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Although it is well established that remembering an item will bring to mind memories of other semantically related items (Bousfield,
1953), the neural basis of this phenomenon is poorly understood. We studied how the similarity relations among items influence their
retrieval by analyzing electrocorticographic recordings taken as 46 human neurosurgical patients studied and freely recalled lists of
words. We first identified semantic components of neural activity that varied systematically with the meanings of each studied word, as
defined by latent semantic analysis (Landauer and Dumais, 1997). We then examined the dynamics of these semantic components as
participants attempted to recall the previously studied words. Our analyses revealed that the semantic components of neural activity were
spontaneously reactivated during memory search, just before recall of the studied words. Further, the degree to which neural activity
correlated with semantic similarity during recall predicted participants’ tendencies to organize the sequences of their responses on the
basis of semantic similarity. Thus, our work shows that differences in the neural correlates of semantic information, and how they are
reactivated before recall, reveal how individuals organize and retrieve memories of words.

Introduction
According to distributed memory models, our knowledge con-
cerning a given concept is represented by its similarity to other
concepts stored in memory, where each concept may be defined
as a set of abstract semantic attributes, each activated to varying
degrees (Semon, 1923; Guthrie, 1935; Plaut and McClelland,
2010). Activating the representation of a concept entails activat-
ing its constituent semantic attributes. Because similar concepts
are comprised of overlapping semantic attributes, activating the
neural representation of a given concept will, in turn, partially
activate representations of other similar concepts. In this way,
distributed memory models provide an elegant explanation for a
number of well known similarity effects observed in the psycho-
logical laboratory. For example, when asked to recall a previously
studied list of words in any order, people tend to recall semanti-
cally similar words together even when they were studied in
widely spaced list positions (Bousfield, 1953; Howard and Ka-
hana, 2002). People also make faster transitions between recalls of
semantically similar words (Patterson et al., 1971) and exhibit a
striking tendency to incorrectly recall and recognize words that
share a high degree of similarity with multiple study-list words

(Deese, 1959; Roediger and McDermott, 1995; Kahana et al.,
2007).

Whereas behavioral studies provide indirect evidence that the
brain organizes conceptual representations by their semantic at-
tributes, functional magnetic resonance imaging (fMRI) studies
over the past decade have begun to more directly examine the
neural representations of concepts. Early fMRI studies showed
that viewing (Haxby et al., 2001; Cox and Savoy, 2003; Shinkareva
et al., 2008) or thinking about (Polyn et al., 2005) words from
similar taxonomic semantic categories evokes similar blood-
oxygen level-dependent (BOLD) signatures. Over the past several
years, researchers have gone beyond the neural representations of
taxonomic categories [e.g., tools and dwellings (Shinkareva et al.,
2008)] and have now begun to study the neural representations of
individual concepts. Here we use the term “individual concept”
to refer to a specific exemplar within a taxonomic category [e.g.,
“hammer” and “igloo” (Mitchell et al., 2008)]. This work has
shown that one can use a word’s semantic properties to make
accurate predictions about its BOLD signature (Mitchell et al.,
2008; Just et al., 2010) and that the neural response to a viewed
object is attenuated when a similar object is viewed first (Yee et
al., 2010). An additional finding of this line of research has been
that the neural representations of individual concepts and taxo-
nomic categories appear to be reasonably well conserved across
individuals (Mitchell et al., 2008; Shinkareva et al., 2008; Just et
al., 2010). In the present study, we first use electrocorticographic
(ECoG) recordings to examine the neural representations of in-
dividual concepts as they are studied and recalled during a mem-
ory task. We then asked whether (and how) these conceptual
representations varied across individuals according to the ways
participants organized their recalls of random word lists.
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Materials and Methods
Overview. We examined ECoG recordings from 46 neurosurgical pa-
tients who were implanted with subdural electrode arrays and depth
electrodes during presurgical evaluation of a treatment for drug-resistant
epilepsy. We analyzed the recorded ECoG signals in terms of specific
time-varying oscillatory components of neural activity (Fig. 1). Previous
research has implicated oscillatory activity at a variety of frequencies in
reflecting the identities of individual letters (Jacobs and Kahana, 2009)
and object categories (Liu et al., 2009) during memory encoding and
retrieval (Fell et al., 2001; Paller and Wagner, 2002; Osipova et al., 2006;
Sederberg et al., 2007a) and in contextual reinstatement (Manning et al.,
2011). As the ECoG signals were recorded, patients volunteered to par-
ticipate in a free-recall memory experiment, in which they studied lists of
common nouns and then attempted to recall them verbally in any order
following a brief delay. Over several sessions, each participant studied
and recalled words from dozens of different word lists.

