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Hebbian heteroassociative learning is inherently asymmetric. Storing a
forward association, from item A to item B, enables recall of B (given A),
but does not permit recall of A (given B). Recurrent networks can solve
this problem by associating A to B and B back to A. In these recurrent
networks, the forward and backward associations can be differentially
weighted to account for asymmetries in recall performance. In the special
case of equal strength forward and backward weights, these recurrent
networks can be modeled as asingle autoassociative network where A and
B are two parts of a single, stored pattern. We analyze a general, recurrent
neural network model of associative memory and examine its ability to fit
arich set of experimental data on human associative learning. The model
fits the data significantly better when the forward and backward storage
strengths are highly correlated than when they are less correlated. This
network-based analysis of associative learning supports the view that
associations between symbolic elements are better conceptualized as a
blending of two ideas into a single unit than as separately modifiable
forward and backward associations linking representations in memory.

1 Introduction

To account for performance in standard memory tasks, formal mathemat-
ical models of human memory typically employ both autoassociative and
heteroassociative mechanisms (Brown, Dalloz, & Hulme, 1995; Humphreys,
Bain, & Pike, 1989; Metcalfe, 1991; Murdock, 1993, 1997). Autoassociative
information supports the processes of recognition and pattern completion
(Metcalfe, 1991; Weber & Murdock, 1989), whereas heteroassociative infor-
mation supports the processes of paired-associate learning and sequence
generation (Chance & Kahana, 1997; Murdock, 1993). The mathematics of
matrix memories (Anderson, 1972), often coupled with nonlinear retrieval
dynamics (Buhmann, Divko, & Schulten, 1989; Carpenter & Grossberg, 1993;
Hopfield, 1982), provides a mechanistic foundation for these models of hu-
man associative memory.

This article presents an attractor neural network model of paired-as-
sociate learning and uses a model-based analysis of experimental data to

Neural Computation 13,2075-2092 (2001) (© 2001 Massachusetts Institute of Technology



2076 Daniel S. Rizzuto and Michael J. Kahana

shed light on some basic unresolved questions concerning the nature of
associations in human memory. The paired-associate learning task is one
of the standard assays of human episodic memory. Typically subjects are
presented with randomly paired items (e.g., words, letter strings, pictures)
and asked to remember each A-B pair for a subsequent memory test. At
test, the A items are presented as cues, and subjects attempt to recall the
appropriate B items.

Attractor network models and classic linear associators provide simple
accounts of associative learning. Storing an autoassociation enables pat-
tern completion, and storing a heteroassociation enables recall of paired-
stimulus representations. However, if the representations of the to-be-
learned items (A and B) are combined into a single composite representa-
tion (by summation or concatenation), itis possible to use an autoassociative
network to accomplish heteroassociation. In a simple matrix model, where
the representation of the A-B pair is given by the sum of the constituent item
vectors (a + b), the storage equation for an autoassociative model would be
Wi =W;_1+(a+b)a+b)T = W,_1+aal +ab’ +ba’ +bb’. Alternatively,
one could constructarecurrent heteroassociative matrix memory in which A
is associated with B and B is associated back to A. In this model, the forward
association would be stored in the matrix W/~ = WﬁTB + ba’, and the
backward association would be stored in the matrix WtB —A W?jA +ab’.
Although both versions support heteroassociativerecall, the autoassociative
version assumes symmetric forward and backward associations, whereas
the heteroassociative version allows for asymmetric, and possibly indepen-
dent, forward and backward associations. This distinction between sym-
metric and asymmetric associations has a long history in the experimental
psychology of human memory and learning.

2 Associative Symmetry Versus Independent Associations

According to the classic associationist view, the strength of an association is
sensitive to the temporal order of encoding (Ebbinghaus, 1885 /1913; Robin-
son, 1932). If A and B are encoded successively, the forward association,
A — B, is hypothesized to be stronger than the backward association,
B — A.The strengths of forward and backward associations are further hy-
pothesized to be independent (Wolford, 1971). We refer to the strong version
of this view as the independent associations hypothesis (IAH). In contrast
to this position, representatives of Gestalt psychology (Asch & Ebenholtz,
1962; Kohler, 1947) viewed symbolic associations as composite representa-
tions, incorporating elements of each to-be-learned item into a new entity.
Werefer to this view as the associative symmetry hypothesis (ASH). Accord-
ing to this position, the strengths of forward and backward associations are
approximately equal and highly correlated.

