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Working within a framework of exemplar-similarity 
models of memory (see, e.g., Estes, 1994; Kahana & 
Sekuler, 2002; Kahana, Zhou, Geller, & Sekuler, 2007; 
Medin & Schaffer, 1978; Nosofsky, 1986; Nosofsky & 
Kantner, 2006), we used sinusoidal luminance gratings 
as stimuli in a modified Sternberg (1966) recognition 
task. The metric properties of the grating stimuli were ex-
ploited to test a novel prediction generated by combining 
the exemplar-similarity approach with an explicit, signal 
detection account of decision making (Wickens, 2002).

In exemplar-similarity models of recognition memory, it 
is assumed that a summed-similarity computation is a basic 
component of subjects’ recognition judgment. This com-
putation sums—over all study items—the p’s similarity 
to each of the study items. According to the model, when 
this sum reaches or exceeds some critical value, the subject 
will say “yes,” judging that the p had been among the n 
study items that had just been seen. Following convention, 
we will use the term target (T ) to designate trials on which 
p replicated a study item and the term lure (L) to designate 
trials on which p did not replicate any of the study items. 
On average, the value of summed similarity on T trials will 
exceed that on L trials, which means that P(yes) responses 
on T trials will be higher than those on L trials. The nature 
of the elements entering into the computation will also 

tend to produce a systematic difference in the variances of 
summed-similarity values on T and on L trials, which leads 
to an unexpected prediction for the slope of z-transformed 
receiver operating characteristics(zROCs).

On T trials, values of summed similarity arise from two 
quantitatively different sources that differ in their respec-
tive variability. The first, far larger source of variability 
reflects the contribution of the n21 study items that are 
not replicated by p. Random selection of study items 
from a stimulus pool means that some of n21 study items 
will be similar to p, and that others will be very different 
from p. As a result of this random divergence, these n21 
nonmatching study items will contribute a highly vari-
able amount of similarity to the summed-similarity signal 
for any trial. The second, smaller source of variability in 
summed similarity on T trials reflects the contribution of 
the one study item that the p does replicate. Over trials, 
this study item’s representation will tend to be perceptu-
ally similar to p—even with the memorial noise postulated 
by the model. Because that study item and p are physically 
identical, they are likely to be perceptually similar, despite 
the random noise associated with the study item’s memo-
rial representation. As a result, similarity between this 
study item and p will vary over a narrow range clustered 
near 1.0 (Zhou, Kahana, & Sekuler, 2004).
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tion in which the study item was replicated by p. On T 
trials, a random number generator assigned ti with equal 
probability to the first, second, or third serial position in 
the set of study items. Allowing T trials to occur three 
times

 
as often as L trials facilitated examination of pos-

sible effects of ti’s serial position.

Method
Stimuli. Stimuli for each trial were drawn from a pool of com-

pound sinusoidal gratings; each comprised superimposed vertical 
and horizontal sinusoidal luminance gratings. Each component’s 
contrast was set to 0.2—a value well above detection threshold. 
Edge effects were minimized by windowing the grating with a cir-
cular 2-D Gaussian (space-constant 1º of visual angle). Before the 
window was applied, a grating’s width was 5º of visual angle.

In order to reduce the influence of individual differences in per-
ception on measurements of memory performance, each subject’s 
memory stimuli were scaled according to that subject’s visual dis-
crimination threshold (Zhou et al., 2004). Doing so produced for 
each subject a unique pool of compound grating stimuli with five 
vertical spatial frequencies crossed with five horizontal spatial fre-
quencies. Frequency discrimination thresholds ranged from 4.3% to 
13.1% (M 5 8.2, SD 5 3.1). Vertical as well as horizontal spatial 
frequencies were 2 cpd, plus or minus three or six times a subject’s 
Weber fraction for spatial frequency. Since the mean Weber fraction 
was 0.082, the spatial frequencies of the average stimuli were 1.51, 
1.75, 2.0, 2.25, and 2.49 cpd. Figure 1 illustrates the set of com-
pound gratings that correspond to these typical values. Enforcing a 
minimum between-stimulus difference of three times a subject’s dis-
crimination threshold reduced the likelihood that perceptual confu-
sions between pairs of stimuli with minimal memory load would by 
themselves lead to misidentifications. A supplementary experiment 
with five additional subjects showed that when just two gratings 
were presented for a same–different comparison and those gratings’ 
spatial frequencies differed by three times the subject’s discrimina-
tion threshold, perceptual confusions were rare—occurring on fewer 
than 3%–4% of the trials.

Subjects. Subjects were 10 paid volunteers whose ages ranged 
from 19 to 28 years (M 5 22.9, SD 5 3.3). Subjects’ acuity (mea-
sured with Landolt C targets) ranged from 20/13 to 20/22 (M 5 
20/16.8, SD 5 2.7); contrast sensitivity (measured with the Pelli–
Robson charts; Pelli, Robson, & Wilkins, 1988) ranged from 1.80 to 
1.95 (M 5 1.92, SD 5 0.06).

Procedure. Each trial’s set of study items comprised three com-
pound gratings, followed by a probe stimulus (p). Each of the three 
study stimuli (s1, s2, and s3) was presented for 750 msec, separated 
by interstimulus intervals of 400 msec each. Then, after a delay 
of 1,000 msec, a warning tone sounded, and p was presented for 
750 msec. One second later, a response scale was presented, and it re-
mained visible until the subject’s response had been registered. Sub-
jects used the response scale shown in Figure 2A to report whether p 
had been in the study set and, if so, which study item (first, second, 
or third) was matched by p. This scale consisted of four selection 
arms that were labeled None, First, Second, or Third. If p seemed 
to match one of the study items, then subjects used the computer 
mouse to identify the arm that corresponded to the serial position 
of the study stimulus (s1, s2, or s3) that matched p. If p seemed to 
match none of the study items, then the subject positioned the cursor 
on the arm labeled None. In addition, subjects were encouraged to 
position the cursor in a way that expressed their confidence that they 
had selected the response-correct arm. In particular, cursor positions 
near the intersection of the four arms signaled little confidence in 
the judgment; positions near an arm’s outer end signaled high con-
fidence. Since subjects’ responses reflected their confidence that 
they had identified the correct serial position, the task qualified as a 
Type I rating task (see, e.g., Macmillan & Creelman, 2005).