Our general approach is illustrated in Figure 1 and closely follows that
used by Manning et al. (2011). For each study and recall event, we con-
volved the voltage traces for each electrode with Morlet wavelets (wave
number � 4) to construct an N-dimensional vector containing, for each
electrode, estimates of the mean oscillatory power at each of 50 log-
spaced frequencies between 2 and 100 Hz (2 � 10 0.0347x for x � {0, …,
49}) during each study event (200 –1600 ms relative to the word’s appear-
ance on screen) and recall event (�1000 – 0 ms relative to the start of
vocalization). We then used principal components analysis (PCA) to
distill these highly correlated neural features into a smaller number of
orthogonal components. We used the Kaiser criterion to choose, for each
recording session, the principal components that explained a substantial
proportion of the variance in the original N-dimensional vectors (Kaiser,
1960).

Participants. We tested 46 native-English-speaking patients with drug-
resistant epilepsy who had arrays of subdural and/or depth electrodes surgi-
cally implanted for 1 to 4 weeks to localize the sites of seizure onset (Table 1).
The clinical team determined the placement of these electrodes with the goal
of localizing suspected epileptogenic foci and identifying functional regions
to be avoided in surgery. Our research protocol was approved by the appro-
priate institutional review boards and informed consent was obtained from
the participants and their guardians. Data were collected as part of a long-
term multicenter study; previously published articles describe separate anal-
yses conducted on subsets of these data (Sederberg et al., 2003, 2007a,b;
Manning et al., 2011; Lega et al., 2012).

Recording methods. Subdural strip, grid, or depth electrodes (Ad-Tech)
were implanted by neurosurgical teams solely for clinical purposes. The

locations of the electrodes were determined using coregistered postoper-
ative computed tomography and preoperative or postoperative MRIs by
an indirect stereotactic technique. We then converted the electrode loca-
tions into MNI coordinates. ECoG signals were recorded referentially
(using an electrode attached to the patient’s skin as the reference) using a
Bio-Logic, XLTek, Neurofile, or Nicolet EEG digital video-EEG system.
Depending on the amplifier, signals were sampled at 200, 256, 500, 512,
or 1024 Hz. Several hospitals applied bandpass filters to the recorded
signals before writing to disk (Brigham and Women’s Hospital: 0.5– 60
Hz; Children’s Hospital Boston: 0.3–50 Hz). Before analysis, the voltage
traces recorded from each contact were re-referenced by subtracting the
average signal recorded from all contacts on the same strip, grid, or depth
electrode (after excluding contacts deemed by our clinical teams to be
recording from epileptic tissue). Data were subsequently notch-filtered
using a Butterworth filter with zero phase distortion at 60 Hz to eliminate
electrical line and equipment noise. Where applicable (for Brigham and
Women’s Hospital and Children’s Hospital Boston patients), frequen-
cies outside of the filtered range were also excluded from further analysis.
ECoG signals and behavioral events were aligned using synchronization
pulses sent from the testing computer (mean precision �4 ms).

Behavioral methods. Participants studied lists of 15 or 20 high-
frequency nouns for a delayed free-recall task. Following a fixation cue,
the computer displayed each word for 1600 ms followed by an 800 –1200
ms blank interstimulus interval. Each word was displayed no more than
once within a single testing session. For 18 s following list presentation,
participants solved a series of single-digit addition problems of the form
A � B � C � X. Participants were then given 45 s to recall the studied
words in any order. Vocal responses, digitally recorded during the trial,
were scored for subsequent analysis. Participants recalled 22.1 � 1.1%
(mean � SEM) of the studied words. Repetitions and incorrect recalls
(28.0 � 3.0% of all responses) were excluded from our analyses, as were
responses that occurred within 1 s of a prior vocalization.

Quantifying the degree of semantic clustering. Several of our analyses use
a measure of the degree to which participants clustered their recalls ac-
cording to semantic similarity. This measure, termed the semantic clus-
tering score, has been described previously (Polyn et al., 2009) and is
calculated as follows. For each recall transition, we create a distribution of
semantic similarity values [latent semantic analysis (LSA) cos�] (Lan-
dauer and Dumais, 1997) between the just-recalled word and the set of
words that have not yet been recalled. We next generate a percentile score
by comparing the semantic similarity value corresponding to the next
word in the recall sequence with the rest of the distribution. Specifically,
we calculate the proportion of the possible similarity values that the

a

b

c

Figure 1. Illustration of behavioral and electrophysiological methods. a, After studying a list of 15 words and performing a brief distracter task, a participant recalls as many words as he can
remember, in any order. b, During each study presentation, and just before each recall event, we calculate the z-transformed oscillatory power at each recording electrode for each of 50 log-spaced
frequencies between 2 and 100 Hz (2 � 10 0.0347x for x � {0, …, 49}). c, We use PCA to find a smaller number of orthogonal dimensions that jointly account for a large proportion of the variation in
the data shown in b (PCA is performed for all study and recall events simultaneously). We select principal components that vary with the meanings of the presented words for further analysis (see
Materials and Methods).
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observed value is greater than, since strong semantic clustering will cause
the observed similarity values to be larger than average. When there is a
tie, we score this as the percentile falling halfway between the two words.
If the participant always chose the closest semantic associate, then their
semantic clustering score would be 1. A semantic clustering score of 0.5
indicates no effect of semantic clustering. Each participant was assigned a
semantic clustering score by taking the average of the percentile scores
across all observed recall transitions.