In support of the associative symmetry view, early studies of paired-
associate learning found approximate equivalence between forward and
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backward recall probabilities (see Ekstrand, 1966, for a review). That is, or-
der of study did not seem to influence the strength of forward and backward
associations. The equivalence of forward and backward recall was particu-
larly striking when highly imagable words were used as stimuli (Murdock,
1962, 1965, 1966). Data from these experiments showed nearly identical
forward and backward recall across variations in presentation rate, serial
position, delay between study and test, list length, and number of repeti-
tions of the study pairs. More recent studies have shown that the classic
symmetry results are readily replicated (see Kahana, 2001, for a review).
This surprising result, supporting gestalt and cognitive ideas, inspired sig-
nificant debate for nearly two decades. The problem was not resolved, and
it resurfaced when mathematical models of associative memory appeared
on the scene (Murdock, 1985; Pike, 1984).

Although retrieval in paired associates is approximately symmetric (with
respect to order of study), retrieval in free recall and serial recall shows
marked asymmetries. For example, when subjects are asked to name the
letter that precedes or follows a probe letter in the alphabet, backward re-
trieval is typically 40 to 60% slower than forward retrieval (Klahr, Chase, &
Lovelace, 1983; Scharroo, Leeuwenberg, Stalmeier, & Vos, 1994). In the free
recall task, subjects are presented with a series of items and asked to recall
them in any order. Analysis of output order reveals that forward transitions
are significantly more frequent than backward transitions (Kahana, 1996).
This is true of immediate, delayed, and continuous-distractor free recall
(Howard & Kahana, 1999).

Although many studies have found symmetry between forward and
backward recall, there are still conditions under which symmetric retrieval
is violated. For example, in studies where pairs of items are chosen from
different linguistic classes, strong asymmetry is often observed. Lockhart
(1969) showed that cued recall of noun-adjective pairs was superior when
cued with the noun than when cued with the adjective, independent of the
order of study. However, when subjects study noun-noun pairs, associative
symmetry is observed. Wolford (1971) examined both digit-word and word-
digit pairs and found an advantage when using words as the retrieval cue,
irrespective of the order of presentation.

Kahana (2001) presented an analysis of the implications of associative
symmetry for linear matrix and convolution models of human associative
memory. In his treatment, he showed that models assuming symmetry (Met-
calfe, 1991; Murdock, 1997) can still account for empirical asymmetries in
overall forward and backward recall performance. Consider, for example,
items with different numbers of preexperimental associates. If item A has
many more preexperimental associates than item B, then probing memory
with item A will result in significant associative interference and impair
subjects’ performance. This will occur even if the A-B association is stored
symmetrically.

Although models that assume symmetry can account for findings of re-
trieval asymmetries, models that assume independent associations can also
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account for the equivalence of forward and backward recall performance. In
this case, if associations are formed independently but with equal strength
on average, symmetric retrieval probabilities would be realized. It is thus
unlikely that forward and backward recall probabilities will discriminate
among competing theories.

To address the question of the dependence or independence of forward
and backward associations, Kahana (2001) employed the method of suc-
cessive tests, which involves successively testing the stored associations in
both the forward and reverse directions. With this method, one can directly
estimate the correlation between forward and backward recall of a given
studied pair. Kahana reported experimental evidence consistent with the
ASH.

3 A Neural Network Model of Paired-Associate Learning

We developed an autoassociative neural network model to simulate for-
ward and backward associative recall and to model data on the correlation
between successive recall tests by human subjects (Metcalfe, 1991; Met-
calfe, Cottrell, & Mencl, 1993). Although autoassociation is generally used
to encode a single representation, if the representation being stored is the
combination of two items, it is possible to store both autoassociative and
heteroassociative information within a single memory matrix. Assuming
that the representations of the A and B items are concatenated, the general
form of the storage equation for a list of L pairs is given by

L
W=> @eb)a ob") (€Y
v=1

where a” and b are binary (+1), N-element vectors representing the items
to be associated, a¥ @ bY denotes the concatenation of a¥ and bY, and W is
the 2N x 2N weight matrix. This outer product produces a memory ma-
trix with four quadrants, as shown in Figure 1. Quadrants 1 and 3 of the
matrix contain autoassociative information, and quadrants 2 and 4 contain
heteroassociative information.