Once the subject was satisfied with the cursor’s location within 
the response arm, a click of the computer mouse button caused the 

On L trials, variability in the summed-similarity signal 
arises from n study items that do not replicate p (by defi-
nition, there is no item in the study list that replicates p). 
Again, random selection of study items from some pool 
means that some of the n study items will be very similar 
to p, and others will be quite different. As a result, on 
L trials, the n study items will each make a highly vari-
able contribution to each trial’s summed-similarity signal. 
In contrast, on T trials, n21 study items make a highly 
variable contribution to summed similarity, whereas the 
remaining study item contributes little variability. Adding 
the sources of variability for the two trial types, the vari-
ance in the summed-similarity signal will be greater for T 
trials than for L trials.

If subjects’ recognition judgments were based on 
summed-similarity values, then the ratios of expected vari-
ances on T and on L trials would produce a ROC with a tell-
tale characteristic. This characteristic would be most easily 
seen when P(yes|T ) and P(yes|L)—the ROC’s x and y val-
ues—were transformed to standard z scores and then replot-
ted. In this new plot, the slope of the transformed ROC—
known as a zROC—would reflect the ratio of the variances 
of the summed similarities on T trials (in the denominator) 
and L trials (in the numerator). In order to test this predic-
tion that zROC slopes will be greater than 1.0, subjects in 
two experiments expressed their judgments using an ana-
logue rating scale. Converting the analogue judgments into 
rating-scale equivalents facilitated the generation of zROCs, 
whose slopes could be compared with predicted values. We 
should note that the predicted zROC slopes greater than 1.0 
would not be consistent with prior results from studies with 
verbal materials presented in lists much longer than ours 
(see, e.g., Donaldson & Murdock, 1968; Murdock, 1982). 
Those studies produced zROCs with slopes less than 1—a 
finding that has resisted reconciliation with existing theory 
(Ratcliff, Sheu, & Gronlund, 1992).

In order to test these predictions, we examined short-
term memory, using both old–new recognition judgments 
(asking subjects to judge whether some probe item [p] had 
been part of a just-presented list of three study items) and 
item-position identifications (asking subjects to judge the 
serial position of the study item that matched p). On each 
trial, subjects saw three briefly presented study items. The 
series of study stimuli—whose members varied from trial 
to trial—was followed by a probe item (p), which either 
replicated one of the preceding study items or differed from 
all three. Subjects used an analogue rating scale to identify 
the serial position whose study stimulus matched p; if no 
study item matched p, then subjects registered that judg-
ment with a no response. The analogue scale also allowed 
subjects to express their confidence that they had made 
a correct response (Watson, Rilling, & Bourbon, 1964). 
These expressions of confidence were used in generating 
ROCs, which served as one of our analytic tools.

Experiment 1

In Experiment 1, 75% of all trials were target (T ) tri-
als, with the probe item replicating one of the three study 
items. Additionally, we use ti to designate the serial posi-
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rectly identified which study item (s1, s2, or s3) matched p; as with an 
incorrect identification response, a None response on a T trial brought 
feedback that the response was wrong. On L trials, feedback was con-
tingent on whether the response correctly reflected that none of the 
study items matched p; all other responses—First, Second, or Third—
were followed by feedback that the response had been wrong.

The display’s mean luminance was maintained at 17.8 cd/m2, 
which prevented distracting luminance transients that would other-
wise have accompanied a change of stimulus. A subject viewed the 

computer to register the cursor’s location. No instructions were 
given about the speed with which subjects should respond. On aver-
age, once the scale was presented, a response was registered in about 
2–3 sec, which was sufficiently short that memory would not have 
decayed significantly (Kahana & Sekuler, 2002; Sekuler, Kahana, 
McLaughlin, Golomb, & Wingfield, 2005).

Distinctive tones provided feedback about response correctness. 
On T trials, feedback was contingent on the response’s identification 
component: Feedback signaled whether the subject’s response cor-

Figure 1. The average set of stimuli used in each experiment. Within each row, verti-
cal spatial frequency changes by three or six threshold units, decreasing and increas-
ing from the mean of 2.0 cpd, shown in the center of the stimulus matrix. Within each 
column, horizontal spatial frequency changes in the same way, again relative to the 
mean of 2.0 cpd.
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olds ranged from 6.6% to 18.7% (M 5 10.6, SD 5 4.7). Measure-
ments were made using the same techniques as those used in the 
previous experiments.

Stimuli and Procedure. The only difference between Experi-
ment 2 and Experiment 3 was the judgment required of subjects and 
the response selection screen on which judgments were registered. 
As shown in Figure 2B, for Experiment 3, the oblique arms of the 
four-arm response display were eliminated, and subjects indicated 
only whether p had or had not been among the study items for that 
trial; no identification response was required. To remind subjects 
of the task, one arm of the response screen was labeled yes, and 
the other arm was labeled no. As before, participants signaled their 
confidence in each judgment by clicking on the appropriate arm, 
with distance from the center of the screen indicating increasing 
confidence. Subjects were informed that T and L trials would occur 
with equal frequency. In other respects, Experiment 3 was identical 
to Experiment 2. Each subject was tested on 800 trials that were 
distributed across four 1-h sessions, and stimuli were tailored to 
individual subjects’ frequency discrimination thresholds.