Selecting candidate semantic components. We sought to identify PCA-
derived components of neural activity that might represent the semantic

attributes of the studied words (Fig. 1c). Consider the l th list of a record-
ing session. We first generated the set of unique pairs, disregarding order,
of the presented words on the list (for a list of 15 words, this set contains
105 pairs). We then computed the semantic similarity (LSA cos�) be-
tween the words in each pair. Let s� denote the vector of semantic simi-
larity values for each pair of words on the list.

We next examined each PCA-derived neural component (Fig. 1c). Let
xi,nj denote the value of the i th neural component during the presentation
of the nj th word on the list. For each of the unique pairs of words on the
list, we computed the absolute difference in the value of the i th neural
component, �xi,m � xi,n�, where m and n each denote a word in a single
unique pair. Let d�i denote the vector of absolute differences in the value of
the i th neural component during the presentations of each pair of words
on the list.

We computed the Pearson’s correlation between s� and � d�i to obtain
a single correlation coefficient, ri, and an associated p value for each
neural component. Following Manning et al. (2011), we chose to com-
pute these correlations for each individual list (rather than combining
across lists) to reduce the influence of slow drift in the ECoG activity and
in the recording equipment that would limit our ability to directly com-
pare neural patterns recorded during different parts of the experiment.
We then used the Fisher z-prime transformation (a standard variance-
stabilizing transform used when combining correlation coefficients)
(Fisher, 1915; Hotelling, 1953) and the inverse Normal transformation to
compute an across-list summary correlation coefficient, r�i, and an asso-
ciated p value, p� i, for each neural component (Manning et al., 2011). We
selected components with r�i � 0 and p� i � 0.05 for further analysis (see
Results, below).

Results
Distributed memory models posit that concepts are represented
by overlapping sets of semantic attributes. We identified PCA-
derived components of neural activity that varied systematically
with the semantic properties of the studied words in each of the
46 participants we examined (see Materials and Methods, above;
Table 1). We found that certain frequencies tended to weight
more heavily in the PCA coefficients of the selected components
(repeated-measures ANOVA on mean coefficients for each par-
ticipant across five frequency bands: F(4,45) � 8.13, p � 10�4).
Post hoc t tests indicated that lower frequencies tended to domi-
nate the selected components [� (2– 4 Hz) � � (4 – 8 Hz), � (8 –12
Hz), � (12–30 Hz), and � (30 –100 Hz): ts � 3, ps � 0.005; �, �,
and � � �: ts � 2.6, ps � 0.015].

If the selected neural components (henceforth feature vec-
tors) truly represent the semantic attributes of the studied words,
one should observe a positive correlation between neural and
semantic similarity each time the participants think of the studied
words—not only during study (when the feature vectors were
identified), but also during recall. We thus selected the feature
vectors for further study. For each participant, we computed
the cosine similarity (normalized dot product) between the fea-
ture vectors from each pair of recalls they made (if a participant
recalled n words from a given list, then we computed (n2 � n)/2
cosine similarities for that set of recalls; Fig. 2a). We also com-
puted the semantic similarity (LSA cos�) between each pair of
recalled words (Fig. 2b). Concatenating the similarities across
lists, we regressed the neural similarities on the semantic similar-
ities and obtained a t value for the � coefficient of the regression
for each participant.

If a participant shows a strong correspondence between neu-
ral and semantic similarity (as evidenced by a high t value in the
regression), then we consider them to exhibit neural clustering in
the sense that neural patterns associated with words that are sim-
ilar in meaning (according to LSA) will be clustered nearby in
their neural space (where each point in neural space is a pattern of

Table 1. Patient and task information

ID HOSP Age Sex Hand ELC COM L LEN SES List REC REP PLI ELI

1 BW 33 F R 64 59 20 1 15 55 2 26 12
2 BW 51 F R 40 89 20 1 15 66 2 8 1
3 BW 32 M R 32 48 15 3 39 212 5 9 4
4 BW 40 M R 96 62 15 2 20 82 5 38 28
5 BW 44 M R 16 24.5 15 2 20 58 1 12 19
6 BW 27 M R 64 21 15 2 20 76 49 12 3
7 BW 38 M R 104 72.67 15 3 30 136 3 30 15
8 CH 13 F R 64 114 20 1 12 59 0 2 1
9 CH 12 F R 104 146 20 1 15 39 0 0 2