We use a probabilistic encoding' algorithm that enables the network
to account for the effect of repetition on performance. Each weight in the
matrix has some probability of being stored correctly, depending on the

! In an analysis of different learning rules for distributed memory models, Murdock
(1989) found that probabilistic encoding of the individual “features” of item vectors pro-
vided a good fit to data on paired-associate learning. In this framework, each feature is
encoded with some probability on each presentation of the item. This results in an increase
in the number of features encoded with each presentation. For more recent models using
probabilistic learning in autoassociativ e networks, see Amit and Brunel (1995), Amit and
Fusi (1992), and Brunel, Carusi, and Fusi (1998).
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Figure 1: Graphical representation of the autoassociative network architecture
used to simulate the experimental paradigm. Light rectangles indicate heteroas-
sociative quadrants of the weight matrix, and the darker rectangles indicate
autoassociative quadrants. Triangles represent the nodes in the network.

quadrant of the matrix in which it resides and the number of repetitions.
The heteroassociative quadrants of the matrix drive the associative recall
process, and we introduce two random variables, y¢ and y;, which control
learning in the forward and the backward directions, respectively.

For a pair in the list, the rule for storing each heteroassociative weight in
the quadrant that mediates forward recall (quadrant 2 in Figure 1) is given

by

Aw, _ |55 with probability
=1 0 withprobability 1-7y,

(3.2)
where s¥ = (¥ @ bY) and ys ~ N(u, o). Similarly, the probability of stor-
ing each heteroassociative weight that mediates backward recall is given
by y» ~ N(u, o). The parameter u represents the mean probability of en-
coding, while the parameter o represents the variability in encoding across
pairs.
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If yf and y, are perfectly correlated, the model implements the ASH. If
7f and yp are independent of one another, the model implements the IAH.
Rather than pitting the two hypotheses against each other, we can allow the
model to determine the correlation between y; and y;, denoted p(yf, 74),
that best fits the data. The power of this parameter lies in its ability to
change the behavior of the model from that approximating the IAH when p
approaches zero, to that approximating the ASH when p approaches unity.
For the correlation parameter to be meaningful, the values of y¢ and y,
must vary across pairs. This reflects the empirical finding that some pairs
are easier to learn than others. The correlation represents the degree to which
variation in encoding is at the level of pairs within a list versus the level of
forward and backward associations within a pair. Despite the variation in p,
the mean level of encoding is the same for both the forward and backward
associations. This means that average forward recall and backward recall
will be equivalent even when p approaches zero.

Thus, for each A-B pair, the learning of the forward and backward asso-
ciation is determined by the distributions of y s and y;, as well as the correla-
tion, p, between these two parameters. Because associative recall is driven
by the heteroassociative quadrants of the matrix, we make the simplifying
assumption of no variability in autoassociative encoding across pairs. Thus,
the weights in quadrants 1 and 3 of the matrix are stored equally well for
every item, with the probability of storage equal to .

Sampling the learning probabilities ys and y;, from a normal distribu-
tion of mean y and variance o* occasionally produces probabilities that fall
outside the range of 0 through 1. These probabilities are meaningless, and
when this occurs, both variables are redrawn from the distribution, thus
producing a truncated normal distribution. Using this method produces an
effective mean and variance that are somewhat different from the parame-
ters used to generate the distribution.

Retrieval in this model follows Hopfield (1982). Recall of pair vV proceeds
asynchronously, with a random node being updated on each iteration, ¢,
and its activation given by

sY(t+1) =sgn Z Wi s}’ ®]. (3.3)
j

The initial state of the network, s¥(0), is equal to (a” @ k) for forward recall
and (k & bY) for backward recall, where k is an N-dimensional, random,
binary (+1) vector, uncorrelated from trial to trial. The state of the cue vector
(@Y, in the case of a forward test) is clamped throughout retrieval.