Results

Overall performance
Experiment 1. Figure 3A shows the proportion of 

correct old–new recognition and item-position identifica-
tion in Experiment 1. The proportion correct for L trials 
(.51 6 .03) is shown by the single data point at the panel’s 
right side. The three serial position curves—one for each 
response measure—show a strong recency effect, with per-
formance on T trials improving from s1 through s3. A re-
peated measures ANOVA confirmed this result, showing a 
significant main effect of serial position for both curves in 
Figure 3A [F(2,18) 5 26.17, p , .01]. False alarm rates—
the proportion of identifying L as T—were .12, .13, and .11 
for s1, s2, and s3, respectively. These false alarm rates did 
not differ reliably across serial positions [F(2,18) 5 1.60, 
p . .20].

Experiment 2. Figure 3B shows that the proportion of 
correct responses for L trials was .55 6 .03. Additionally, 
as in Experiment 1, the serial position of the study item 
matched by p had a substantial effect [F(2,8) 5 20.70, 
p , .01]. False alarm rates were .09, .15, and .09 for s1, s2, 
and s3, respectively.

Experiment 3. Recognition memory performance for 
Experiment 3 was expressed as the proportion of correct 
recognition responses (.70 6 .26). As with the previous 
experiments, a repeated measures ANOVA demonstrated 
a main effect for the serial position of the study item that 
matched p [F(2,8) 5 11.62, p , .01]. We can compare 
the correct recognition measures from Experiment 2—in 
which recognition was calculated by summing identifi-
cation responses—to the recognition measure from this 
experiment. A repeated measures ANOVA showed that 
the serial position results for Experiments 2 and 3 did not 
differ from one another [F(2,16) 5 1.74, p . .20].

ROC Analysis
In order to compare recognition as measured indirectly 

(by identification judgments; Experiments 1 and 2) and 
recognition measured directly (Experiment 3), we cal-
culated the proportion of correct recognition responses 
produced in the two tasks. Recognition measures differed 

stimulus display from a distance of 114 cm, the head supported and 
steadied by a combination head rest and chin cup. Trials were self-
paced. On each trial, s1, s2, and s3 were sampled randomly without 
replacement from the pool of 25 stimuli that had been generated for 
that subject. On 75% of the trials, p replicated s1, s2, or s3 with equal 
frequency. On the remaining trials, p was chosen randomly from the 
22 members of the stimulus pool that were not among that trial’s 
three study items. These probabilities were explained to subjects 
prior to the experiment. Each subject was tested on 800 trials that 
were distributed across four 1-h sessions.

Experiment 2

Although Experiment  1 examined item-position 
identification, its overall design was grounded in prior 
studies of recognition memory in which no identification 
responses were taken (Kahana & Sekuler, 2002; Kahana 
et al., 2007). Because those studies used balanced schedules 
of T and L trials, we were concerned that Experiment 1’s 
unbalanced schedule might undermine comparisons be-
tween Experiment 1 and previous studies. Therefore, Ex-
periment 2 replicated the conditions of Experiment 1, but 
with a balanced schedule of T and L trials.

Method
Subjects. Five paid volunteers (age 18–21 years, M 5 19.8, SD 5 

1.1) participated in this study. None had served in the preceding ex-
periment. Subjects’ acuity ranged from 20/13 to 20/20 (M 5 20/16.6, 
SD 5 2.7); contrast sensitivity ranged from 1.80 to 1.95 (M 5 1.89, 
SD 5 0.08); frequency discrimination thresholds ranged from 6.0% 
to 10.2% (M 5 9.2, SD 5 3.1). All measurements used the same 
techniques as those employed in the previous experiment.

Stimuli and Procedure. This experiment used the same family 
of stimuli as those in the previous experiment, with stimulus spatial 
frequencies again tailored to individual subjects’ frequency discrim-
ination thresholds. The proportion of T trials was reduced from 75% 
in Experiment 1 to 50% in Experiment 2. As before, with equal prob-
ability, p matched s1, s2, or s3. These probabilities were explained to 
the subjects prior to the experiment. There were no other differences 
between this experiment and its predecessor. Each subject was tested 
on 800 trials, distributed across four 1-h sessions.

Experiment 3

In the preceding two experiments, subjects made an 
item-position judgment on each trial, either identifying 
the serial position of the study item that matched p, or 
responding None. It was computationally simple to trans-
form those item-position judgments into equivalent recog-
nition memory, but we cannot ignore the possibility that 
the result might not truly correspond to recognition mea-
sured directly. How well does recognition that is measured 
indirectly, by means of transformed item-position judg-
ments, correspond to recognition measured when no item-
position judgment was required? In order to answer this 
question, for this experiment, we modified the task used in 
the preceding two experiments, eliminating position judg-
ments and requiring only recognition judgments.

Method
Subjects. Five paid volunteers (age 18–20 years, M 5 18.6, SD 5 

0.9) participated. None had served in the preceding experiments. 
Subjects’ acuity ranged from 20/15 to 20/25 (M 5 20/18, SD 5 4.5); 
mean contrast sensitivity was 1.95; frequency discrimination thresh-
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tion transmitted by these correct responses grew with the 
number of response categories, but approached asymptote 
with no more than 10 response categories. Therefore, in 
generating ROC curves, we partitioned the analogue con-
fidence responses into 10 categories, with equal numbers 
of responses in each (see Nachmias & Steinman, 1963). 
In order to test the similarity of results in Experiments 1 
and 2, individual ROC curves were generated for each sub-
ject, and the area under each curve was calculated using 
the trapezoidal rule for numerical integration (Wickens, 
2002). Because we anticipated that our data would violate 
the equal-variance assumption, areas were calculated as 
values of Az, rather than of A′ (Wickens, 2002). In these 
calculations, the few response bins whose cumulative pro-
portions were either 0 or 1.0 were dropped.

Figure 4A shows mean ROC curves for the three experi-
ments. In generating ROC curves for Experiments 1 and 2, 
the analogue confidence ratings for r1, r2, and r3 were ag-
gregated. For the ROC curve derived from Experiment 3, 
we used the analogue confidence ratings that were associ-
ated with yes and no responses. ROCs were generated for 
each subject, and the area under each subject’s ROC curve 
was computed. The mean area, Az, under the ROC and the 
standard errors associated with that mean was 0.73 6 0.019, 
0.75 6 0.027, and 0.68 6 0.037, for Experiments 1, 2, and 3, 
respectively. We cannot explain why performance in Experi-
ment 3 was somewhat worse than that in the other experi-
ments, and the small number of subjects in Experiments 2 
and 3 make us hesitant to speculate about this point.

