
The Penn Electrophysiology of Encoding and Retrieval Study

Kahana, M.J., Lohnas, L.J., Healey, M.K., Aka, A., Broitman, A.W.,
Crutchley, P., Crutchley, E., Alm, K.H., Katerman, B.S., Miller, N.E.,

Kuhn, J.R., Li, Y., Long, N.M., Miller, J., Paron, M.D., Pazdera,
J.K., Pedisich, I., Weidemann, C.T.

University of Pennsylvania

Abstract
The Penn Electrophysiology of Encoding and Retrieval Study (PEERS)
aimed to characterize the behavioral and electrophysiological (EEG) cor-
relates of memory encoding and retrieval in highly practiced individuals.
Across five PEERS experiments, 300+ subjects contributed more than 7,000
90 minute memory testing sessions with recorded EEG data. Here we tell
the story of PEERS: it’s genesis, evolution, major findings, and the lessons
it taught us about taking a big science approach to the study of memory
and the human brain.

Introduction

Although Herman Ebbinghaus is known to students of memory for his herculean inves-
tigations of list learning comprising nearly 2,000 hours of self experimentation (Ebbinghaus,
1885/1913), nearly all of what we have come to know about human memory in the last cen-
tury has been gleaned from single-session experiments typically performed by samples of
fewer than 100 students, often in fulfillment of a psychology course requirement. This ap-
proach contrasts with research areas such as perception where a small handful of observers
contribute data across 5-20 experimental sessions. Whereas larger samples permit broader
inference, intensive study of a small number of subjects can enable detailed analyses and
model-fitting of individual behavior1.

The Penn Electrophysiology of Encoding and Retrieval Study (PEERS) sought to
obtain high-resolution, within-subject data from a large number of subjects performing a
variety of episodic memory tasks. We pursued three primary aims across five experiments:
(1) to obtain sufficient trial-level data so that we could apply models to individual subject’s

1Smith and Little (2018) articulate the benefits of small N studies.

Individual trial data from the PEERS studies may be obtained from the public data repository hosted
at http://memory.psych.upenn.edu/PEERS. The authors gratefully acknowledge support from National
Institutes of Health grant MH55687. Correspondence concerning this article should be addressed to Michael
J.Kahana, kahana@psych.upenn.edu.
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performance measures, (2) to obtain sufficient data across subjects to permit the analysis of
individual differences, and (3) to obtain high-quality continuous EEG data during memory
encoding and retrieval, thus allowing us to relate brain measures to indices of performance
with high reliability. For the purpose of studying individual differences, we also collected
a variety of psychometric measures, including scales of intelligence, personality, mood and
anxiety.

We achieved these goals through a 10 year data collection effort in which more than
300 subjects contributed data from more than 7,000 sessions of recall and recognition tasks.
Although findings emerging from these studies have appeared in more than 20 scientific
publications, the present paper presents the overarching motivation, methods, behavioral
and electrophysiological results and implications of this large memory study.

Background and Motivation

For science to advance humanity’s most noble goals, society must trust the work of
scientists. Failures to replicate high-profile scientific findings have captivated the attention
of both scientists and the lay public, calling into question the enterprise of scientific inquiry.
Although research on human memory has fared better than some sub-disciplines, our field
faces the same forces that impede replicability. One such force is the extreme variability
of human cognition, behavior, and physiology (e.g., Kahneman, Sibony, & Sunstein, 2021;
Kahana, Aggarwal, & Phan, 2018). Empirical patterns can differ reliably across individuals
and even within an individual and variability in these effects do not arise simply due to
external variables, such as the memorability of items, or the conditions of encoding and
retrieval. Rather, it appears that variability results from endogenous factors within each
individual (Kahana et al., 2018; Weidemann & Kahana, 2021).

Cognitive neuroscience faces even greater challenges to replicability than does cogni-
tive psychology. This is because variability in task performance must give rise to variability
in brain activity, but measured brain activity includes additional sources of variability be-
yond that seen in overt behavior. In the case of EEG, these sources of variability include
electromyographic (EMG) signals produced by eye and muscle movements, as well as other
sources of electrical noise outside of the subject. In the case of functional-magnetic resonance
imaging, noise can come from head movements and non-cognitive predictors of intracerebral
blood flow (Liu, 2016). In addition, these measurement modalities record only a small frac-
tion of brain activity, with the precise neural activity recorded varying across individuals
and recording sessions. Moreover, many features of brain activity that vary in a session
have little to do with task performance, but may be correlated with other brain signals for
uninteresting reasons. Thus, it should not surprise anyone that finding robust results using
brain recording methods should require substantially greater numbers of observations than
those relying only on measures of task performance to achieve the same level of statistical
power. Yet, the cost of obtaining neural measures forces researchers to economize on data
collection, thus fueling variability across experiments. Finally, the highly multivariate na-
ture of neural data encourages researchers to look at their data in myriad ways, thereby
increasing the chance of false positives unless every step of an analysis pipeline has been
“preregistered” (Simmons, Nelson, & Simonsohn, 2011).

To advance our understanding of these methods in the face of the above challenges,
we need some way of estimating the power of our neural measurements. To probe the upper-
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bound of what could be learned using scalp EEG, we assembled the PEERS datasets, which
comprise millions of encoding events and recall responses. The large number of trials and
sessions contributed by each subject allowed us to conduct analyses at the individual trial
level and validate these analyses across sessions, people, and task manipulations.

Given that nearly all cognitive neuroscience datasets encompass fewer than 100 hours
of experimental data collection, increasing our dataset by a factor of 10 would have been
sufficient to address replicability. In PEERS, we exceeded this benchmark by a factor
of 100. Beyond replicability, PEERS sought to provide adequate data for the study of
individual differences in both overt behavior and physiology, and also to provide data with
sufficient resolution for individual subject modeling (e.g., Healey & Kahana, 2014, 2016).
The ultimate goal of this program, which we have yet to achieve, is a detailed model-based
analysis of subject-specific electrophysiology. Rather than waiting until all of the work is
done, we have embraced an open-science approach and have been disseminating the PEERS
data for several years. We feel that it is now time to pull together the as-yet-incomplete
PEERS story, both in the interests of fostering a discussion of big science approaches to the
study of human cognition, and to facilitate dissemination of the PEERS data to interested
scientists.

Methods Overview

Below we provide a concise summary of the methods for each of the five PEERS exper-
iments. Each experiment involved multiple sessions of memory tasks with EEG recording.
Due to the very substantial investment of time and resources each subject first participated
in a screening session to ensure that they understood the demands of the experiment prior
to signing on for the full experiment. Subjects completed the first three PEERS experiments
across a series of 20 sessions involving word list recall and recognition tasks. In addition, this
cohort also completed two sessions of neuropsychological tests. Table 1 gives the number
of subjects who completed each experiment. Whereas Experiments 1-3 included encoding
task manipulations, variation in distractor conditions, and end-of-session recognition and
final-recall tests, PEERS Experiment 4 sought to maximize the statistical power of data
collected in a delayed recall-task without any encoding task manipulations. We estimated,
based on the earlier PEERS studies, that subjects would not be able to complete more than
24 two-hour long sessions in a single term. With the goal of maximizing our statistical
power we thus recruited subjects for a 24 session experiment, striving to enroll 10 subjects
at the start of each term (we typically completed around 7). Because human speech is
the most natural medium for recalling information, we collected vocal responses which we
annotated (offline) for accuracy and response times. Because vocalization causes significant
EMG artifact in EEG data, we conducted a fifth PEERS experiment designed specifically
to control for pre-motor correlates of retrieval. This was the last PEERS study completed
prior to the start of the COVID-19 pandemic. Below we provide a concise description
of the experimental methods, with additional details provided in an online appendix at
memory.psych.upenn.edu.
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Table 1
Demographic Information for PEERS Studies
PEERS experiment N Sessions Dates
Preliminary Experiment ∼730 1 2010-2019
Exp. 1: Immed. recall + task manip. Final-
free recall. Recognition.

172 7 2010-2014

Exp. 2: Recall + distractors. Final-free recall.
Recognition.