10 CH 15 M L 128 85.67 20 3 30 90 1 12 8
11 CH 17 M R 64 92 20 3 45 178 20 27 17
12 CH 15 M R 123 157 20 1 15 86 3 6 3
13 CH 11 M R 104 148 20 2 30 104 3 2 3
14 CH 14 F R 72 131 20 1 15 104 2 7 5
15 CH 8 F R 86 137 20 2 30 159 5 18 10
16 CH 17 M R 84 123 20 1 14 30 2 9 12
17 CH 17 M L 124 110.5 20 4 60 116 2 104 13
18 CH 20 F R 128 97 15 2 24 114 2 9 4
19 CH 14 M R 94 70 15 3 30 94 0 18 13
20 CH 17 M L 80 42.5 15 2 20 14 0 10 22
21 CH 19 F R 125 54.5 15 2 17 47 2 10 1
22 CH 16 M R 156 126 15 1 16 76 1 4 1
23 CH 12 M L 84 67.5 15 2 20 52 9 12 25
24 CH 13 M R 72 65.25 15 4 40 200 3 4 2
25 TJ 25 M R 62 111.33 15 3 48 232 3 6 1
26 TJ 40 F R 94 99.75 15 4 64 164 8 54 43
27 TJ 39 M L 56 79 15 1 16 53 1 8 20
28 TJ 34 F R 112 113.2 15 10 154 513 7 110 24
29 TJ 44 M R 126 74 15 1 13 31 1 7 6
30 TJ 43 M R 80 81.75 15 4 64 232 139 71 29
31 TJ 21 M R 122 138 15 3 48 145 1 32 47
32 TJ 56 M R 50 67 15 2 48 120 5 98 43
33 TJ 20 M R 160 99 15 3 42 167 0 13 18
34 TJ 41 M R 98 125 15 2 32 100 2 18 98
35 TJ 34 F R 90 89.25 15 4 51 204 49 34 207
36 UP 38 M R 62 53 15 4 40 135 3 68 24
37 UP 30 M R 86 65 15 2 20 54 5 24 21
38 UP 43 M R 66 36.33 15 3 18 31 22 12 33
39 UP 36 M R 88 78.75 15 4 40 70 6 114 50
40 UP 25 M R 62 60.25 15 4 40 135 2 1 2
41 UP 18 F R 76 77.33 15 3 30 104 5 6 3
42 UP 27 F R 48 75.5 15 2 32 104 2 43 20
43 UP 55 F L 80 106 15 2 32 81 11 61 24
44 UP 18 M A 100 90.67 15 3 48 253 7 8 3
45 UP 38 F R 86 98 15 1 16 48 14 3 73
46 UP 40 M R 58 93.75 15 4 64 304 1 14 9

This table provides the hospital (HOSP) at which each patient’s data were collected (BW, Brigham and Women’s
Hospital, Boston, MA; CH, Children’s Hospital Boston, Boston, MA; TJ, Thomas Jefferson University Hospital, Phila-
delphia, PA; UP, Hospital of the University of Pennsylvania, Philadelphia, PA), as well as each patient’s age, gender
(Sex), handedness or language mapping (Hand), number of implanted electrodes (ELC), and mean number of neural
components selected for analysis across all sessions for that patient (COM). Information about the task includes the
list length (L LEN) used for each participant, number of testing sessions (SES), and the number of lists each partici-
pant encountered across all sessions (List). Performance information includes the total number of correct recalls
across all lists (REC), the total number of repeated recalls (REP), and the total number of incorrect recalls, which
includes recalls of previously-presented words �prior list intrusions (PLI)	 and recalls of words which were never
presented �extra-list intrusions (ELI)	. In total, the 46 patients contributed 3970 electrodes and 4055 selected
components, studying 24,760 words presented in 1552 lists.
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neural activity). A low t value indicates
that, for the given participant, words sim-
ilar in meaning will be no closer in neural
space than words that are not similar in
meaning. Figure 3 shows neural and se-
mantic similarity matrices for two partic-
ipants. One might not expect to find a
significant relation between neural and
semantic similarity when aggregating data
across all electrodes, given that semantic
representations might be localized to spe-
cific brain regions. Nonetheless, a t test on
the distribution of t values showed that
the relation between neural and semantic
similarity was reliably maintained during
the 1 s interval leading up to vocalization
of a recalled word (t(45) � 2.28, p � 0.03).
Note that during the interval being mea-
sured, the words were neither being dis-
played onscreen nor vocalized by the
participants. Rather, the neural patterns
recorded just before recall reflect inter-
nally generated semantic representations.