After each iteration, the state of the network is compared to the target
item. If the similarity between the network state and the target, as measured
by the cosine of the angle between the two vectors, is greater than a con-
stant criterion, 0, then the target is said to be recovered. If not, the process
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repeats until a maximum number of iterations has been reached, denoted
Imax. At this time, if the network has not reached the criterion level of item
recovery, that item is considered nonrecallable. In the work presented here,
the parameters 6, Imax, and N were fixed to 0.99, 800, and 70, respectively;
changing them had very little effect on the results of the simulations.

4 Applying the Model to a Paired-Associate Learning Data Set

We applied our model to data gathered from a paired-associate learning
experiment reported in Kahana (2001). First, we briefly describe the exper-
iment, and then we report model fits to the data.

The experimental procedure is illustrated in Figure 2. Subjects studied a
list of 12 unique word pairs. Each pair was presented visually for 2 seconds,
and subjects were instructed to read the words aloud from left to right to
ensure that they processed the two words in temporal succession. To assess
learning, equal numbers of word pairs were presented either one, three, or
five times in each list. The order of presentation was random, subject to
the constraint that identical pairs were never repeated successively. After
studying the list of word pairs, subjects performed a distractor task (pat-
tern matching) aimed at minimizing the role of recency-sensitive retrieval
processes (Howard & Kahana, 1999).

Each pair was tested for recall once in each of two successive test phases
(test 1 and test 2). In test 1, subjects were tested on each of the studied pairs:
half in the forward direction (A — ?) and half in the backward direction
(? < B). In test 2, half of the pairs that were first tested in the forward
direction were tested in the backward direction, and the other half were
again tested in the forward direction. The same was true of pairs that were
tested in the backward direction on test 1. This produced a 2 x 2 factorial of
test 1-test 2 possibilities (forward-forward, forward-backward, backward-
forward, and backward-backward).

For each of the four combinations of test 1-test 2 possibilities, one can
construct a 2 x 2 contingency table tallying the outcomes of the first and
second tests (success and failure on test 1 crossed with success and failure
on test 2; see Figure 3). The marginal probabilities of this contingency table
yield the probability of success on test 1 (cell a + cell ¢) and the proba-
bility of success on test 2 (cell a + cell b). Additionally, one can measure
the dependency between the two outcomes using a standard measure of
association (e.g., Yule’s Q, Goodman-Kruskal’s y , or x2). We adopt Yule’s
Q because of its extensive use in the study of memory (see Kahana, 1999,
for a review) and for its desirable statistical properties (Bishop, Fienberg,
& Holland, 1975). This dependency, or correlation, between the outcomes
of the two tests provides valuable information that is not contained in the
marginal probabilities of recall.

The experimental results and model fits are shown in Tables 1 and 2.
Table 1 reports recall probability and test 1-test 2 correlations (Yule’s Q) as
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Figure 2: Depiction of the experimental procedure. The study session is fol-
lowed by a distractor task (pattern matching), which is followed by test 1, an-
other distractor task, and then test 2.

a function of the number of presentations, averaged across subjects. From
the behavioral data, it can be seen that there were no significant differences
between forward and backward recall probabilities within any presentation
level of the experiment. Also, correlations between identical successive tests
were very high (near one); correlations between reverse successive tests
were also high, but not as high as for the identical successive tests.
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Test 1
+ —
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Figure 3: Example of a 2 x 2 contingency table, illustrating the calculation of
the Yule’s Q measure of association between test 1 and test 2 performance.

Table 1: Observed Accuracy and Correlation Values for Each Presentation Level
in the Experiment, Averaged Across Subjects.