157 7-9 2010-2014

Exp. 3: Exp 1 + externalized recall. Final-
free recall. Recognition

60 (IFR), 92 (EFR) 4 (IFR), 6 (EFR) 2010-2014

Exp. 4: Delayed recall 98 24 2014-2018
Exp. 5: Long-delay recall + pre-motor control 57 10 2019-2020

PEERS Experiments 1 and 3

Because Experiments 1 and 3 were virtually identical, we describe their methods
together. As illustrated in Figure 1A, each session comprised a series of 16 immediate free
recall trials, each involving a unique list of 16 visually-presented words. Each session ended
with a recognition test (yellow box). Half of the sessions were randomly chosen to include
a final free recall test before recognition (in final free recall, subjects attempt to recall as
many words as they can remember from all 16 lists) Experiment 3 differed from Experiment
1 in that a subset of subjects received externalized free recall instructions. In externalized
recall (Kahana, Dolan, Sauder, & Wingfield, 2005) subjects verbalized all words that came
to mind at the time of test, even if they thought those words did not occur in the most
recent list or had already been recalled during the current recall period, and to press the
spacebar following any such error.

Subjects encountered three types of lists: (1) No-task lists, which they studied with
the generic instruction of trying to learn the items for a subsequent test, (2) task lists,
where each item appeared concurrently with a cue indicating one of two judgments (size
or animacy) the subject should make for that word, and (3) task shift lists, where subjects
alternated between size and animacy tasks every 2-6 items within each list. The size task
asked subjects “Will this item fit into a shoebox?”; the animacy task asked “Does this word
refer to something living or not living?” The current task was indicated by the color, font
and case of the presented item. Each session included 12 task lists and four no-task lists.
The first session of PEERS Experiment 1 included equal numbers of size, animacy and
task-shift lists; subsequent sessions included three size, three animacy, and six task-shift
lists. We constructed a pool of 1,638 words for use in PEERS1-3. Based on the results of
a prior norming study, only words that were clear in meaning and that could be reliably
judged in the size and animacy encoding tasks were included in the pool.

PEERS Experiment 2

Experiment 2 introduced a within-subject, within-session, distractor manipulation
(Figure 1B). In addition to immediate free recall trials, as in Experiments 1 and 3, this
experiment introduced delayed free recall and continual distractor free recall, with distractor
intervals of varying duration. In each distractor interval, subjects solved math problems
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of the form A + B + C =?, where A, B, and C were positive, single-digit integers. When
a math problem appeared, subjects typed the sum as quickly as possible consistent with
high accuracy (they received a monetary bonus based on the speed and accuracy of their
responses). For the distractor intervals in the first two lists, one list had a distractor period
following the last word presentation for 8 s and the other had an 8 s distractor period prior
to and following each word presentation. In the remaining 10 lists, Subjects performed free
recall with 5 possible durations for the between-item and end-of-list distractor tasks, such
that 2 lists had each of the 5 conditions. As listed here, the first number indicates the
between-list distractor duration and the second number indicates the end-of-list distractor,
both in seconds: 0-0, 0-8, 0-16, 8-8, 16-16. A 0 s distractor refers to the typical, non-filled
duration intervals as described for Experiments 1 and 3. Subjects encoded all items using
either a size or an animacy judgment task. Session one included seven size-judgment lists
and seven animacy judgment lists. Subsequent sessions included six task-shift lists, three
size-task lists and three animacy-task lists.

PEERS Experiment 4

This experiment sought to simplify the methodology used in previous experiments,
focusing exclusively on delayed free recall. Here each of 98 subjects completed 24 sessions
of delayed free recall. Each session consisted of 24 trials, with each trial containing a list of
24 individually presented words followed by a 24-second distractor period (see Figure 1C).
A random half of the lists (excluding the first list) were preceded by a 24-second, distractor-
filled delay. A free recall test followed the post-list distractor on each list.

The word pool for this experiment consisted of a 576-word subset of the 1638-word
pool used in a previous PEERS experiment, and subjects saw the same 576 words (24 lists
× 24 items) on each of sessions 1 through 23 with the ordering of words randomized for each
session. The 24th session introduced a set of novel words, as described in the Appendix.
Subjects were given a short break (approximately 5 minutes) after every 8 lists in a session.

PEERS Experiment 5

The fifth PEERS experiment sought to contrast neural correlates of retrieval following
a very long delay, with neural correlates of retrieval of a just presented single item. During
each of the first five sessions, subjects quietly read each of the 576 words used in Experiment
4. After reading each word, they waited 1 sec (or longer) before saying the word aloud.
These 576 immediate recall trials occurred in 24 blocks of 24 items, each preceded by a
countdown, thus mimicking the 24 list structure of Experiment 4.

At the start of session six, subjects were given a surprise free recall task in which
they were instructed to recall as many words as possible from the previous sessions in any
order, while also vocalizing any additional words that come to mind in their attempt to
recall these items (Externalized recall instructions: Kahana et al., 2005; Lohnas, Polyn, &
Kahana, 2015; Zaromb et al., 2006). We administered this long-delay recall task as the
start of each of the sessions 6 through 10, giving subjects 10 minutes to recall as many of
the 576 words as they could remember. After this free recall test, subjects continued with
the same immediate recall task as in earlier sessions.
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Figure 1 . Schematic of PEERS methods. The same group of subjects took part in
Experiments 1-3, across 20 experimental sessions. Experiments 4 and 5 involved separate
subject groups, recruited in later years of the project. Each experiment involved some form
of a free recall task, and Experiments 1-3 also included recognition and final-free recall
tasks. Experiment 5 only included final free recall. For Experiments 1-3, subjects either
studied items without a specific encoding task, or they judged items size or animacy. The
color of the word bubbles in the first row of the schematic indicates the encoding task.
Experiment 2 also included a manipulation of encoding task which is not indicated in the
schematic. The Methods section provides many details omitted here.
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Compensation and Performance-based Bonus

In each of the PEERS experiments, subjects received a base salary for their partici-
pation. In addition, they received a modest bonus for performance and a separate bonus for
completing all of the sessions. The performance bonus varied slightly across experiments,
but it incentivized subjects for achieving high levels of recall while maintaining a high-level
of performance on the arithmetic distractor tasks. In addition, we provided a bonus to
subjects for maintaining a low blink rate during critical item presentation events.

PEERS Raw Data Repository and online Methods description

All PEERS data may be freely obtained from the Computational Memory Lab web-
page, hosted by the University of Pennsylvania: http://memory.psych.upenn.edu/PEERS
The same website also provides a detailed methods description of each of the PEERS studies
briefly described above.

Results

Here we present our results organized into five major sections. Section 1 provides
an overview of the major behavioral findings. Section 2 discusses both experimental and
endogenous sources of variability in recall of items and lists. Section 3 focuses on EEG
correlates of successful memory encoding. Section 4 focuses on individual differences and
model-based analyses of performance. Section 5 discusses EEG correlates of memory re-
trieval.

1. Overview of Major Behavioral Findings

The PEERS free-recall experiments replicated many classic findings, including serial
position effects, temporal and semantic organization of memories, the exponential growth of
inter-response times with output position, and subjects’ tendency to commit extra-list and
prior-list intrusions as a function of their temporal and semantic relation to the just-recalled
items. Having subjects make size or animacy judgments during word encoding led to worse
overall performance than free encoding (for similar findings, see Polyn, Norman, & Kahana,
2009; Long et al., 2017; Mundorf, Lazarus, Uitvlugt, & Healey, 2021). Subjects exhibited
strong temporal and semantic organization regardless of encoding task condition, but both
size and animacy encoding tasks led to more semantic organization and less temporal orga-
nization as compared with no-task lists (for temporal organization see Figure 3A). On lists
where subjects had to switch from size to animacy at random points, recall transitions were
more likely between items encoded with the same task instruction (accounting for the lag
between these items in the study list).

PEERS Experiment 2 replicated all of the classic findings concerning distractor ef-
fects, including the reduction in recency with increased length of an end-of-list distractor,
but recovery of recency with increased length of a within-list (inter-item) distractor (Kahana
(2017); Lohnas and Kahana (2014); see, also, see Figure 2). Here we can also see the striking
similarity in recall initiation across immediate and continual-distractor free recall, and the
substantial attenuation in recency in delayed free recall (Figure 2c). As first demonstrated
by Howard and Kahana (1999), the contiguity effect does not differ across the distractor
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conditions, indicating that whatever enables subjects to make transitions between neighbor-
ing items depends on the relative and not the absolute distances between the items. Finally,
we find striking effects of semantic similarity on free recall (e.g. Manning, Sperling, Sharan,
Rosenberg, & Kahana, 2012), across all distractor conditions, as illustrated by Figure 2E
(Kahana, 2017).