A number of studies have shown that
certain brain regions play a particularly
strong role in representing semantic in-
formation during cognition. For example,
Broca’s and Wernicke’s areas in the inferior frontal and superior
temporal lobe, respectively, are well known for their role in se-
mantic processing (Démonet et al., 1992); the prefrontal cortex
and temporal lobe have been found to support semantic cluster-
ing during free recall (Long et al., 2010); and the occipital lobe is
activated during visual recall (Le Bihan et al., 1993). To test
whether the semantic information we measured was specific to
particular brain regions, we repeated our semantic feature selec-
tion process for electrodes in each of the following brain regions:
temporal lobe, medial temporal lobe, hippocampus, frontal lobe,
prefrontal cortex, parietal lobe, and occipital lobe (Fig. 4a). Any
participant with at least one electrode in a given region of interest
was included in the analysis for that region. We found that se-
mantic components (selected during encoding and measured
just before recall) varied with the meanings of recalled words in
the temporal lobe (t(45) � 2.88, p � 0.006), frontal lobe (t(41) �
3.56, p � 0.001), prefrontal cortex (t(41) � 3.33, p � 0.002), and
occipital lobe (t(26) � 3.64, p � 0.001). The medial temporal lobe
(t(41) � �0.17, p � 0.86), hippocampus (t(17) � 0.47, p � 0.64),
and parietal lobe (t(31) � �0.16, p � 0.88) did not show such
patterns.

To localize the semantic representations, for each pair of re-
gions we performed paired t tests between the distributions of t
values from the regressions of neural similarity on semantic sim-
ilarity for all participants with electrodes in both regions. When
compared with either medial temporal or hippocampal elec-
trodes, we found that temporal, frontal, and occipital electrodes
all showed reliably stronger semantic effects (ps � 0.05 for all
tests). Note that the temporal lobe electrodes we analyzed were a
superset of the medial temporal lobe electrodes, which were in
turn, a superset of the hippocampal electrodes. Nonetheless, the
temporal lobe as a whole exhibited stronger effects than either the
medial temporal lobe or hippocampus alone. We also found that
prefrontal electrodes exhibited stronger semantic effects than pa-
rietal electrodes (t(28) � 2.28, p � 0.03). Together, our results
suggest that semantic information is most strongly represented

a

b

Figure 2. Constructing similarity matrices a, Neural recordings are processed into sets of neural features. Each feature is
the mean power at a specific frequency, recorded from a single electrode during a particular presentation or recall. After
applying PCA to these neural features and selecting components that vary systematically with the meanings of the
presented words (Fig. 1c), we construct a neural similarity matrix by measuring the cosine similarity between the feature
vectors for each pair of recalled words. b, We use LSA (Landauer and Dumais, 1997) to estimate the similarity in meaning
between each pair of words. We analyzed the Touchstone Applied Science Associates corpus to obtain word counts for each
document in the corpus. After removing stop words and applying the singular value decomposition to the counts matrix
(middle), we obtain LSA vectors for each word. We obtain a semantic similarity matrix by measuring the cosine similarity
between the vectors for each pair of words.

Figure 3. Comparing neural and semantic similarity. We obtain neural and semantic
similarity matrices for each participant (Fig. 2). Example similarity matrices are shown in
the top and middle rows (lighter shading indicates greater similarity). Participant 1 (left)
does not show a reliable correspondence between neural and semantic similarity. The
relation between neural and semantic similarity is shown in the scatterplot (bottom);
each dot represents an average of 1% of the pairwise similarities for the words that the
participant recalled (100 dots total; correlation between neural and semantic similarity:
r � �0.06, p � 0.54). Participant 19 (right) shows a strong correspondence between
neural and semantic similarity (r � 0.37, p � 10 �3).
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by temporal, prefrontal, and occipital networks, and less so by
medial temporal and parietal networks.

Having identified a set of candidate semantic representations,
we hypothesized that subtle differences in the structure of these
neural patterns would be reflected in how participants organized
their recalls. For example, suppose that participant A organizes
her memories primarily based on the meanings of the studied
words, whereas participant B organizes his memories based on
the shapes of the objects represented by the words. One might
expect participant A (but not B) to successively recall words such
as apple and banana if both words had appeared on the studied
list. In contrast, participant B would be more likely to successively
recall apple and ball. According to distributed memory models,
participant A’s conceptual representations should favor attri-
butes related to the meanings of the words, whereas participant
B’s should favor attributes related to the shapes of the objects the
words represent. More generally, we hypothesized that partici-
pants exhibiting strong correlations between neural and semantic
similarity would also semantically cluster their recalls. To test this
hypothesis, we examined the t values from the regressions of
neural similarity on semantic similarity (one t value per partici-
pant). We also computed the degree to which each participant
clustered their recalls by semantic similarity using their semantic
clustering score (see Materials and Methods, above). We then
computed the correlation between these measures of neural and
behavioral organization separately for electrodes in each region
we examined (Fig. 4). We found significant correlations between
neural and behavioral clustering in the temporal lobe (r � 0.33,
p � 0.02), frontal lobe (r � 0.42, p � 0.006), and prefrontal
cortex (r � 0.49, p � 0.001). As reported above, across the 18
participants who had hippocampal electrodes, patterns of hip-
pocampal oscillatory activity did not reliably correlate with se-
mantic similarity, suggesting that the hippocampus does not
represent the meanings of words. Interestingly, we found that this
overall pattern obscures the variability in the effect across partic-
ipants. Although this variability could simply reflect measurement
noise, we found that the degree to which participants exhibited cor-