A one-way ANOVA confirmed that areas under the 
ROCs for the three experiments did not differ signifi-
cantly from one another [F(2,19) 5 1.56, p . .20]. This 
outcome suggests that recognition as measured directly 
in Experiment 3 is well approximated by recognition as 
estimated by aggregating over the three separate identifi-
cation responses: r1, r2, and r3.

significantly between Experiments 1 and 2 ( p , .02), 
most likely because of the experiments’ different ratios of 
T to L trials. Given that T trials comprised 75% of all trials 
in Experiment 1 but just 50% of the trials in Experiments 
2 and 3, signal detection theory would predict these two 
values of P(R) to be ordered as they are. This hypothesis 
is bolstered by the observation that the overall proportion 
of both correct recognitions and false alarms was higher in 
Experiment 1 than in Experiment 2 (see Figure 3).

The difference in stimulus schedule could have affected 
performance by changing the accuracy of memory (such 
as what might come from differences in task difficulty and 
attentional demands), from a change in subjects’ criteria, 
or from some combination of the two. In order to choose 
among these alternatives, we generated ROC curves from 
the judgments in each of the three experiments. In doing 
this, we exploited the confidence judgments provided 
by subjects’ use of the continuous, analogue rating scale 
(Nachmias & Steinman, 1963).

Because our rating scale was continuous rather than 
categorical, we sought an empirical estimate of how many 
useful categories—variations in confidence—were actu-
ally represented in subjects’ use of the analogue scale. 
After estimating that number, we used it to set the number 
of categories used to generate ROC curves from subjects’ 
expressions of confidence. In order to determine the use-
able grain of the analogue rating scale, we partitioned the 
rating scales into varying numbers of bins and, for each 
number, we calculated the amount of information trans-
mitted by the responses (Garner & Hake, 1951).

Watson et al.’s (1964) method was used to calculate in-
formation transmitted for correct identification responses 
that had been sorted post hoc into varying numbers of 
bins. The number of post hoc response bins was varied 
from 2 to 12, with the constraint that for any subject, all 
bins contained equal numbers of responses. The informa-

Figure 3. Proportion correct recognitions and identifications as a function of the serial position of the study 
item replicated by p. Also shown is the proportion correct rejection of lure stimuli (right side of each panel). Verti-
cal bars around each data point represent 61 within-subjects standard error (see, e.g., Loftus & Masson, 1994).
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into the cells of a 2 3 2 matrix. In populating the cells of 
the matrix, we considered only trials on which p actually 
matched either the first or last study item—s1 or s3; the re-
maining trials, on which p matched s2, did not lead to un-
equivocal predictions for misidentifications. The matrix’s 
rows corresponded to two levels of a variable we call struc-
tural similarity; the matrix’s columns correspond to two 
levels of a variable we call positional similarity. In order 
to generate the value of spatial similarity, we used a metric 
stimulus space in Figure 1 to calculate the Euclidean dis-
tance in spatial frequency between (1) p and the misiden-
tified study item, and (2) p and the remaining study item 
that did not match p. If the first of these two distances was 
smaller, then we categorized structural similarity between 
p and the misidentified item as “high”; otherwise, we 
categorized structural similarity as “low.” For positional 
similarity, we categorized misidentifications according to 
whether the error in identification represented a shift of 
either one (high similarity) or two (low similarity) serial 
positions. For example, if s2 were misidentified as match-
ing p when the actual matching study item was s3, then 
this error of one serial position was categorized as high 
positional similarity; if s1 were misidentified as match-
ing p when the actual matching study item was s3, then 
the error of two serial positions was categorized as low 
positional similarity. A factorial cross of structural and 
positional variables produced four combinations of differ-
ences between p and the misidentified study item. Trials 
involving a match to s2 were omitted from this analysis, 
because univocal predictions for those trials could not be 
made within our theoretical framework.

Figure 5 shows the proportions of item-position errors 
in Experiments 1 and 2 that fell into each of the four cat-
egories. In each panel, the horizontal axis shows the two 
levels of spatial similarity; black bars show results with 

Item-Position Errors
In both Experiments 1 and 2, subjects made many mis-

identifications of serial position. On about 25% of all T 
trials, subjects correctly rejected the no response, only to 
misidentify the serial position of the study item that had 
actually been replicated by p.

In order to evaluate possible causes of misidentifications, 
we asked whether misidentifications might be explained 
by some structural or positional attribute of the stimuli. 
The structural attribute was the pairwise spatial similar-
ity between exemplars in the two-dimensional Euclidean 
space within which our stimuli were defined. This vari-
able’s likely potency is suggested by a summed-similarity 
account of false alarms and recognition judgments. For the 
positional attribute, imagine that there was some orderly, 
nonrandom forgetting of serial position information. One 
form of nonrandom forgetting produces a “locality con-
straint,” which promotes local rather than global errors. 
In the task at hand, items that occupied serially adjacent 
positions in a study sequence would be more likely to be 
confused with one another than would positions that were 
more widely separated in a sequence (Lee & Estes, 1977; 
Page & Norris, 1998). More specifically, with partial loss 
of serial position information, s1 would be more likely to 
be misremembered as s2 than as s3, and s3 would be more 
likely to be misremembered as s2 than as s1. This account 
is mute on errors arising from forgetting s2’s serial posi-
tion in a three-item list like those used here. Note that the 
duration of each study item (750 msec)—together with the 
400 msec separating successive items—should have been 
sufficient to minimize perceptual confusions between in-
tervals, which suggests that misidentifications arise from 
failure of memory rather than failures of perception.