PEERS Experiment 3 compared free recall under standard and externalized recall
instructions. In externalized recall, the experimenter instructs subjects to recall any item
that comes to mind as they are trying to remember the lists, even if they realize that
it was not a studied item, or if it is an item that they have already recalled. In these
cases, we instruct subjects to press the space bar to “reject” the item they just recalled. As
expected from prior work (Kahana et al., 2005; Zaromb et al., 2006) externalized instructions
elicit many more prior-list and extra-list intrusions, but have little or no effect on correct
recalls (Lohnas et al., 2015). Inclusion of externalized recall instructions provided valuable
data on intrusions which occur only rarely in standard free recall.

Because subjects participated in PEERS Experiments 1 – 3 as a series of experiments,
data from PEERS Experiment 3 provides valuable information on free recall under condi-
tions of high practice (i.e., in each session of PEERS Experiment 3, subjects will have been
doing word-list free recall and recognition for a dozen or more prior sessions). Here we found
a positive effect of practice on recall performance, but a large effect on temporal organiza-
tion, with subjects increasingly exhibiting a tendency to make successive transitions among
items studied in neighboring serial positions (see Figure 3B). This finding also appeared in
PEERS Experiment 4, as described below.

PEERS Experiments 1 – 3 included two additional measures of memory following all
of the lists in a given session: On a random half of sessions, subjects performed a final free
recall (FFR) test on all prior lists. This FFR test came immediately after the recall period
for the final list (see Figure 1). In FFR, subjects exhibited a long-term recency effect,
seen in the much higher recall rates for items on the last few lists. Subjects also exhibited a
negative within-list recency effect, as seen in worse FFR recall rates for the last few items in
each list (Craik, 1970). Kuhn, Lohnas, and Kahana (2018) found that the negative recency
effect critically depended on when subjects recalled those terminal list items during their
initial free recall. Specifically, negative recency arose primarily due to subjects recalling
terminal list items at the start of the recall period. When the lag between studying and
recalling an item was short, subjects were significantly less likely to recall the item in final
recall than when the lag was long. Kuhn et al. (2018) interpreted this finding in relation
to the well-known spacing effect: the greater the spacing between two encoding events (in
this case the second being the retrieval of an item) the better the memory for those events.
As further support for their interpretation, Kuhn et al. (2018) found greater evidence of
negative recency in earlier than later output positions of the DFR and CDFR conditions of
PEERS Experiment 2.

After FFR (or if absent, after the immediate free recall period of the last list), all
subjects performed a recognition memory task, with confidence judgments, on a percentage
of items studied across all of the lists (see, Lohnas & Kahana, 2013; Weidemann & Kahana,
2016, for details). Given that retrieval is highly cue-dependent, we wanted to include
additional assays of memory for the purpose of obtaining more information on the successful
encoding of studied items and also to provide additional means of examining the neural
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Figure 2 . Recency and contiguity as a function of distractor conditions in PEERS
Experiment 2. A. Illustration of immediate, delayed, and continual distractor free recall
tasks (IFR, DFR and CDFR). B. Serial position analysis showing recency in IFR, attenuated
recency in DFR, and long-term recency in CDFR. C. Recall initiation, as measured by the
probability of first recall, shows that initiating with recent items does not differ between
DFR and CDFR. D. Contiguity is generally preserved in all three conditions. E. Subjects
are more likely to recall items that are semantically related to the just-recalled item.

correlates of retrieval (see, e.g., Weidemann & Kahana, 2019). Performance in these tasks
replicated classic findings, including the relation between confidence and response times
in recognition (Murdock & Dufty, 1972), and the shape of the ROC curves (Lockhart &
Murdock, 1970; Van Zandt, 2000) (see (Weidemann & Kahana, 2016)).

PEERS Experiment 4 created a much simpler experimental scenario in which to
examine the electrophysiology of memory encoding and retrieval. Free encoding instructions
simplified item presentation and minimized eye movements evoked by the task cue in Peers
Experiments 1-3. Delayed free recall facilitated aggregation across list items by reducing
the size of the recency effect. Owing to its simplicity and repetitive structure, PEERS
Experiment 4 provides a particularly rich dataset for the study of variability in memory,
across items, lists and sessions (see Section 2). A discussion of the EEG correlates of memory
encoding and retrieval in each of the PEERS studies appears in later sections.

2. Variability in recall across items and lists

Cognitive processes that unfold during the encoding, retention, and retrieval of an
item all contribute to performance in recall and recognition memory tasks. As such, neural
measurements during these phases can help disentangle their respective contributions to
subsequent memory. By measuring EEG activity during memory encoding, for example,
we can observe variability across items in the mnemonic processes that predict subsequent
retrieval. Successful encoding of words, however, may also reflect psycholinguistic properties
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Figure 3 . Conditions influencing the contiguity effect. A. The contiguity effect is
smaller when assigned a task on how to encode the items (a size or animacy judgment)
than when not given instructions on how to encode the list. B. Task experience amplifies
the contiguity effect: a large contiguity effect is present in the 1st session and grows larger
by the 23rd session. C. The contiguity effect also increases with intellectual ability, as
measured by WAIS IQ. D. Contiguity is preserved across the lifespan, but is larger for
younger adults than for older adults.

of items. Here we first examine how properties of words and lists relate to their subsequent
memorability; we then consider the possibility that endogenous processes, unrelated to
experimentally controlled factors, may also underlie variability in memory performance.

Consider how memory for a word varies with the word’s frequency of occurrence in the
English language. Here, classic studies report a large word frequency effect in recognition
memory, with subjects exhibiting superior memory for rare words than for common words
(Schulman, 1967; Shepard, 1967). In free recall, however, studies have reported inconsistent
effects, with some researchers finding superior recall for rare words, and other researchers
finding superior recall for common words. Lohnas and Kahana (2013) sought to clarify
this issue by analyzing the effects of word frequency on both free recall and recognition
in PEERS Experiment 1. In recognition memory, they found the expected pattern: with
increasing word frequency, hit rates declined and false alarm rates increased. However, in
free recall, they found a U-shaped pattern of results: subjects exhibited superior recall for
both rare and common words (see, Figure 4).

A unique aspect of PEERS Experiment 4 is that subjects studied the same set of 576
words in each of the 23 experimental sessions. Results from this dataset showed us that
some words, lists, and sessions are easier to recall than others. What is the source of this
variability? Aka, Phan, and Kahana (2021) took a psycholinguistic approach to answer this
question and studied how word features relate to both word and list-level memorability. A
multivariate model fit to word-level recall data revealed positive effects of animacy, contex-
tual diversity, valence, arousal, concreteness, and semantic structure (listed in descending
order of importance) on recall of individual words. In their list-level recall model, Aka et
al. (2021) examined how the average word features in each list influenced the average re-
call probability of that list. Here, average contextual diversity, valence, animacy, semantic
similarity (weighted by temporal distance), and concreteness (listed in descending order of
importance) emerged as significant predictors of list-level recall.

Although psycholinguistic variables, such as those examined by Aka et al. (2021),
can account for significant variability in item recall, these factors account for a surprisingly
small fraction of variability in recall performance at the list level. Kahana et al. (2018)
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B.

A.

Figure 4 . Word frequency effects in recall and recognition. A. Subjects recalled
higher proportions of both low frequency and high frequency words as compared with inter-
mediate frequency words, regardless of whether the item was presented without an encoding
task (filled squares) or with an encoding task (filled circles). B. Subjects were more likely
to incorrectly accept lures with increasing word frequency (open symbols) and less likely
to correctly recognize targets with increasing word frequency (filled symbols), regardless
of whether the items were presented with an associated encoding task (circles) or no task
(squares). Data from Peers Experiment 1 (984 words) included in these analysis were par-
titioned into deciles on the basis of their word frequency counts in the CELEX2 database.
Error bars represent 95% confidence intervals.