relations between neural and semantic sim-
ilarity in their hippocampal electrodes
predicted their tendencies to semantically
cluster their recalls (r � 0.45, p � 0.06). This
is consistent with a model whereby the hip-
pocampus is involved in organizing or re-
trieving the memories of the words, but not
in representing them per se. However, al-
though the occipital lobe activity varied with
the meanings of recalled words, we found
no evidence that this activity was modulated
by semantic clustering (r � 0.00, p � 0.99).
This indicates that occipital lobe structures
represent the meanings of the studied words
but do not organize these conceptual repre-
sentations in memory.

To gain additional insight into our re-
sults, let us suppose that all neural activity
of a given participant during the experi-
ment is represented by the boxed diagram
in Figure 5 (left). As indicated in the fig-
ure, a subset of the neural patterns exhib-
ited by the participant is involved in
representing the meanings of the list
words (red circle), and an overlapping
subset of patterns underlies the sequences

of recalls the participant makes (blue circle). Our analysis cap-
tures only a subset of these patterns (yellow circle). Across-
participant differences in the central segment (D) give rise to the
observed correlation between neural and behavioral clustering
(Fig. 4b). However, this correlation can be explained either by
differences in the way participants represent words (i.e., driven
by the patterns represented by the red circle) or differences in the
neural patterns that drive behavior (blue circle). In this way, our
finding that neural and behavioral clustering are correlated is
consistent with two general interpretations. One interpretation is
that, whereas the neural representations of concepts are roughly
conserved across individuals, the ways people organize the mem-
ories of the studied words are not conserved: some people seman-
tically cluster their recalls and others do not. The second possible
interpretation is more subtle. Our measure of semantic clustering
relies on LSA, a model-based approach that makes assumptions
about which words are similar in meaning. It is possible that the
LSA-derived similarities match some participants’ individual no-
tions of which words are similar better than others. Under this
interpretation, even if all participants clustered their recalls only
according to the meanings of the words, it would appear as
though not all participants were doing so, simply because we were
using the wrong measure of similarity for some of the partici-
pants. According to this second interpretation, the observed cor-
relation between neural and semantic clustering is driven by
differences in how the words themselves are represented, rather
than by differences in participants’ strategies (for further discus-
sion of this issue, see Manning and Kahana, 2012).

To help distinguish between these two interpretations, we
used a second measure of semantic similarity based on word
association spaces (WAS) (Steyvers et al., 2004). Whereas LSA
similarity is derived from an automated analysis of a large text
corpus (Landauer and Dumais, 1997), WAS similarity is derived
from a series of free association experiments in which partici-
pants were given a cue word and responded with the first word
that came to mind (Nelson et al., 2004; Steyvers et al., 2004). For
the words presented to participants in our study, these two mea-

a b

Figure 4. Neural activity predicts clustering during recall. a, Each dot marks the location of a single electrode from our dataset
in MNI space. We divided our dataset into seven ROIs: temporal lobe (Temp; 1358 electrodes), medial temporal lobe (MTL; 524
electrodes), hippocampus (Hippo; 130 electrodes), frontal lobe (FR; 1369 electrodes), prefrontal cortex (PFC; 984 electrodes),
parietal lobe (Par; 336 electrodes), and occipital lobe (Occ; 102 electrodes). b, The height of each bar indicates the correlation,
across participants, between semantic clustering during recall (see Materials and Methods) and the correlation between neural and
semantic similarity. Each bar corresponds to a single ROI (same color scheme as in a). The bar marked “All” indicates this correlation
for all electrodes in the dataset. Error bars denote � SEM, estimated as (1 � r2)/�n � 1. The symbols indicate the p values for
each correlation: #p � 0.1, *p � 0.05, **p � 0.01.
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sures of semantic similarity are reliably,
though weakly, correlated (r � 0.26, p �
10�3; Spearman’s � � 0.18, p � 10�3).
We found that the degree to which partic-
ipants clustered their recalls by LSA- and
WAS-derived similarity (semantic clus-
tering score; see Materials and Methods,
above) were reliably correlated (r � 0.30,
p � 0.04). Further, the degree to which
participants exhibited correlations be-
tween their neural activity and LSA-
derived semantic similarity also predicted
the degree to which their neural activity
and WAS-derived semantic similarity
were correlated (r � 0.40, p � 0.006). Be-
cause our analyses yield similar results us-
ing both measures of semantic similarity,
this provides some evidence that the ob-
served correlation between neural and
semantic clustering is driven by across-
participant differences in the way rela-
tions between the words are organized, rather than the way
individual words are represented. This finding is also in agree-
ment with recent fMRI studies showing that the neural represen-
tations of words are conserved across individuals (Mitchell et al.,
2008; Shinkareva et al., 2008; Just et al., 2010).