In order to evaluate competing accounts of misidentifi-
cations, each participant’s item-position errors were sorted 

Figure 4. (A) Receiver operating characteristics (ROCs) for recognition performance in Experi-
ments 1–3. ROCs for Experiments 1, 2, and 3 are represented by open circles, filled circles, and filled 
squares, respectively. (B) zROC curves generated from recognition performance in Experiments 1, 2, 
and 3 are represented by open circles, filled circles, and filled squares, respectively. A zROC is a ROC 
in z coordinates, where z is a transformation that converts a proportion into its corresponding z or 
standard score.
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bars at the left side of Figure 5A differ by about as much 
as the corresponding bars at the panel’s right side.

Potentially, some errors could have arisen from purely 
perceptual confusions among stimuli, with no actual in-
volvement of memory per se. However, stimulus series 
were constructed so that any two stimuli differed in spatial 
frequency by at least three times

 
the subject’s difference 

threshold. As was noted earlier, when stimuli like ours dif-
fer by that much, perceptual confusion alone with minimal 
contribution from errors in memory would have caused 
stimuli to be mistaken for one another only 3%–4% of 
the time. Thus, this source of mistaken identity does not 
account for the much higher proportion of misidentifica-
tions actually obtained in the memory experiment.

Previous studies showed that summed similarity of p 
and study items is an effective predictor of recognition 
memory (Kahana & Sekuler, 2002; Nosofsky, 1992). Ear-
lier in this article, we described how a summed-similarity 
computation can explain the origin of some misidentifica-
tions. As it is explained below, summed-similarity com-
putations also make a novel prediction for a key property 
of the ROCs.

Figure 7 illustrates in schematic form some key elements 
of NEMo, a summed-similarity model for recognition pro-
posed by Kahana and Sekuler (2002). Although our expo-
sition here revolves around NEMo, we should note that 
many of the same points could be made using other global 
matching models, which share similar computations (see, 
e.g., Brown, Neath, & Chater, 2007; Estes, 1986; Lacroix, 
Murre, Postma, & van den Herik, 2006; Lamberts, Brock-
dorff, & Heit, 2003; Shiffrin & Steyvers, 1997). NEMo 
assumes that study items s1, s2, s3 are stored in memory 

high positional similarity, and gray bars show results with 
low positional similarity. Note first that we can easily dis-
miss the hypothesis that all misidentifications resulted 
from a completely stochastic process. Monte Carlo simu-
lation showed that a completely random process, which 
would produce correct identification of serial position on 
just .1875 of all trials, would generate values as extreme 
as the highest value in either panel of Figure 5 on fewer 
than 1 in 100,000 replications of the experiment. In fact, 
the distribution of misidentifications is consistent with 
the alternative hypothesis—namely, that both positional 
and physical similarity induced identification errors, 
with physical similarity producing a larger effect than 
did positional similarity. Moreover, the two panels in Fig-
ure 5 show no evidence of an interaction between the two 
variables; that is, the black and gray bars at low structural 
similarity differ by about as much as the corresponding 
bars at high structural similarity in both Experiments 1 
and 2. Finally, there is some hint in Figure 5 that posi-
tional similarity might have played a larger role in errors 
made in Experiment 2 than in Experiment 1. Although it 
is tempting to compare effect sizes across experiments, 
the relatively small samples of subjects make us hesitant 
to attempt statistical comparisons of this kind.

The distribution of misidentifications across the four 
categories in the notional 2 3 2 matrix suggests that both 
positional and structural similarity induced position er-
rors, with structural similarity exerting a larger effect than 
did positional similarity (compare the pair of bars at the 
left side of Figure 5A with those corresponding at the fig-
ure’s right). The figure shows no evidence of an interac-
tion between the two variables; that is, the black and gray 

Figure 5. Proportion of misidentified items on T trials as a function of the structural and positional 
similarity between correct and misidentified study stimuli. (A) Misidentifications in Experiment 1. (B) Mis-
identifications in Experiment 2. Two levels of structural difference are plotted on the x-axis. Each of them 
is plotted separately for stimulus pairs that were similar in position (black bars) and for those that were 
dissimilar in position (gray bars).

Experiment 1 Experiment 2

P
(M

is
id

en
ti

fic
at

io
n

s)

P
(M

is
id

en
ti

fic
at

io
n

s)

.5

.4

.3

.2

.1

0

.5

.4

.3

.2

.1

0
Low High

Structural Similarity

Low High

Structural Similarity

A B

Positional
Similarity

High

Low

Positional
Similarity

High

Low



Visual Memory for Item and Position Information        289

be a physical replica of one study item; on L trials, none of 
the study items is replicated by p. Thus, even in the pres-
ence of exemplar noise that may reduce the remembered 
similarity of p and the study item it replicates, Ση will tend 
to be larger on T trials than on L trials, which will cause 
the proportion of recognition responses (“hits”) to differ on 
the two trial types. False recognitions (“false alarms”) may 
occur either because on some L trials, exemplar noise will 
cause Ση to exceed the subject’s criterion, or because the 
lure is similar to many of the study-list items.

Predicting the Form of the ROC
In order to make predictions about the form of ROC 

curves, we cast the distributions of Ση on T and on L trials 
into signal detection terms, treating the distribution of Ση 
for T trials as the signal distribution and the distribution 
of Ση for L trials as the noise distribution. Within a signal 
detection framework, then the slope of a linear zROC curve 
reflects the relative variances of the Ση distributions on T 
and on L trials (Wickens, 2002). If the two distributions’ 
variances were equal, then the resulting zROC’s slope 
would be 1. But, as was explained earlier, a model-based 
account predicts that variance in Ση will be larger on L 
trials than on T trials. Hence, the zROC slopes should be 
greater than 1 (Wickens, 2002). In order to test this pre-
diction, zROC curves were generated for each subject by 
cumulating hit and false-alarm rates over response bins (as 
was described earlier) and converting the cumulated val-
ues into standard scores. The mean zROC curves for each 
experiment are shown in Figure 4B.

