data. The learning effect was
particularly strong in the forward direction, meaning that the
prediction of future locations, more so than the lingering of
locations in the recent past, is shaped by experience. The more
knowledge subjects acquire about the spatial layout of the vir-
tual city, the more they are capable of planning specific trajec-
tories when looking for their target store, including the
specific sequence of stores they will pass. And, intriguingly, it
is this predictive signal that is linked to subjects’ navigation
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performance for individual deliveries, more so than it is a gen-
eral representation of the spatial layout of the city. This find-
ing implicates the MTL not only in the formation and storage
of a cognitive map but also in accessing the map to predict
future states.

Conclusions

We demonstrate that over time, field potentials in the human
MTL come to jointly represent a subject’s virtual spatial loca-
tion, the semantics associated with that location, and a sub-
ject’s temporal trajectory. Our findings indicate that the MTL
holds a map-like representation of virtual and semantic space
that is shaped by experience and can be used to predict future
trajectories.
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