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The human substantia nigra (SN) is thought to consist of two functionally distinct
neuronal populations—dopaminergic (DA) neurons in the pars compacta subregion and
GABA-ergic neurons in the pars reticulata subregion. However, a functional dissociation
between these neuronal populations has not previously been demonstrated in the awake
human. Here we obtained microelectrode recordings from the SN of patients undergoing
deep brain stimulation (DBS) surgery for Parkinson’s disease as they performed a
two-alternative reinforcement learning task. Following positive feedback presentation, we
found that putative DA and GABA neurons demonstrated distinct temporal dynamics. DA
neurons demonstrated phasic increases in activity (250–500 ms post-feedback) whereas
putative GABA neurons demonstrated more delayed and sustained increases in activity
(500–1000 ms post-feedback). These results provide the first electrophysiological evidence
for a functional dissociation between DA and GABA neurons in the human SN. We discuss
possible functions for these neuronal responses based on previous findings in human and
animal studies.
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1. INTRODUCTION
Animal studies have shown that the substantia nigra (SN)
consists of two functionally distinct neuronal populations—
dopaminergic (DA) neurons in the pars compacta subregion and
GABA-ergic neurons in the pars reticulata subregion. DA neurons
have been shown to encode reward prediction errors with pha-
sic bursts of firing, that occur when there is a mismatch between
obtained and expected outcomes (Schultz et al., 1997; Bayer and
Glimcher, 2005). These DA bursts are thought to guide rein-
forcement learning by adjusting synaptic strength in downstream
regions following unexpected outcomes (Reynolds et al., 2001;
Tsai et al., 2009). In contrast, GABA neurons are involved in
inhibitory regulation of various brain structures including frontal
cortical regions (via the thalamus), premotor brainstem nuclei
and midbrain DA neurons (Carpenter et al., 1976; Hikosaka and
Wurtz, 1983; Tepper et al., 1995; Henny et al., 2012). Despite these
advances in the animal, the functional role of human SN neurons
has not been elucidated.

Patients undergoing deep brain stimulation (DBS) surgery
for the treatment of Parkinson’s Disease offer a rare opportu-
nity to directly study the functional properties of human SN
neurons (Jaggi et al., 2004). Two previous studies in patients

undergoing DBS suggest a functional role for the human SN in
reinforcement learning. First, it has been shown that a subset of
neurons in the SN demonstrate phasic bursts of activity follow-
ing unexpected rewards, consistent with a reward prediction error
(Zaghloul et al., 2009). Second, microstimulation applied in the
SN following rewards alters learning by enhancing the reinforce-
ment of preceding actions (Ramayya et al., 2014). In both studies,
the observed learning-related neural and behavioral patterns were
presumed to reflect the function of a healthy subpopulation of
DA neurons in the region. Although histochemical studies have
shown that DA and GABA neurons co-exist in the human SN
(Damier et al., 1999a), a functional dissociation between these SN
neural populations has not previously been demonstrated.

In this study, we sought to directly compare the response pro-
files of DA and GABA neurons recorded from the human SN so
as to assess whether these neuron groups represent functionally
distinct subpopulations. We obtained recordings from 25 sub-
jects as they performed a two-alternative reinforcement learning
task where they selected between stimuli that carried distinct
reward probabilities and received positive or negative feedback
following each choice. We extracted neuronal spiking activity
from each unit and identified putative DA and GABA neurons
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FIGURE 5 | Example GABA units. Three representative GABA units are shown. Same conventions as in Figure 4. Baseline firing rates and waveform
durations are as follows. (A) 25.6 Hz, 0.67 ms (B) 27.0 Hz, 0.75 ms (C) 28.3 Hz, 0.39 ms.

increased firing rates when exposed to dopamine (Waszczak and
Walters, 1983), suggesting that DA neurons may exert excitatory
control of GABA firing. Conversely, SN GABA neurons exhibit
inhibitory projections onto midbrain DA neurons, and may exert
inhibitory control over DA neurons (Tepper et al., 1995; Lobb
et al., 2011; Henny et al., 2012; Pan et al., 2013). Then, follow-
ing a phasic DA burst, GABA neurons might display an increase
in firing rate that might act to regulate DA firing and suppress

subsequent DA phasic bursts. GABA responses might be more
prominent following positive compared to negative feedback if
the majority of DA neurons that provide inputs to GABA neurons
demonstrate preferential increases in phasic activity following
positive feedback compared to negative feedback. Although the
majority of SN GABA neurons reside in the pars reticulata, a sub-
set of GABA neurons are also known to exist in the pars compacta
region (Nair-Roberts et al., 2008; Ungless and Grace, 2012).
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Some GABA neurons also demonstrated robust pauses in
activity soon after feedback was presented (see Figure 5). Pauses
in GABA-ergic activity typically suggest a release of inhibition
on downstream structures, and have been classically observed
during movement and saccade generation (DeLong et al., 1983;
Hikosaka and Wurtz, 1983). These pauses in activity are thought
to decrease inhibition on (“disinhibit”) downstream motor struc-
tures (e.g., superior colliculus; Carpenter et al., 1976), and allow
for the execution of a movement. Thus, the observed GABA
pauses may be related to some movement expressed by subjects
immediately following the presentation of salient sensory stim-
uli during the feedback condition (possibly orienting saccades;
Hikosaka and Wurtz, 1983). However, we are unable to test this
hypothesis because we did not monitor eye movements during the
study. Alternatively, the observed pauses in GABA activity may be
related to decreased inhibition on DA neurons that would facili-
tate post-feedback DA bursting (Luscher and Ungless, 2006; Lobb
et al., 2011).

4.4. LIMITATIONS
We note several limitations to our study. First, we are
unable to provide direct histochemical evidence that these
electrophysiologically-identified neural subgroups reflect distinct
neuronal populations. However, there is a large body of evidence
from animal studies suggesting that these electrophysiological
criteria may be used to identify distinct midbrain neuronal popu-
lations (Ungless and Grace, 2012). As such, several animal studies
rely on electrophysiological criteria alone to identify functional
subpopulations within the midbrain (Matsumoto and Hikosaka,
2009; Fiorillo et al., 2013). Second, the population we stud-
ied in this experiment–patients undergoing DBS for Parkinson’s
disease–is known to have degeneration of neurons in SN. Ideally,
one would like to study the function of SN neurons in healthy
human subjects, but at present such recordings may not be
ethically obtained in any other human population. Converging
evidence from histochemical (Damier et al., 1999b) and electro-
physiological studies (Zaghloul et al., 2009; Ramayya et al., 2014)
in patients with Parkinson’s disease and in animals (Hollerman
and Grace, 1990; Zigmond et al., 1990; Wang et al., 2010) indi-
cate that a significant population of viable DA neurons remain in
the Parkinsonian SN. We suggest that the observed DA and GABA
responses reflect activity from the subpopulation of healthy neu-
rons that remain in the SN.
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