For each experiment, the mean zROC curve generated 
by averaging zROCs from individual subjects is well de-
scribed by a linear function. Values of r2s for the linear 
terms in a second order polynomial fit were ..95; the ad-
dition of a quadratic term improved the fit by less than .02, 
which was not statistically reliable. In a signal detection 

as corresponding noisy exemplars—m1, m2, and m3—
where exemplars’ subscripts signify the order in which 
the stimuli were presented. NEMo computes pairwise 
similarities—η1, η2, η3—between p and the noisy exem-
plar of each study item. If the sum—Ση—of these pairwise 
similarities exceeds an (optimal) criterion, then the model 
responds that p had been in the study series.1 If Ση fails to 
exceed the criterion value, then the model responds that p 
was not among the items in the study series. In NEMo’s 
computation, sets of study and p items—together with ran-
dom noise in the exemplar representations—produce a dis-
tribution of values of Ση. By definition, on T trials, p must 

Figure 6. Mean slopes of zROCs measured in each experiment. 
An error bar represents 61 within-subjects standard error (see 
Loftus & Masson, 1994).
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all of which were derived from the full set of stimuli used 
in Experiment 3—the one experiment in which recogni-
tion was measured directly. First, we calculated the value 
of Ση for all 400 L trials and for all 400 T trials that each 
subject saw. Figure 8A’s lower panel shows the distribu-
tions of Ση for the two trial types, aggregated over all 
subjects. Note that because stimulus sets were generated 
randomly from the pool of 25 items, each subject had been 
tested with a partially unique set of T and L stimuli. From 
each subject’s responses to the 400 T and 400 L trials, 
we generated a zROC and calculated its slope. Note that 
these 800 trials were the actual stimulus set used in Ex-
periment 3; the mean slope shown in the leftmost point in 
Figure 8B was 1.09—a value identical to the correspond-
ing value obtained in the actual experiment (see rightmost 
point in Figure 6B). Note that not all characteristics of the 
distributions shown in Figure 8 are faithful to what NEMo 
assumes. In particular, for the sake of transparency, we 
have not applied a similarity transformation to the physi-
cal stimuli, choosing instead to work with Euclidean dis-
tances between the spatial frequencies of our stimuli.

Having confirmed that the variances of distributions of 
Ση differed between the complete set of our T and L trials, 
we constituted two subsets of stimuli. For the first subset, 
we sought to reverse the relationship between the distribu-
tions’ variances while holding constant the difference be-
tween the distributions’ means; we reasoned that these new 
modified distributions should produce zROC slopes less 
than 1. Starting with each subject’s original stimulus set of 
400 T and 400 L trials, we carved out a reduced-variance L 
distribution by selecting 60 L trials whose Ση values were 
near the mean value of Ση. In addition, 60 T trials were 
randomly selected without regard to their value of Ση. This 
maneuver reduced the variance for noise trials, leaving the 
variance for signal trials unchanged while also preserving 
the mean difference between the two distributions. Altering 
the relative variances of Ση for T and L trials had the ex-
pected effect on zROC slope: The relatively narrower distri-
bution of summed similarities values on L trials produced a 
simulated zROC mean slope of 0.85—a value considerably 
below 1.0 (the rightmost value shown in Figure 8B).

Finally, we did simulations with a somewhat larger sub-
set of values sampled from the original distribution of Ση 
from L trials; the aim was to generate a sample of stimuli 
in which the variance of Ση for L trials was approximately 
the same as that for T trials, which should produce zROC 
slopes very near 1.0. We drew 250 L trials and 250 T trials 
from the original sets of 400 items. L trials were drawn 
without replacement from a region in the vicinity of the 
mean for all L trials, but T trials for the subset were drawn 
at random from the entire distribution of 400 trials. The re-
sult was a ratio of variances between distributions that was 
intermediate to the ratios for the 60-trial sets and for the 
complete 400-trial sets. Again, in constructing this set of 
stimuli, we held constant the mean distance between these 
two distributions of Ση. From each subject’s responses in 
Experiment 3 to each of these stimulus lists, we generated 
a zROC for that subject. The mean and standard error of 
the zROC slopes are shown by the middle point in Fig-
ure 8B. Note that as expected, the mean zROC slope here 

framework, the linearity of zROC curves is consistent with 
underlying distributions that are normal (Murdock, 1982). 
The mean zROC slopes for each experiment are shown 
in Figure 6. The zROCs were generated from recognition 
performance measured directly (as in Experiment 3) or 
indirectly (for Experiments 1 and 2). Each had a slope 
significantly greater than 1; this was true even for Experi-
ment 3, whose zROCs had the lowest slopes [t(4) 5 3.45, 
p , .03]. The slopes from Experiments 2 and 3 were not 
significantly different from one another ( p 5 .40). Finally, 
as Table 1 shows, the obtained slopes did not vary system-
atically with serial position when zROCs were computed 
for each serial position separately. This consistency of the 
zROC slopes across the three serial positions suggests that 
subjects were probably not using substantially different 
strategies to recognize matching items that occupied dif-
ferent serial positions (Malmberg & Xu, 2006).

In order to verify the link between zROC slope and the 
distributions of Ση values on T and L trials, we calculated 
the summed similarity for each trial in our study. In doing 
so, we substituted pairwise Euclidean differences in spatial 
frequency for the corresponding perceptual differences that 
are usually used in NEMo. Although these two variables—
physical and perceptual distance—are likely related by an 
exponential transform (Shepard, 1987; Yotsumoto, Kahana, 
Wilson, & Sekuler, 2007), any increasing monotonic rela-
tionship between the two variables would leave the argument 
unchanged. Summed p–study distances were calculated 
separately for both T trials and L trials in Experiment 3.