Discussion
The preceding analyses advance our understanding of how our
brains represent, store, and retrieve conceptual information in
two critical areas. First, we demonstrate that the patterns of neu-
ral activity in temporal, prefrontal, and occipital cortices just
before recall of a word reflect the similarity of that word to other
recalled words. This lends direct support for the hypothesis that
concepts are represented by distributed patterns of neural activ-
ity, and extends this hypothesis to apply to conceptual represen-
tations spontaneously retrieved during memory search. Second,
whereas previous studies have shown that the neural representa-
tions of individual concepts are conserved across individuals
(Mitchell et al., 2008; Shinkareva et al., 2008; Just et al., 2010), we
found that individual differences in how concepts are repre-
sented in temporal and frontal (but not occipital) cortices can be
used to predict the order in which an individual will recall a list of
words. This indicates that temporal and frontal networks orga-
nize conceptual information by representing relationships
among stored concepts. Our approach is closely related to repre-
sentational similarity analysis (Kriegeskorte et al., 2008) in that
we use the similarities in neural patterns evoked by different
words to gain insights into the relation between neural activity
and behavior rather than examining the neural patterns directly.

Clustering effects
Our study examined the degree to which participants semanti-
cally organize their memories. However, it is also well known that
participants organize remembered information according to the
temporal context in which the information was learned (Kahana,
1996; Howard and Kahana, 1999; Polyn and Kahana, 2008). In-
deed, Manning et al. (2011) showed that the same general ap-
proach used in the present study can be used to track the neural
representations of the temporal contexts in which words are
studied. We identified patterns of neural activity that changed
gradually over the course of a studied list. These gradually chang-
ing neural patterns were reinstated just before recall. Further, the

degree to which this phenomenon was observed in individual
participants predicted the degree to which they would succes-
sively recall words presented at neighboring positions on the
studied lists.

Another link between our study and that of Manning et al.
(2011) concerns the anatomical specificity of the neural signa-
tures of temporal and semantic clustering. Manning et al. (2011)
found neural signatures of temporal context reinstatement and
temporal clustering in temporal and frontal cortices. In the pres-
ent study, we also found neural signatures of semantic reinstate-
ment and semantic clustering in temporal and frontal cortices. In
addition, we found evidence that semantic information in the
occipital lobe is reactivated just before recall, although these oc-
cipital reactivations did not predict semantic clustering.

Together, these studies are consistent with a model whereby
occipital cortex represents the meanings of each newly studied
word. These representations are then communicated to the tem-
poral and frontal lobes, where memories are organized by mean-
ing and tagged with the temporal context in which the word was
studied. These memories can be retrieved by internally generated
semantic or temporal (episodic) cues. An important goal for fu-
ture studies will be to clarify the extent to which the semantic and
episodic pathways for recall interact. Our general approach could
be adapted to study the interaction between semantic and tem-
poral clustering, or almost any other form of memory organiza-
tion, simply by adjusting the way in which neural features are
selected (Fig. 1c) and by measuring the extent to which individual
participants relied on the organizational scheme of interest (anal-
ogous to semantic clustering score in the present study).

“Mind reading” using neuroimaging techniques
Several recent neuroimaging studies have made important prog-
ress toward interpreting neural patterns as meaningful stimuli
and thoughts. These studies can be divided into two general
groups: sensorimotor decoding and semantic decoding. We next
briefly review this line of research as it relates to our present work.

Sensorimotor decoding
Hubel and Wiesel (1962)’s classic studies uncovered systematic
mappings from simple retinal images to patterns of firing in in-
dividual neurons in (cat) primary visual cortex. However, the
way in which complex images are represented in primary (and
higher) visual cortices is less well understood. Recent advances in