Probability of Recall Yules Q

Forward Backward Identical Reversed

Data Model Data Model Data Model Data Model

Ip 0.35 0.35 0.36 0.35 0.97 0.99 0.84 0.85
3p 0.65 0.65 0.65 0.65 0.96 0.99 0.81 0.83
5p 0.75 0.75 0.73 0.75 0.96 0.99 0.84 0.82

In Table 2 we report the average of the individual subject’s contingency
tables for the behavioral data and the model.? We fit the model to each
individual subject’s contingency table separately. In doing so, we allowed
u and o to vary independently for each level of learning (11, u3, us, o1, o3,
and o5). This quantitatively fits the learning data without constraining the
model to a particular learning mechanism. A single p is used to correlate
forward and backward learning for all presentation levels. For parameter
estimation, we minimize the model’s root-mean-squared deviation (RMSD)
from the behavioral data for each of the 15 subjects who took part in the
experiment.® We fit the model concurrently to the contingency tables for

2 Although Tables 1 and 2 are computed from the same underlying behavioral data,
computing Yule’s Q values from Table 2 will not necessarily produce the values seen in
Table 1. The reason for this lies in the fact that when calculating Yule’s Q, it is customary
to add 0.5 to each cell in the contingency table. This is due to the fact that Yule’s Q is a ratio
and is thus extremely sensitive to cells having values of zero or near zero. Table 2 contains
raw contingency tables averaged across subjects without adding 0.5 to each cell. This
is appropriate because no derived measure is being calulated. Thus, Table 2 represents
the average contingency table and was not used when calculating the average value of
Yule’s Q.

3 Error minimization was accomplished via a geneticalgorithm (Mitchell, 1996). Fifteen
populations (one for each subject in the experiment) of 100 random points (“individuals”)
in parameter space were evolved for many generations until the average fitness for the
population did not change from one generation to the next. An individual’s fitness was
calculated to be the negative of its RMSD compared to the behavioral data for a particular
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Table 2: Contingency Tables from the Behavioral Experiment Compared with
Simulated Contingency Tables.

Identical Direction Reversed Directions

Data Model Data Model

1 0.319 0.012  0.321 0.028  0.293 0.122  0.262 0.100
P 0.006 0.663  0.032 0.620  0.049 0.537  0.097 0.542

3 0.583 0.012  0.625 0.026  0.609 0.074  0.575 0.084
P 0.037 0368  0.027 0323  0.043 0273 0.088 0.254

5 0.729 0.018  0.723 0.025  0.681 0.086  0.665 0.083
P 0.012 0241  0.019 0233  0.037 0.196  0.078 0.173

the identical and reversed successive tests for all three levels of learning,
thereby fitting 24 data points with seven free parameters. Figure 4 plots
the best-fitting model parameters with 95% confidence intervals calculated
across subjects. By fitting each (normalized) quadrant of the contingency
tables from the experimental data, the model was able simultaneously to fit
correlations and accuracy on tests 1 and 2 (RMSD = 0.07).

These model fits to the experimental data are interesting in several re-
spects. As expected, we see that the mean level of encoding increases with
learning (from 11 to u3 to us). We also see that significant variability in learn-
ing across pairs (o) is required to fit the experimental data. Although this
is consistent with psychological studies of the role of variability in learning
(Hintzman & Hartry, 1990), this important facet of human performance has
rarely been incorporated into neural network or even formal mathematical
models of learning and memory. Finally, and most important, the fact that
the best-fitting values of p are very high (near one) tells us that very strong
correlations between forward and backward storage are necessary to fit the
human behavioral data.

Once the best parameter set for each subject was found, we completed a
comprehensive search of the local parameter space to look at the effects of
correlations and variability in learning on the fitness landscape. In Figure 5
we plot model fitness as a function of p and o3; each of the remaining pa-
rameters was kept fixed. Fitness was calculated using only the contingency
tables for three presentations.

Underneath each of the simulated data points in the fitness landscape,
we plot the p-value representing the significance of the difference between
that parameter set and the best-fitting parameter set. Lower p-values reflect

subject. Each individual was run for 300 trials of 12-pair lists in order to generate reliable
values. At the end of every generation, each of the 50 least-fit individuals were completely
regenerated from 2 of the best-fitting individuals by randomly drawing their new param-
eter values from each of their parents. Those 50 individuals with the best fitness were
mutated by a single, gaussian parameter change.
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Figure 4: Best-fitting parameter values averaged across subjects. Error bars rep-
resent 95% confidence intervals.

an inability of that parameter set to fit the behavioral data as well as the
best-fitting parameter set. Figure 5 shows that the best-fitting portion of the
parameter space (p > 0.8 and 0.15 < o3 < 0.25) fits significantly better than
the rest of the space.