The frequency distributions of Ση for all stimulus sets 
that appeared in Experiment 3 are plotted in Figure 8A. 
Note that the x-axis has been reversed so that the small-
est value of summed distance lies to the right. Because 
summed similarity—Ση—and summed distance are in-
versely related, the reversal of the normal x-axis direction 
represents increased summed similarity from left to right 
and also brings the visual format of Figure 8A’s distribu-
tions into conformity with formats commonly used in 
signal detection theory. As was expected, the mean value 
of Ση for T trials tended to be larger than the comparable 
value for L trials; also, the distribution of Ση for L trials had 
larger variance than did Ση for T trials. This unequal vari-
ance in the empirical signal and noise distributions predicts 
zROCs with slopes greater than 1 (Wickens, 2002).

In order to confirm that distributional differences in Ση 
for T and L trials would actually have the predicted effect 
on zROC slope, we used a signal detection approach to 
simulate the recognition data that would be produced by 
several different distributions of Ση. In particular, we sim-
ulated recognition for several different subsets of stimuli, 

Table 1 
Mean zROC Slope and Standard Error  

for Each Serial Position and Experiment

Position 1 Position 2 Position 3

  M  SE  M  SE  M  SE

Experiment 1 1.26 0.02 1.29 0.02 1.32 0.02
Experiment 2 1.13 0.01 1.12 0.07 1.19 0.02
Experiment 3  1.08  0.03  1.04  0.07  1.08  0.03



Visual Memory for Item and Position Information        291

Donaldson & Murdock, 1968; Murdock, 1982; Ratcliff, 
McKoon, & Tindall, 1994; Yonelinas, 1997). What is the 
origin of this striking difference? Because our stimuli and 
our task both differ in several ways from those used to 
measure verbal recognition memory, it is impossible for 
one to know which factors are actually responsible for the 
divergent outcomes. For example, all three of our experi-
ments produced monotonic positional gradients showing 
a pronounced recency effect, but no evidence of a primacy 
effect. These monotonic gradients, which were also seen 
in previous experiments using similar stimuli and tasks 
(Kahana & Sekuler, 2002; Yotsumoto et al., 2007), differ 
from a common finding with rehearsable stimuli—a rela-
tively pronounced recency effect accompanied by some 
primacy effect. In addition to the very different nature of 
the stimuli in these two domains, each list in our study 
was followed by a single test probe (either a target or a 
lure), whereas studies of verbal episodic recognition use 
long sequences of targets and lures. Moreover, our study 
employed short lists of only three study items, whereas 
studies with verbal material have used considerably longer 
lists of study items (often on the order of 40–100 items). 
Our model-based prediction of zROC slopes greater than 
1.0 hinges on the relatively small variability in similar-
ity that would be generated by comparing p and the one 
study item that was replicated by p (see above). In such an 
account, the number of lure items in the study list plays 
a crucial role. As that number grows, the contribution of 
the lone nonlure item will be diluted in comparison with 
the contribution of similarity signals from the increasing 
numbers of lure items. In turn, this dilution will decrease 
the differential in summed-similarity variability on T and 
L trials, producing zROCs whose slopes approach a value 

was intermediate to those from the other two simulated 
conditions and was close to 1.0.

The simulations represented in Figures  8A and 8B 
confirm that the slopes of zROC in our experiments are 
consistent with differences in the variances of summed 
similarity on T and L trials. Specifically, the summed-
similarity values for L trials used in Experiment 3 had 
larger variance than did the values for T trials—a fact that 
signal detection theory predicts (and our simulations con-
firm) would produce zROC slopes that are greater than 1. 
One take-home lesson may be obvious: By altering the 
variance of the summed similarity signals that would be 
generated on T and L trials, one can produce a wide range 
of zROC slopes above and below a value of 1.0. Another 
take-home lesson may be less obvious. Beginning with 
stimulus characteristics, one can go directly to statements 
about the resulting distributions of summed-similarity 
signals on different kinds of trials.

General Discussion

Learning From the Form of ROCs
For all three experiments reported in the present article, 

zROC curves had slopes greater than 1. This was true in 
Experiments 1 and 2, in which recognition performance 
was estimated from order identification judgments, as 
well as in Experiment 3, in which recognition perfor-
mance was measured directly—that is, from recognition 
judgments themselves. The results of our ROC analyses 
differ from those that have been reported for studies of 
verbal recognition memory. As was already discussed, we 
predicted and then found zROC slopes of 1.1–1.3; studies 
using verbal materials report slopes of 0.8–1.0 (see, e.g., 

Figure 8. (A) Distributions of summed similarity values for all T trials (upper subpanel) and all L trials 
(lower subpanel) used in Experiment 3 and in simulations of recognition. L trials used in both Experiment 3 
and the first simulation are bracketed by the rectangle with the thickest line. The two narrower rectangles 
bracket L trials that were used in the second and third simulations. (B) Mean and SEM slopes of zROCs 
calculated for three sets of L trials; the variance of L trials’ summed similarity values varied systematically 
among the three sets of trials. The rightmost point shows the mean and SEM zROC slope simulated for all 
stimulus sets used in Experiment 3. The thick, medium, and thin bars each correspond to the simulations 
with large, medium, and small variance of summed similarity. The thickness of lines in panel B corresponds 
to that of those in panel A. The standard deviation of the T distribution is 1.68; the standard deviation for 
L trials was 2.1.
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hana et al., 2007). As such, probe items that have greater 
summed similarity to the list would be considered more 
recent. A problem with this account is that repeating an 
item should make it seem more recent, yet the data show 
that frequency and recency judgments are dissociable and 
possibly even independent (Flexser & Bower, 1974; Ka-
hana & Loftus, 1999; McElree & Dosher, 1993).

One alternative approach assumes that positional infor-
mation is coded as part of the memory trace of each stud-
ied item. This idea harks back at least to Ladd and Wood-
worth (1911), who assumed that positional information 
served as part of the cue for recall in serial learning tasks. 
More recently, positional or temporal coding has been an 
integral element in theories of serial recall, free recall, and 
even item recognition (Brown, Preece, & Hulme, 2000; 
Dennis & Humphreys, 2001; Howard & Kahana, 2002). 
Assuming that position information is encoded with each 
item, some mechanism is needed to read out, or retrieve 
this information. If, instead of summing the pairwise simi-
larities between the probe and each of the list items, we 
retrieved the memorial representation of the studied item 
that was most similar to the probe, then the positional in-
formation encoded with that item could be used to drive 
judgments of serial position.