PEERS 12

Table 2
Fixed Effects of Variables Predicting Probability of Word-Level and List-Level Recall in
Multivariate Analyses

M β SE β
Predictors of Word-Level Recall Model

Concreteness 0.03*** 0.004
Contextual Diversity 0.06*** 0.005
Word Length -0.003 0.003
Valence 0.05*** 0.004
Arousal 0.04*** 0.004
Animacy 0.09*** 0.006
Meaningfulness 0.005* 0.005
Session Number -0.009*** 0.0003

Predictors of List-Level Recall Model
Concreteness 0.002* 0.0008
Contextual Diversity 0.008*** 0.001
Word Length -0.0004 0.0008
Valence 0.005*** 0.0008
Arousal 0.001 0.0009
Animacy 0.004*** 0.0008
Meaningfulness 0.002** 0.0008
Session Number -0.002*** 0.0001
Trial Number -0.005*** 0.0001

*p < 0.05, **p < 0.01 , ***p < 0.001 Word Length, Valence, Arousal, and Animacy variables are
residualized variables.
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Figure 5 . Predictors of interlist variability. Within each session, recall decreased
across successive lists, but increased following the two 5 minute breaks, consistent with a
proactive interference account.
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asked whether this variability in list-level recall could be due to experimentally-determined
factors, including both average item difficulty and list number. Although each of these
factors explained significant variability in list-level recall (see Figure 5 for data on list
number, Kahana et al. found the overall explanatory power of these factors to be quite
limited. In view of the tremendous variation across lists and the limited explanatory power
of their multivariate model, Kahana et al. speculated that endogenous, autocorrelated,
neural activity may account for the excessive variability. To test this hypothesis, they
added performance on the prior list as an additional explanatory variable in their model
and found that this was in fact the strongest predictor of performance on a given list.
Converging evidence for the endogenous factors came from investigations of item and list-
level subsequent memory effect described in the following section (Weidemann & Kahana,
2021).

An unpublished study by Kreiger, Aggarwal, and Kahana (2019) offered further sup-
port for the endogenous variability hypothesis. In PEERS Experiment 4, each subject
performed a math distractor task between the end of the study list and the recall period,
and on half of lists, subjects also performed a math task prior to the start of the list. The
end-of-list distractor serves the role of disrupting active rehearsal and thereby diminishing
the recency effect (see Figure 6). Kreiger et al. asked whether subjects might be sneaking
rehearsals into the distractor period and thereby boosting recall performance (akin to the
rehearsal borrowing analysis of Yonelinas, Hockley, and Murdock (1992)). Contrary to their
prediction, they found that trials with above average math performance (for a given sub-
ject) had stronger rather than weaker recency. Applying the same analysis to the math task
given before the start of each list, they found that trials with above average subject-specific
math performance predicted strong primacy effects on those trials. Both findings align with
the hypothesis that cognitive functions supporting both memory and math fluctuate over
time, and that periods of good cognitive ability lead to better math performance and better
recall. We returned to this question in our analysis of the neural correlates of memory
encoding at the item and list level, described below.

3. EEG Correlates of Successful Memory Encoding

Our first set of electrophysiological investigations sought to examine the EEG features
during memory encoding that predict subsequent recall (the so-called subsequent memory
effect, or SME). Long et al. (2014), analyzing a subset of the PEERS Experiment 1 data,
discovered that increases in broadband high-frequency activity (HFA, defined here as 44-
100 Hz) and decreases in low frequency activity (LFA, centered around the 8-12 Hz alpha
band), marked periods of successful memory encoding, as defined based on the subsequent
recall of those items.

Long et al. sought to determine whether these scalp EEG biomarkers of successful
encoding overlap with spectral biomarkers determined using direct brain recordings in neu-
rosurgical patients with drug-resistant epilepsy (e.g., Sederberg, Kahana, Howard, Donner,
& Madsen, 2003; Sederberg et al., 2007). To answer this question, they conducted a care-
ful comparison between the scalp topography and the frequency specificity of the PEERS
Experiment 1 EEG data and a large intracranial dataset reported by Burke et al. (2014).
This comparison revealed striking commonalities in both the regions and time courses of
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Figure 6 . Recall and Distractor Task Performance. A. When a math distractor task
follows a study list, there is a greater difference in recall probability between good and bad
math performance for later serial positions. B. When a math distractor task precedes a
study list, this difference is greater for earlier serial positions.

the LFA and HFA effects, supporting the conclusion that scalp EEG can resolve similar
signals, albeit with far poorer spatial resolution.

Long and Kahana (2017) tested the hypothesis that these HFA/LFA biomarkers track
not only ‘whether’ a stimulus will be subsequently remembered, but ‘how’ a stimulus is later
recalled. Specifically, the authors assessed spectral signals during the study of words that
were subsequently temporally clustered (recalled immediately before or after an item studied
in a neighboring list position) or subsequently semantically clustered (recalled immediately
before or after an item with a high degree of semantic similarity). They found that both
forms of clustering can be predicted by HFA increases during study, but in a task-dependent
manner (Figure 7). HFA over left prefrontal cortex predicted subsequent temporal clustering
specifically during no-task lists, when subjects freely encoded the presented words. HFA
over left prefrontal cortex also predicted subsequent semantic clustering, but only during
task lists, when subjects made a semantic judgment (size or animacy) on each word. These
findings reveal a common mechanism that underlies different forms of memory organization
and further suggest that temporal vs. semantic based organization may trade off, given
their dependence on the same biomarkers.

The preceding results illustrate some ways in which EEG activity during item encod-
ing relate to whether and how it is subsequently recalled. One may ask, however, whether
these EEG correlates of subsequent recall reflect properties of the item or perhaps slowly
changing brain states that support successful memory formation. This latter possibility
aligns with our findings that prior list performance and performance in a math distractor
task predicted recall of items whose study was separated from these tasks by many seconds.
To test this endogenous variability hypothesis, Weidemann and Kahana (2021) computed
multivariate subsequent memory effects by training regression models to predict recall per-
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Figure 7 . Neural Subsequent Clustering Effect. Difference in study-phase high fre-
quency activity (HFA; 44-100Hz) over left prefrontal cortex between words that are later
temporally or semantically clustered, separately for no-task (black) and task (grey) lists.
HFA is greater for subsequently temporally clustered words studied with no task and greater
for subsequently semantically clustered words studied with a task. There is a significant
interaction between the type of clustering (temporal, semantic) and whether subjects per-
formed a semantic orienting task (p < 0.001). Error bars represent standard error of the
mean.

formance from a range of neural features. To account for the effects of external factors (such
as properties of individual words or their positions within a list or experimental session)
they first regressed out the effects of these factors and then calculated a “corrected” sub-
sequent memory effect, by using neural features to predict the residual recall performance.
To assess the extent to which neural features that predict subsequent recall performance
persist beyond the individual item presentations they also introduced a list-level SME that
uses average neural activity across the entire study list to predict list-level performance.
This list-level SME can also be corrected by regressing out remaining external factors that
apply to entire lists. Figure 8 shows the full and corrected item-level (A) and list-level
(B) SMEs as correlations between model predictions and recall performance. Whereas cor-
recting for external factors reduced the SMEs somewhat, substantial SMEs remained even
when accounting for external factors, suggesting that a large proportion of SMEs are due
to endogenous factors. Additionally it was possible to predict list-level performance from
list-averaged neural activity, supporting the conclusion that endogenous factors related to
cognitive function vary slowly (at least on the order of many seconds).

PEERS included a cohort of 39 older adults who each took part in 10 experimental
sessions (the preliminary screening session, seven sessions of PEERS Experiment 1, and the
two sessions of psychometric testing described previously) The EEG data collected from
the older adults allowed us to investigate the biomarkers of this pattern of age-related
behavioral change. Healey and Kahana (2020) found that age-related memory deficits
are associated with differences in how neural activity changes across serial positions during
study. Previous work had established that, among younger adults, oscillatory power changes
in a highly consistent way from item-to-item across the study period (Sederberg et al., 2006).
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Figure 8 . Item-level and list-level subsequent memory effects (SMEs). Distributions of correla-
tions between multivariate model predictions and item (A) and list-level (B) free-recall performance. Each
panel shows the full SME (labeled “item” and “list” respectively) as well as a corrected SMEs after effects
from a range of external factors have been removed (“item|all” and “list|all” respectively). This figure is
adapted from Weidemann and Kahana (2021).