Figure 5. Interpreting components of neural activity. The box on the left represents the full pattern of neural activity exhibited
by a given participant (i) during the experiment. A subset of these neural patterns is related to the meanings of the words on the list
(red circle) and an overlapping subset of patterns underlies the sequences of recalls the participant will make after each list (blue
circle). The yellow circle represents the patterns of activity captured by our analysis (Fig. 1). Our feature selection framework
identifies neural patterns in segments C and D. Segment C represents selected components of neural activity that do not appear to
be behaviorally relevant (e.g., occipital lobe). Segments A and D represent all neural patterns in the participant’s brain that
contribute to semantic clustering, but our analysis (and recording methods) only captures patterns in segment D (e.g., prefrontal
cortex, lateral temporal lobe). Segments B and D represent all behaviorally relevant neural patterns captured by our analysis.
Neural patterns in segment B (e.g., hippocampus; for additional details, see Results) contain information about the order in which
the participant will recall the words on the list, but do not appear to represent the meanings of the presented words.
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inferring complex retinal images from patterns of neural activity
in human visual cortex come from a series of fMRI studies.
Rather than explicitly accounting for the known retinotopy in
early visual cortex, Miyawaki et al. (2008) decomposed presented
10 � 10 binary patches into linear combinations of rectangular
basis images. They then used multivariate fMRI signals in early
visual cortex to predict the degree to which each basis image was
activated while viewing each image. After training, their decoder
was able to reconstruct the viewed patches from observed fMRI
signals with well-above-chance accuracy. A similar approach was
taken by Kay et al. (2008). Participants viewed a large number of
grayscale natural images, and the fMRI signals recorded during
each viewing were used to estimate the receptive fields of each
voxel in visual areas V1, V2, and V3. The participants then viewed
a new set of 120 previously unseen images, and the researchers
showed that their trained model could use the observed fMRI
signals to predict which image was being viewed. In exciting ex-
tensions of this work, similar approaches were used to decode
movie clips (Nishimoto et al., 2011) and spoken words (Pasley et
al., 2012).

In addition to decoding sensory inputs to the brain, research-
ers have also begun to decode intended movements from electri-
cal patterns recorded from the brains of paralyzed patients.
Although the topographic organization of the primary motor
cortex is relatively well understood (Grünbaum and Sherrington,
1901; Penfield and Boldrey, 1937), modern brain– computer in-
terfaces are often driven by brain oscillations that the patient
learns to modulate, or by the P300 EEG response (for review, see
Donoghue, 2002).

Semantic decoding
Whereas sensorimotor decoding studies attempt to infer sensory
inputs or motor outputs from patterns of neural activity, the goal
of semantic decoding is to infer the meanings represented by the
recorded patterns. Just as the above visual and auditory decoding
studies attempt to decode arbitrary stimuli from observed pat-
terns of neural activity using a trained set of basis images (or
spectral features), several recent semantic decoding studies also
rely on basis features. In a study by Mitchell et al. (2008), partic-
ipants viewed pictures of 60 common nouns. The researchers
came up with a set of 25 semantic attributes including words like
“eat,” “manipulate,” and “run.” Using co-occurrence statistics
derived from a large text corpus, the researchers predicted the
patterns of BOLD activations associated with each of the seman-
tic attributes. By combining these predicted activation patterns,
the researchers estimated the patterns that would be evoked by
previously unseen words with surprising accuracy. [A similar ap-
proach was taken by Just et al. (2010) using just three semantic
attributes.]

Our study draws inspiration from Mitchell et al.’s (2008) work
by identifying components of neural activity that appear to rep-
resent semantic attributes. However, whereas stimulus-specific
patterns in the above sensorimotor and semantic decoding stud-
ies were evoked by viewing images on a computer screen, the
neural patterns in our study emerged spontaneously during
memory search. In addition, whereas the above studies attempted
to use neural activity to infer which stimulus was being viewed,
our goal was to infer how representations of the studied stimuli
were organized in participants’ memories.

Concluding remarks
Psychologists have long known that the ability to learn new in-
formation is closely linked with the ability to organize that infor-

mation in relation to one’s prior knowledge (Postman, 1967;
Tulving, 1968). Evidence for this relation between learning and
organization comes from the finding that people recall randomly
structured study materials in a highly organized manner, with
this organization reflecting both the semantic similarities among
items and the similarities in their encoding contexts (Klein et al.,
2005). Whereas previous brain imaging studies have documented
striking neural correlates of item similarity, the critical question
of whether these neural correlates of similarity determine the
organization of newly learned information remains largely
unanswered.

The present study demonstrates that spontaneously reacti-
vated patterns of neural activity in human frontal and temporal
cortices, as well as hippocampus, predict the way participants
cluster their recalls according to the semantic similarities among
the studied words. From these results, and parallel findings con-
cerning the neural correlates of temporal clustering (Manning et
al., 2011; Howard et al., 2012) a portrait of the brain mechanisms
underlying memory organization is beginning to emerge. An in-
triguing feature of this portrait is that medial temporal lobe re-
gions, including hippocampus, which do not appear to be
strongly implicated in representing the semantic similarities
among items, do appear to be critical for predicting how those
similarities influence the organization of retrieval. Other regions,
such as occipital cortex, do appear to represent similarities
among studied items, but do not appear to be critical for the
organization of retrieval.
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