We used the same simulations to assess correlations between forward
and backward recall. Figure 6 plots the correlation between simulated suc-
cessive tests in opposite directions as a function of both p and o3. In this
figure, it is shown that the only way of producing high correlations in the
retrieval of forward and backward associations is to have extremely high
correlations in the learning of those associations. This figure also shows the
monotonic relationship between the correlations in learning the forward-
backward associations and the correlation in recall between successive tests
in opposite directions. The correlation between successive tests in the iden-
tical direction is always one.

It may be seen that Yule’s Q decreases as encoding variability (o) across
items decreases. This occurs when o is small compared to the binomial
variability introduced during probabilistic encoding. Although there is no
difference between the probabilities of encoding the forward and the back-
ward associations when o = 0, there are random fluctuations in the actual
number of weights stored for each association (e.g., if there are 1000 weights
in each quadrant of the matrix and ys =y = 0.5, one trial might store 512
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Figure 5: Model fitness (negative RMSD) plotted on the z-axis as a function of
p and o3. Below the fitness function, we plot the p-values corresponding to the
statistical significance of the difference between the best-fitting parameter set
and the rest of the parameter space.

weights in the forward weight matrix while storing only 487 weights in the
backward weight matrix). As ¢ — 0, encoding probabilities are very similar
for all pairs, and the uncorrelated noise associated with binomial variability
leads to much lower correlations in recall.

5 Output Encoding

In the model just described, we assumed that the test trials did not affect in-
formation stored in memory. Although this assumption is common in neural
network models, behavioral studies suggest that test trials do contribute to
learning (Humphreys & Bowyer, 1980). If subjects are reencoding the pair
during correct responses to the first test, this could increase the probabil-
ity of responding correctly to the second test and artifactually increase the
observed correlation.*

To explore this possibility, we augmented our basic model by introducing
an output encoding parameter. This parameter, ¢, regulates the reencoding

% Although it is possible that subjects will encode some representation on incorrect
trials as well, subjects rarely make errors of commission in these experiments. They usually
respond with “Pass” instead.
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Figure 6: Simulated correlation (Yule’s Q) between forward and backward recall
as a function of o3 and p.

of the original association on correct trials. When a test item is correctly
recalled, each weight in all of four matrix quadrants given by equation 3.1
is probabilistically reencoded as

sts;  with probability )

/ { 0  with probability 1 — ¢.

(5.1)

This implementation of output encoding does not include variability, and
the probability of storing a weight is independent of the quadrant it resides
in. The fact that we are reencoding both the forward and the backward asso-
ciations after a correct recall in either direction should increase the simulated
correlation between forward and backward recall.

In order to examine the contribution of output encoding to the behavioral
predictions of our model, we again fit all eight parameters of the model to
the experimental data for each subject. Figure 7 plots the best-fitting values
of u, o, p, and ¢ averaged across individual subjects. As before, 1 increases
monotonically with the number of presentations of the studied pair, and o
stays relatively constant across the three learning levels, corroborating the
simulations without output encoding. These simulations differ, however,
with respect to p, which settles into a lower value with output encoding
than without (compare Figure 7 with Figure 4). This difference was not
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Figure 7: Best-fitting parameter values for the model that includes output en-
coding. Error bars represent 95% confidence intervals.

statistically significant (£(28) < 1,n.s.). Similarly, the augmented model does
not fit the data significantly better than the model without output encoding
(RMSD = 0.06; t(28) < 1, n.s.). It should be noted however, that the best-
fitting value of p was significantly less than one (£(14) = 3.15, p < 0.01),
suggesting that although the ASH provides a much better description of
behavior than the IAH, the true state of the world may fall shy of perfect

symmetry.