The PEERS aging data showed that at frequencies above 14 Hz, there were virtually no
age differences in these neural gradients—both age groups showed a reduction in power
across the list. Moreover, older adults who showed the smallest age-related behavioral
memory deficits showed the largest departures from the younger adult pattern of neural
activity. These results suggest that age differences in the dynamics of neural activity across
an encoding period reflect changes in cognitive processing that compensate for age-related
decline.

4. Individual differences and Cognitive Modeling

PEERS data provided a unique window into individual differences in both behavior
and physiology. Healey and Kahana (2014) examined the effects of primacy, recency, tempo-
ral contiguity, and semantic clustering at the level of individual subjects. They found that
90% of Experiment 1 subjects showed recency, 93% showed primacy, at least 96% showed
a forward-asymmetric contiguity effect, and 100% showed semantic clustering. Despite this
remarkable level of consistency, the magnitude of these effects varied widely across indi-
viduals. Analyzing PEERS Experiments 1 and 2, Healey, Crutchley, and Kahana (2014)
found that these four effects represent statistically distinct sources of variability among
individuals. Of these, only temporal contiguity and semantic clustering correlated with
overall recall performance, suggesting that associative organization processes contributes to
successful memory search (see also Sederberg, Miller, Howard, & Kahana, 2010; Spillers &
Unsworth, 2011). Moreover, variation in the temporal contiguity effect (but not the other
effects) correlated positively with full-scale WAIS-IV IQ (see Figure 9). These findings sug-
gest that the ability to control the drift of mental context representations may be critical
not just to memory, but to general intellectual ability (Healey & Uitvlugt, 2019).

We designed the PEERS experiments with the goal of modeling individual-subject
data, and of using the estimated model parameters to help understand individual differences.
Healey et al. (2014) showed one clear reason for the importance of subject-level analysis and
modeling: When averaged across subjects it would appear that in immediate recall, subjects
mostly initiate with the final (recency) items, but occasionally initiate with early (primary)
items. In this case aggregation disguised the true nature of the data, wherein most subjects
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Figure 9 . Individual differences in contiguity predict memory performance and
IQ A. The correlation between temporal factor scores and overall recall probability. Tem-
poral factor scores give the average percentile ranking the temporal lag of each actual
transition with respect to the lags of all transitions that were possible at that time. B. The
correlation between temporal factor scores and intelligence as measured by the Wechsler
Adult Intelligence Scale IV.

almost always initiate with the final list item but some subjects almost always initiate with
the first list item. Here the average data did not provide an accurate representation of each
individual.

Before conducting individual-level modeling, however, we used the PEERS data to ex-
tend retrieved context theory to multi-list experiments. We briefly summarize the resulting
CMR2 model, and then discuss application of this model to individual differences, includ-
ing age-related changes in memory performance. CMR2 sought to address a fundamental
problem long neglected by memory modelers: How can a model simultaneously account
for the gradual accumulation of memories over a lifetime and the specificity with which we
are able to retrieve memories learned in a given context? Unlike earlier implementations
of retrieved context theory (RCT) that reset the memory system at the start of each list
(e.g., Sederberg, Howard, & Kahana, 2008; Polyn et al., 2009), CMR2 allowed the associa-
tive structures that store memories to continuously accumulate. The model inherited basic
assumptions of earlier RCT implementations, including the core idea of a slowly drifting
representation of temporal context (Manning, in press). The evolution of context follows
the standard formalism of RCT in which features of the currently experienced item retrieve
their associated past contexts, which in turn update the state of context. This recursive
notion of contextual retrieval endows the model with dynamics that match many details of
list recall tasks.

In CMR2, Lohnas et al. extended these earlier ideas to the situation where infor-
mation from prior lists impacts memory for information on the current, target, list. While
many circumstances entail interactions between new and old memories, most list memory
experiments create an artificial situation in which the rememberer seeks to focus their re-
trieval exclusively on the target list. Nonetheless, information from prior lists can impact
current list recalls, as evidenced by subjects tendency to make prior-list intrusions from re-
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cent lists. Yet, such intrusion errors occur infrequently, indicating that subjects can control
their search of memory to the current list, possibly by filtering out recalls that come from
inappropriate contexts (e.g. Bahrick, 1970; Jacoby & Hollingshead, 1990; Raaijmakers &
Shiffrin, 1980).

Lohnas et al. (2015) proposed that subjects internally generate more recalls than they
report, and omit recall of a generated item if it is not recognized as having been studied in the
the current list. Each generated item retrieves its associated context state from study, and
CMR2 only recalls a generated item if its retrieved temporal context is similar to the current
context. Although CMR2 can query which items are generated but not recalled, subjects
require additional instruction. In the externalized free recall (EFR) paradigm, subjects
attempt to recall all items that come to mind (e.g. Kahana et al., 2005; Roediger & Payne,
1985; Unsworth & Brewer, 2010; Unsworth, Brewer, & Spillers, 2010; Wahlheim, Alexander,
& Kane, 2019). If the subject perceives that they have recalled an item in error, they may
“reject” such an item by pressing the spacebar immediately afterwards. With this set-up,
subjects recall a large proportion of prior-list intrusions, extra-list intrusions, and repeats,
and rarely reject correct items (Kahana et al., 2005). Although these results indicate that
subjects can reject items successfully, it still leaves open the question of whether this is
actually what subjects are doing during immediate free recall.

Lohnas et al. (2015) tested the generate-recognize mechanism using data from PEERS
Experiment 3 (as shown in Figure 1, some subjects performed externalized recall, while
others studied lists with the same structure, but performed standard free recall). Although
subjects engaging in EFR produced more errors, the PFRs and SPCs were nearly identical
between the two groups, suggesting that EFR relies on similar cognitive mechanisms to IFR.
Buttressing this account, Lohnas et al. (2015) found that CMR2 predicted the proportion
and probability of rejection for prior-list intrusions in the EFR group, as well as reduced
PLIs for the IFR group, using a single set of parameters for fitting data from both subject
groups. To further test CMR2’s assumption of the role of temporal context in the generate-
recognize mechanism, Lohnas et al. (2015) examined rejections of prior-list intrusions. In
both CMR2 predictions and PEERS data, rejections of PLIs increased as a function of list
recency.

Having established CMR2 as a successful model of free recall phenomena for mean
data, we now return to the question of individual differences. Healey and Kahana (2014)
fit CMR2 to individual subject data in PEERS Experiment 1 and found that the model
provided a good fit to data from ∼95% of individual subjects. Healey and Kahana (2016)
further tested the individual-subject modeling approach by asking whether CMR2 could
account for key differences between younger and older adults in PEERS Experiment 1 data,
including the elevated intrusion rates exhibited by older adults. They first fit CMR2 to
data from individual younger and older adults using the Kahana, Howard, Zaromb, and
Wingfield (2002) as an independent data set for model development, allowing all model
parameters to vary, and then identified the smallest subset of parameter changes required
to capture age-related differences. This method identified four components of putative
age-related impairment: 1) contextual retrieval, 2) the sustained attention (related to the
primacy gradient), 3) error monitoring (related to rejecting intrusions), and 4) decision
noise. Fig. 10 (A-G) shows that when this full model is applied to the PEERS Experiment 1
data, it provided a reasonable account of younger adults recall dynamics and that adjusting
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Figure 10 . Age-related changes in Recall and Recognition. Panels A-C illustrate serial position,
probability of first recall and contiguity effects; Panel D illustrates recognition memory hits and false alarms;
Panel E illustrates semantic organization; Panels F-G illustrate intrusion errors, and Panel H illustrates the
correlation between intrusions and false alarms. Black lines/bars indicate data from older adults; Gray lines
indicate younger-adult data. Solid lines with filled symbols or filled bars show subject data and broken lines
with open symbols or unfilled bars show CMR2 simulations from Healey and Kahana (2016).

the four components mentioned above enabled the model to account for age-related changes
in serial position effects, semantic and temporal organization, and intrusions. They then
extended CMR2 to provide a context-similarity model of recognition judgments, and age
differences therein, based on the same mechanism used to filter intrusion errors. This joint
model of free recall and recognition makes the novel prediction that the number of intrusions
a subject makes in free recall should correlate positively with the number of false alarms
they make in recognition. As shown in Fig. 10H, the PEERS data confirmed this prediction.