In this approach, each trial’s pairwise similarities would 
be processed with a max operator, which returns the index 
of the largest item in η1, η2, or η3. In the absence of error, 
this index would correspond to the serial position of the 
study item that most closely matches p; this value could 
be the basis for serial-order judgments. Because of noise 
associated with each exemplar, there will be trials on 
which the index returned by max will correspond not to 
the serial position whose study item physically matched p, 
but instead to the serial position of another, nonmatching 
study item. On such trials, the model would generate an 
item-order error, misidentifying the serial position of the 
matching item’s similarity to p. The probability of such er-
rors would be some monotonically decreasing function of 
the p’s similarity to study items occupying different serial 
positions. In other words, study items that were not rep-
licated by p but were perceptually similar to it would be 
more likely misidentified as the match than would study 
items that were less similar to p. This is the pattern of 
results shown in Figure 5.

A different mechanism is required to motivate the 
position-dependent misidentifications. Drawing on an ac-
count of analogous effects in free recall (Howard & Ka-
hana, 1999, 2002), we assume that the representation in 
memory of each noisy exemplar is tagged with a position 
code. Because position tags can be degraded (partially for-
gotten) as a result of passage of time and/or interference, 
serially adjacent positions in a sequence would more likely 
be confused with one another than would positions more 
widely separated in a sequence. In the case at hand, loss 
of serial position information would make it more likely 
that s1 is misremembered as s2 than as s3. Conversely, it 
would also make s3 more likely to be misremembered as 
s2 than as s1. This account is mute on errors involving the 
forgetting of s2’s serial position. Again, this is the pattern 
of results seen in Figure 5. We should note that this ef-

of 1.0. Note that this theory-based prediction does not lead 
to zROC slopes less than 1.0, as was reported by several 
investigators with lists of verbal items. In order to produce 
zROC slopes less than 1.0, an additional factor—such as 
variability in attention or goodness of encoding (see, e.g., 
Kahana, Rizzuto, & Schneider, 2005)—must be consid-
ered. Arguably, with verbal items, variability in goodness 
of encoding—particularly in long lists—would be greater 
than the variability associated with stimuli like those used 
in the present experiments. This additional variability 
could come from rehearsal (our stimuli are not easily re-
hearsable), variation in items’ imagability, concreteness, 
word frequency, meaningfulness, and number of implicit 
associative responses (Hall, Sekuler, & Cushman, 1969), 
to name a few. All of these things make words interesting 
and complicated, but they probably add variability—to 
target items in particular. As Hintzman (1988) pointed 
out, differential variability in goodness-of-encoding for 
target items—especially across high- and low-frequency 
words—could account for key features of the mirror effect, 
a robust phenomenon that has resisted other explanations.2 
Whatever the origin of differences in ROC analyses may 
be, the combination of summed-similarity computations 
for recognition memory and a signal detection framework 
for decision making do a satisfactory job of connecting 
zROC slopes to the distributional characteristics of T and 
L trials in our experiments.

Sources of Item-Order Errors
The results displayed in Figure 5 suggest that structural 

and order similarity both influence misidentifications of 
serial position, and that their separate effects are approx-
imately additive. In order to understand how structural 
similarity might lead to errors in order judgment, consider 
a summed-similarity account of false alarms in recogni-
tion judgments. Kahana and Sekuler’s (2002) summed-
similarity model assumes that three study items—s1, s2, 
s3—are stored in memory as noisy exemplars. When the 
probe—p—is presented, the set of similarities between 
p and each of the noisy exemplars is computed (e.g., 
η1 . . . η3). Again, subscripts signify the serial order of 
stimulus presentation. NEMo describes similarity val-
ues as exponentially decreasing functions of spatial dif-
ferences between p and the corresponding values—m1, 
m2, m3. From the resulting similarity values, the summed 
similarity—Ση—is computed. In NEMo, a value of 
Ση . k, where k is an optimal criterion, constitutes evi-
dence that at least one of the study items matched p, which 
makes p seem familiar. Over trials, the probability of a 
recognition response (that is, a yes response) corresponds 
to the proportion of trials on which Ση . k.

The exemplar-similarity framework for understanding 
recognition memory can be extended to account for serial 
position judgments as well. Although we will not attempt 
to delineate a full account of such an extension, here is a 
sketch of some paths that such an extension might take.

A simple approach would be to base serial position 
judgments on the familiarity of items in memory. In 
NEMo, older items are coded with more noise and given 
less weight in the summed-similarity calculation (Ka
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though gratings like the ones we used are certainly not the 
only stimulus class that satisfy these criteria, gratings are 
among the best understood in terms of their representation 
at various stages of the visual system. It would be interest-
ing for researchers to determine whether our conclusions 
concerning ROC functions generalize to other classes of 
metric stimuli that have been used to study memory, in-
cluding synthetic human faces (Yotsumoto et al., 2007), 
colors (Nosofsky & Kantner, 2006), and complex sounds 
(Visscher, Kaplan, Kahana, & Sekuler, 2007). An answer 
would reveal whether our results were unique to the par-
ticular perceptual stimuli whose representations in early 
visual are well characterized, or whether they could be 
generalized to other classes of stimuli.
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Notes

1. Unlike other summed-similarity models, NEMo posits an addi-
tional process by which the degree of summed similarity required to 
endorse a p item is modulated by the level of interitem similarity. How-
ever, since the inclusion of this mechanism does not alter the model’s 
predictions of the zROC, we have presented the simpler special case in 
which β is absent.

2. The mirror effect is the empirical finding that with two classes of 
stimuli—say, high- and low-frequency words—the class that produces 
the higher hit rates also produces the lower false alarm rates.
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