6 Conclusion

The finding of very strong correlations between forward and backward
recall of paired associates in human memory supports the view that both
forward and backward associations are products of a single mechanism. The
strength of our model lies in its ability to modulate its behavior accurately
and flexibly between two extreme views of associative learning: ASH and
the IAH, via the correlational parameter, p. The fact that the average best-
fitting parameter set (without output encoding) included a value of p close
to one isstrong evidence for symmetrical learning of associations inhumans.

These results lend support to models that employ inherently symmet-
ric associative mechanisms, like the holographic models of Murdock (1982,
1997) and Metcalfe (1991; Metcalfe Eich, 1982). Although the neural plau-



Associative Symmetry 2089

sibility of convolution-based models has been called into question (Pike,
1984, but see Murdock, 1985), they have been successfully applied to a wide
range of experimental data.

We have examined the possibility that output encoding during the first
test is affecting the results of the second test, a hypothesis first explored
by Humphreys and Bowyer (1980) in the context of successive recognition-
recall tests. Although our model can fit the human behavioral data marginally
better when it includes output encoding than when it does not, this differ-
ence is not statistically significant. Most important, the best-fitting value of
p does not change significantly with the inclusion of an output encoding
mechanism.

This model also addresses the effects of variability in the learning of as-
sociations. The best-fitting parameter set at all levels of learning contained
significant variability in the distribution of learning probabilities. Clearly
there are differences in encoding at the level of individual word pairs; some
items are easier to learn than others, and fluctuations in attention can pro-
vide an additional source of variability. The current results support the idea
that variability in learning is an important factor that must be considered
in order to model the human learning process accurately.

The idea that an autoassociative mechanism may underlie both item
retrieval (redintegration) and associative retrieval (cued recall) is not un-
reasonable given what we know about hippocampal physiology. Recurrent
collaterals in the CA3 region of the hippocampus may provide a neurophys-
iological basis for autoassociative memory (Treves & Rolls, 1994). Each CA3
cell receives input from mossy fibers arising in the dentate gyrus and direct
perforant path inputs from entorhinal cortex (EC). Yet by far the majority
of the connections come from other CA3 cells (Ishizuka, Cowan, & Ama-
ral, 1995). If incoming sensory inputs arriving from association cortex via
EC contain a composite representation of both A and B items, this strong
recurrent connectivity could provide a symmetric memory storage mecha-
nism. Since synaptic modifiability within this system occurs on such a short
timescale (Hanse & Gustafsson, 1994), it would be well suited to forming
cohesive, episodic representations.

Like humans, rats can also learn associations in the forward direction and
exhibit transfer of the same association tested in the backward direction.
Bunsey and Eichenbaum (1996) trained rats to associate a stimulus odor
with one of two response odors in an olfactory learning paradigm. They
then assessed the rats’ ability to choose the stimulus odor when presented
with its paired response. Although transfer was not perfect, it was sub-
stantial (> 50%). Following hippocampal lesions, these animals still show
significant retention of the forward association but exhibit no transfer when
tested in the reverse order. On the basis of these results, they suggest that
there may be two mechanisms involved in the formation of associations.
A declarative mechanism, mediated by the hippocampal formation, allows
for flexible usage of associative relations, thus supporting both forward and
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backward associative learning. A second procedural mechanism supports
the acquisition of stimulus-stimulus associations but not the inferential pro-
cessing needed to retrieve backward associations. This second mechanism
does not depend on an intact hippocampal formation.

A convergence of anatomical, behavioral, and physiological evidence
points to the hippocampus as an integrator of multimodal sensory informa-
tion, crucial to memory processing. The fact that it provides the necessary
infrastructure to support an autoassociative memory system also suggests
the intriguing hypothesis that this type of architecture may indeed underly
both auto- and heteroassociative memory in humans.

In summary, our autoassociative network model of heteroassociative
memory implements a stochastic learning algorithm acting at the level of
individual weights and allows us quantitatively to fit human accuracy data
as well as the correlations between successive tests. Fitting these experi-
mental data highlights the importance of variability in the learning process.
In addition, data on the correlations between successive forward and back-
ward recall tests support the notion that an autoassociative mechanism may
underlie at least some forms of heteroassociative learning.
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