Analysis of data from the 39 older adults who took part in PEERS Experiment 1
replicated several basic findings that suggest cognitive aging impacts some memory processes
more than others (Healey & Kahana, 2016) . For example, whereas there was substantial
age-related impairment in free recall there was a more modest age-related impairment in
item recognition (Schonfield & Robertson, 1966). Even within free recall, older adults
showed a complex pattern of preserved and impaired functioning. Specifically, older adults
showed no deficits in recall initiation (primacy and recency, Kahana et al., 2002) or semantic
organization. They did however, show a substantial reduction in temporal organization (a
reduced contiguity effect, Figure 3, see Howard, Kahana, & Wingfield, 2006; Wahlheim &
Huff, 2015). Older adults also exhibited a greater tendency to commit prior and extra-list
intrusions (Zaromb et al., 2006; Wahlheim, Ball, & Richmond, 2017), but the were no age
differences in the tendency for prior list intrusions to come from recent versus remote lists.

To investigate longitudinal age-related change in memory, we recruited a subgroup
of the older adult subjects to return each year to repeat the seven PEERS Experiment 1
sessions. Among the original cohort of older adults, eight came back for five years of
repeat testing sessions. This extensive within-subject data allowed us to evaluate age-related
changes in performance while factoring out potential effects of repeated testing. Broitman,
Kahana, and Healey (2020) fit a model to session level changes in performance that included
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a term for the established power-law improvements in task performance resulting from
practice (Anderson, Fincham, & Douglass, 1999) and the effects of aging, which we assumed
to be approximately linear across this five-year period. When applied to our annual-testing
sample, the model uncovered both significant practice effects (increase of 0.72% annually)
and a modest age-related decline in recall probability (0.14% annually). These model-based
analyses illustrate how one can use data from multi-session experiments with small numbers
of subjects to address questions normally studied in large-scale individual difference studies.

Cohen and Kahana (in press) further evaluated the individual-difference modeling
approach by examining the role of emotional information in the organization of memory.
Analyzing data from PEERS Experiment 1, Long, Danoff, and Kahana (2015) demonstrated
that after recalling a word with positive affective valence, subjects were more likely to recall
an item of the same valence (positive) as compared with a negative or affectively neutral item
(controlling for available of these categories of items). Because similarities among same-
valence words are likely greater than among words from different valence classes, Long et al
went beyond the basic emotional clustering result by showing that subjects exhibited reliable
affective clustering even after controlling for item similarity. Cohen and Kahana replicated
Long et al.’s emotional clustering effect in the larger PEERS Experiment 4 dataset. They
then took the same approach as Healey and Kahana (2016), modeling individual level data
on the organization of memory, including temporal, semantic and emotional clustering.
They used parameters fitted to individual subjects in PEERS Experiment 4 to generate
and test novel predictions about how emotional disorders relate to memory performance for
emotional materials.

5. EEG biomarkers of memory retrieval

Li, Pazdera, and Kahana (2022) examined the spectral correlates of successful re-
trieval in PEERS Experiment 4. Comparing EEG activity immediately preceding correct
recalls and intrusion errors they found marked increases in high frequency activity in the
500 ms period leading up to successful recall. Accompanying these HFA increases, they also
found decreases in 8-12 Hz alpha activity, with the degree of these two effects exhibiting
considerable variability across subjects in both magnitude and frequency ranges (see Fig-
ure 11B). A majority of subjects also exhibited modest increases in theta activity preceding
successful recall, but this effect did not prove reliable in aggregate statistical comparisons.

Conducting parallel analyses on successful encoding, Li et al. replicated the overall
spectral patterns identified by Long, Burke, and Kahana (2014) and Long et al. (2017);
namely, increased HFA and diminished alpha activity accompanied successful memory en-
coding (see Figure 11A). Li et al. also found a striking positive theta effect overlying frontal
regions of the brain, extending earlier findings implicating frontal theta in working memory
and cognitive control (Cavanagh & Frank, 2014; Jacobs, Hwang, Curran, & Kahana, 2006).

Katerman, Li, Pazdera, Keane, and Kahana (2022) investigated the spectral correlates
of memory retrieval after very long delays, using a pre-vocalization period in immediate-
recall a control for premotor actvity (in PEERS Experiment 5). In addition to demonstrat-
ing increased HFA and decreased alpha activity, as seen in Li et al. (2022), Katerman and
colleagues also found a striking increase in frontal theta activity in the moments leading up
to successful retrieval, mimicking the encoding results described above (see Figure 12, where
black outlines indicate frequency-region pairs that met an FDR-corrected p<0.05 threshold



PEERS 21

A B

H
ig
he
r
fr
ee
re
ca
ll
pe
rf
or
m
an
ce

Encoding Retrieval

3

2

1

0

1

2

3

t

4 12 20 32 56 80 104 128
Frequency (Hz)

4 12 20 32 56 80 104 128
Frequency (Hz)

Figure 11 . Subject-specific spectral markers of successful episodic memory in
encoding and retrieval. Each row shows results from one subject, sorted in ascending
recall performance. Subject-specific independent t-statistics for the successful and unsuc-
cessful memory contrast are collapsed across eight ROIs. Power increases and decreases are
shown in red and in blue, respectively.

for the comparison between delayed vs. immediate recall). Given the far greater demands
on episodic memory retrieval when recalling items after one or more days, Katerman et al
interpreted the increased theta (+T), decreased alpha (-A) and increased gamma / HFA
(+G) as a +T-A+G of context-dependent memory retrieval.

Recognition memory tests confer certain advantages over recall tests in the study of
retrieval processes. Specifically, the recognition procedure provides experimental control
over the arrival of the retrieval cue allowing for precise analyses of cue-dependent mem-
ory retrieval. In addition, the recognition procedure provides valuable information about
retrieval processes when subjects have limited memory for a given target. PEERS Exper-
iments 1-3 included a recognition phase at the end of each session in which subjects made
yes-no responses, followed by confidence ratings. In addition to reducing uncertainty around
timing of retrieval processes, recognition tests also provide data on the strength of the un-
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Figure 12 . Statistical maps illustrating relative increases (red) and decreases
(blue) in spectral power across key memory contrasts for eight regions of inter-
est. Spectral power contrast for Delayed Recall vs. Immediate Recall in PEERS Experi-
ment 5.

derlying memory signal (“memory strength”) usually from introspective judgments in the
form of confidence ratings. Weidemann and Kahana (2016, 2019) examined the extent to
which implicit measures, such as response speed or brain activity preceding the recognition
decision, might reveal memory strength without the need to rely on introspection. We can
assess different measures with respect to their ability to reveal memory strength by con-
structing receiver operating characteristic functions (ROC) that relate false alarm rates to
hit rates across the range of the measures (Wickens, 2002). The area under the correspond-
ing ROC curve (AUC) indexes how much the corresponding measure is able to distinguish
old from new items with an AUC of 0.5 indicating chance performance and an AUC of 1.0
indicating prefect discrimination between old and new items. Figure 13 shows the AUC
for confidence ratings, response latencies, and EEG activity with qualitatively similar pat-
terns across these measures and substantial correlations between the different AUCs. These
results suggest that these measures all offer different views on the same memory strength
signal underlying recognition decisions. Analyses on classifiers predicting an item’s old-new
status using brain activity during different time windows in the lead-up to a recognition
response also showed that evidence is integrated into a unitary memory signal giving rise
to recognition decisions. This result contrasts with theories proposing that different kinds
of evidence dominate individual recognition decisions (Weidemann & Kahana, 2019).

At the same time, free recall confers other advantages over recognition tests in the
study of retrieval processes. In particular, when study items reappear as probe items on
a recognition test, similarities in brain activity between encoding and retrieval may reflect
item similarity rather than memory reinstatement. By contrast, the lack of external re-
trieval cues in free recall allows one to use neural similarity between encoding and retrieval
to study reinstatement of the encoding activity in the mind of the subject. Lohnas, Healey,
and Davachi (2021) examined the neural correlates of context reinstatement in scalp EEG,
asking specifically how task manipulations influence the pattern of neural similarity between
encoding and retrieval. Lohnas et al. defined a neural measure of temporal context using
principles of RCT: Studying an item should cause context to drift slowly, and recall of an
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item should reinstate its temporal context from study (Folkerts, Rutishauser, & Howard,
2018; Howard, Viskontas, Shankar, & Fried, 2012; Manning, Polyn, Baltuch, Litt, & Ka-
hana, 2011). They then show that spectral features of scalp EEG activity demonstrate the
reinstatement of temporal context prior to word recall (using data from PEERS Experi-
ment 1). Having demonstrated a neural signature of context reinstatement in lists involving
size and animacy encoding tasks, and in no-task lists, they then examined the dynamics of
context in task shift lists (see Figure 1 for an illustration of the methods). Lohnas et al.
hypothesized that a change in task causes a disruption to temporal context (Polyn et al.,
2009) and therefore context should exhibit a greater change across successive words if they
are studied with the different tasks than if they are studied with the same task. Consistent
with this prediction, neighboring items had reduced neural similarity in temporal context
when presented with different tasks. Lohnas et al. also found strong evidence for the novel
RCT prediction that, during recall, the disruption to temporal context promotes increased
temporal contiguity for same-task neighboring items, and decreased temporal contiguity for
neighboring items studied with different tasks.

Lohnas et al. also examined individual differences in neural temporal disruption
reinstated during recall. They defined each subject’s neural similarity difference as the
neural similarity of neighboring item pairs with the same task minus neighboring item
pairs with different tasks. Across subjects, the neural similarity difference during encoding
were correlated with the neural similarity difference during recall. This provides further
evidence that temporal context states, including disruptions to context representations, are
reinstated during free recall. Further, across subjects the neural similarity difference at
recall correlated with the behavioral modulation of temporal contiguity, suggesting that the
neural measure of temporal context contributed to subject behavior. Taken together, these
results highlight the impact of task changes on temporal representations, having implications
for neural activity and memory organization.

Lessons learned

The PEERS project taught us many important lessons, some of which we briefly
review here:

Subject recruitment, retention and performance monitoring. Each term we
sought to recruit between 8 and 12 subjects to participate in the full 22 sessions of PEERS
Experiments 1 – 3, or the 24 sessions of PEERS Experiment 4. Because many potential
subjects would either be unwilling or unable to make such a large time commitment, we
first recruited subjects for a preliminary session, to insure that they knew what the series of
studies would entail. During this preliminary screening session, subjects performed a series
of trials involving immediate free recall of 15 item lists. At the end of the screening session,
we evaluated subjects’ blink rate, recall performance, and any evidence for their inability to
follow instructions. We invited subjects to enroll in the full study assuming that they met
a very liberal criterion on these variables. The main value of this type of screening trial is
to ensure that subjects who enroll know what they are “getting into” before committing to
20+ sessions of data collection.

During the main experiment, we provided a performance and a completion bonus (in
addition to a base payment for each session). Nonetheless, we still experienced attrition rates
of around 30%. We optimized the performance bonus for each study, generally rewarding
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Figure 13 . Inferring memory strength from confidence ratings, response latencies, and EEG
activity. A. The area under the ROC curve (AUC) for ROC functions constructed from confidence ratings,
response latencies, and EEG. These AUCs indicate the extent to which the corresponding measure reflects a
memory signal. As detailed in Weidemann and Kahana (2019), we can calculate AUCs across all responses
or calculate AUCs separately within “old” and “new” responses. We see a qualitatively similar pattern across
modalities with a stronger memory signal for “old” than for “new” responses. B. Scatterplots relating AUCs
from confidence (C) and latency (L) ROC functions to those from EEG activity. We see strong relationships
between these AUCS. As detailed in Weidemann and Kahana (2019), this strong correspondence is difficult
to interpret because every ROC functions based on all responses is constrained to pass through the point
corresponding to the overall hit and false alarm rate and thus the corresponding areas are not independent.
C. As in B, but for ROC functions only based on “old” or “new” responses, as indicated. These ROC
functions are not constrained to pass through the same point, but the corresponding ROCs are nevertheless
highly correlated. Figure adapted from Weidemann and Kahana (2019)

subjects based upon a combination of low-blink rates during item presentations, high recall,
accurate recognition and distractor task performance.

Our experience indicated that an experimenter should be present during a subject’s
first session of each new phase of the experiment. In subsequent sessions, we allowed
subjects to perform the tasks without overt monitoring. However, we observed the subjects’
performance remotely by monitoring their screen and in some cases with an experimenter
video. We also provided subjects with a “call button“ that they could use to ask assistance
from the experimenter.

Annotation of vocal responses. Although one can collect free recall responses
using a keyboard, spoken recall still remains as the most natural mode of output for subjects.
In addition, not all subjects are equally proficient at touch typing and when allowed to type
responses they may wish to backtrack and make changes before committing. This is an
especially important consideration when comparing younger and older adults. Therefore,
we allowed subjects to freely recall items by speaking them out loud to a microphone and a
computer recorded their vocal responses. We developed custom software to help annotate
subjects vocal responses. This software allowed a research assistant to listen to the recalled
items and mark the identity and the onset time of each spoken response (memory.psych
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.upenn.edu/TotalRecall). Over the course of this project we refined the Penn Total Recall
software, making it easier for researchers to efficiently process the recordings. Nonetheless, it
requires considerable time and care to annotate a single session of vocal recall responses. In
future work, it may be possible to fully automate voice detection and response identification
using tools such as Google’s speech recognition engine. We experimented with these tools
towards the end of the PEERS study, but never achieved the level of performance that
would allow us to fully replace manual annotation.

Measuring recognition. In line with our goal of making user responses as natural
as possible we also opted for vocal responses during our recognition test. Following a
suggestion by our colleague, Professor Saul Sternberg, we asked our subjects to say “pess”
or “po” instead of “yes” or “no”. Because the letter ‘P’ is a stop consonant this would enable
precise answer timing and remove any differences in measure of reaction time between yes
and no responses. Weidemann and Kahana (2016, 2019) used these data in their analyses
of ROC functions. We also collected confidence judgments and made the decision to take
confidence ratings after subjects made their recognition responses. To ensure the highest
quality response time data, we incentivized subjects for their speed in responding “yes” or
“no.” We also incentivized them for their accuracy using their confidence judgments as an
index of performance.

Session-level report generation. Early in the project we discovered that data
quality issues could emerge after a certain session (perhaps a problem with the testing
equipment) or that subjects might become confused regarding the instructions for a par-
ticular phase of the task. To maintain data quality we began creating automated subject
reports, using a cron job that ran overnight following annotation of the subjects vocal
responses (see below). These html or PDF reports, which could be accessed through a web-
page, indicated various data quality metrics including word-presentation evoked potentials,
blink rates, recall performance, and the testing room in which the session took place. The
reports did not reveal any comparisons across conditions, or other results that could bias
the research in any way. The research team reviewed these reports weekly and when they
saw any anomalous data they presented these findings to the principal investigator. We
found these reports to be so useful that we made them a standard part of all of our research
both in our scalp EEG studies and in our intracranial EEG research.

On the utility of scalp EEG

Scalp EEG is among the oldest techniques available to cognitive neuroscientists. Be-
ginning with the classic work of Berger (1929), EEG has become a staple of clinical neurol-
ogy, with applications to detecting epileptic seizures, identifying sleep stages and abnormal
sleep patterns, diagnosing perceptual disturbances, and many other indications. Although
some early scalp EEG studies examined correlations between alpha activity and learning and
memory, EEG became a commonly used method in the 1980s (e.g., Sanquist, Rohrbaugh,
Syndulko, & Lindsley, 1980; Donald, 1980). With the advent of more recent modalities
of neural imaging, one may wonder whether scalp EEG still has the potential to address
important questions in the realm of human memory.

The PEERS study sought to answer this question in the domain of episodic memory.
For example, intracranial EEG studies have uncovered striking correlates of behavior at
relatively high frequencies (e.g. 80-150 Hz) — frequencies which are commonly filtered
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out in scalp EEG studies, particularly those averaging the EEG signal into event related
potentials, due to concerns about electromyographic signals. PEERS data demonstrated
that spectral correlates of memory encoding and retrieval from non-invasive EEG recordings
closely resemble those from intracranial recordings in patients with epilepsy. Whereas earlier
EEG studies had documented effects in the alpha and theta frequency bands, PEERS data
highlighted relevant signals in spectral activity at higher frequencies calling into question
the standard practice of filtering out these signals.

The large number of trials contributed by each PEERS subject allowed us to evaluate
scalp EEGs ability to forecast behavior, by training classifiers on either encoding or retrieval-
related spectral activity. These classification studies required many more trials to achieve
the same classification performance as intracranial EEG classifiers. Specifically, we found
that scalp EEG training data from 500 24-item lists provided classification performance
similar to that obtained with 50 12-item lists of intracranial EEG data. This 20-fold
difference likely reflects the much higher spatial resolution of intracranial recordings as well
as the ability to sample deeper brain structures. Although we don’t have hard numbers
to compare our PEERS results to other recording methods, such as MEG or fMRI, it is
at least gratifying to know that given sufficient data, EEG can reliably perform the same
classification tasks as intracranial recording studies.2

Because researchers can obtain scalp EEG data efficiently and at low cost from both
healthy adults, and from diverse patient populations, it offers unique advantages over other
recording modalities, at least at the time of this writing. The PEERS studies demon-
strate how multi-session data collection allows for decoding at the individual subject level.
Future work will illuminate the value of model-based electrophysiology for furthering our
understanding of cognitive processes.

Big data studies in peer review. We did not notice any striking difference on the
part of reviewers or editors in the handling of papers involving novel analyses of an ongoing
study, or retrospective analyses of established datasets, as compared with traditional studies
reporting novel data. With the exception of a few reviewers and editors, most did not
comment specifically on the large scale of our data collection effort, or our efforts to publicly
disseminate our data.

What is the optimal scientific “portfolio”?

When making decisions across multiple projects, investors and corporations face a
fundamental “portfolio allocation” problem. This is the same problem that faces scientific
investigators deciding to allocate resources across projects. Scientists usually have many
more good projects than there is time or grant support to carry out the work; like the
company, they face a budget constraint and must make wise decisions about their resource
allocation. The problem of portfolio choice is relevant not only to an individual investigator
but also to a scientific field as a whole: granting agencies, for example, must decide how to
allocate resources across projects.

Throughout its short history, experimental psychology has embraced a model of small
science (Ebbinghaus, 1885, is the famous first exception). Individual investigators, or more

2We collected half of our PEERS experiment 4 data with water-based and half with gel-based EEG
systems (BioSemi and EGI) and we did not find any reliable difference in classification performance between
the two systems.
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typically individual trainees, design and carry out small scale experiments either on humans
or non-human animals. In the case of human research, each subject typically takes part in
just one hour-long session. A survey of recent articles published in the Journal of Exper-
imental Psychology: Learning, Memory, and Cognition reveals that a typical experiment
entails fewer than 40 hours of data collection and a typical publication includes ∼ 3 exper-
iments. Figure 14 shows the median and inter-quartile range across articles published in
each of years 2015-2021, with the number of articles included in the survey indicated below
each year. As the figure indicates, although some publications reported several hundred
hours of experimentation, the majority report fewer than 100 hours of human experimental
data, with a slight upward trend across the years. Although these publications may afford
the power required to support their main conclusions, many will lack adequate statistical
power to support secondary analyses analyses, where such analyses may offer insights into
the higher-order structure of the data. Certainly, we are beginning to see an increase in the
number of publications reporting crowdsourcing experiments often with large samples of
convenience, but these studies generally provide very limited data on each individual sub-
ject, and we do not yet have the technology to crowd-source neural recording data (though
this may change sooner than we expect). We are also beginning to see studies reporting
secondary analyses of previously published data, which is a welcome trend in our view. Yet,
the allocation of science to originally and singly published studies vs. secondary analyses
remains markedly lopsided.

One reason to avoid large allocations to single experiments, or single research teams, is
to diversify the risk. This is a sensible approach, but if all of our knowledge depends on small
experiments, this actually increases risk as these experiments cannot answer questions that
require a large quantity of data. Over time, researchers will have answered most, if not all, of
the major questions that can be answered with experiments involving fewer than, say, 10,000
trials (e.g., 200 trials × 50 subjects). This may encourage researchers to form little cottage
industries, promoting new phenomena that are often little more than rebranded variants
of established paradigms and findings. New discoveries will then rely on new technologies,
such as novel methods for recording brain data or manipulating brain activity (Helfrich,
Knight, & D’Esposito, in press; Ezzyat & Suthana, in press). But for behavioral research,
our knowledge will become stale, and without a way forward, much of what we know may
be lost but for a few old textbooks rarely studied by the next generation of scientists. Yet
big data can also be a new technology; by amassing large numbers of observations under
varied conditions, researchers can exploit powerful new statistical techniques to find hidden
structure in data that has long been in plain sight. Think of big data as a kind of microscope
that allows us to zoom into a phenomenon and see structure that was previously obscured
within the error bars of our small experiments.

When a field invests in big data, it can be a boon for early career researchers who
have not yet established laboratories capable of generating large datasets. These researchers
should be able to freely access data from many labs, answering questions that they could
not easily answer by collecting new data of their own. However, if we are to invest in big
data as a field, we must go beyond making the data publicly available; we have to also
make the design of experiments and data collection a distributed process, where multiple
researchers contribute to the planning of future studies.
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Figure 14 . Hours of experimental data included in a large sample of publications
from 2015 and 2021. We surveyed articles published in the Journal of Experimental Psy-
chology: Learning, Memory, and Cognition that included sufficient information to estimate
the number of experimental hours contributed by research subjects. For each year we report
the median and interquartile range, based on the sum of hours across all experiments in
each publication. The number of evaluated articles appears below each year.

Big Data: Risks and Rewards

We have heard colleagues voice several concerns about the big data approach exem-
plified in the PEERS project. One criticism that emerged early in our project concerned
the law of diminishing returns. A distinguished colleague raised this objection, pointing out
that as we collect more data the standard error will shrink as the ratio of the square root
of the number of observations. Surely, it would be better to conduct a larger number of
manipulations than to continually invest resources in the face of diminishing returns. This
objection arose as one of us (M.J.K.) presented some early PEERS findings. After being
tongue-tied for a few moments (or longer), the presenter recalled many instances in his
past research where additional data revealed some important result via a new “cut” of the
data space. In essence, every time you think of an interesting new way to partition your
data your sample size shrinks, and once again each additional observation provides valuable
information. Just as fabricating a more powerful microscope or telescope allows you to see
things that were invisible to previous generations of scientists, so too, the additional power
provided by high resolution data peers beneath the surface of our current knowledge, paving
the way for new discoveries.

Another objection, highlighted by the current emphasis on replicability, is that per-
haps some peculiar feature of a large study will generate results that do not generalize across
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diverse situations. Each PEERS experiment entailed myriad small decisions which could
affect the data in unknown ways. Would it be smarter to diversify our research investment
by having many smaller studies that vary these methodological choices? We appreciate
the value of this objection and would not advocate for a cessation of small-science style
experiments. Rather, we see big data as an important addition to the scientific portfolio,
to complement smaller studies. Indeed, the discoveries made possible with big data can
inspire conceptual replications with smaller studies.

In conclusion, we see the PEERS project as a test-case in applying big-data approaches
to the study of human memory. The strongest endorsement of our approach derives from
other investigators using PEERS data to answer their own questions. We have begun to
see this happen already (Romani, Katkov, & Tsodyks, 2016; Naim, Katkov, Recanatesi, &
Tsodyks, 2019; Osth & Farrell, 2019; Popov & Reder, 2020; Madan, 2021; Zhang, Griffiths,
& Norman, 2021; Sheaffer & Levy, 2022) and we hope that this paper, in synthesizing key
motivations, methods and discoveries, will prompt additional investigators to consider the
value of this approach (and the resulting data) for their own questions.
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