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Behavioral studies of visual recognitionmemory indicate that old/new decisions reflect both
the similarity of the probe to the studied items (probe–item similarity) and the similarities
among the studied items themselves (list homogeneity). Recording intracranial
electroencephalography from 1,155 electrodes across 15 patients, we examined the
oscillatory correlates of probe–item similarity and homogeneity effects in short-term
recognition memory for synthetic faces. Frontal areas show increases in low-frequency
oscillations with both probe–item and item–item similarity, whereas temporal lobe areas
show distinct oscillatory correlates for probe–item similarity and homogeneity in the
gamma band. We discuss these frontal low-frequency effects and the dissociation in the
temporal lobe in terms of recent computational models of visual recognition memory.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Similarity is an important factor in human forgetting, as
interference between items increases when those items
are similar within a psychological representational space
(Robinson, 1927). Although parametric investigations of simi-
larity effects in recognition have been widely used in the
cognitive literature, the neural correlates of similarity remain
largely unexplored. In visual item recognition tasks, partici-
pants view a short sequence of study items, followed by a
probe item.Their task is to indicatewhether theprobematches
one of the study items. Here we examine the neural correlates
(M.K. van Vugt), andreas.
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of two distinct types of similarity effects in visual recognition
memory. The first of these is participants' increased tendency
to endorse a test probe when it is similar to one or more list
items (e.g., Hintzman, 1988; Lamberts et al., 2003; Nosofsky,
1991; Shiffrin and Steyvers, 1997). The second is participants'
decreased tendency to endorse a test probewhen the list items
are very similar to one another (Kahana and Sekuler, 2002;
Nosofsky and Kantner, 2006; Visscher et al., 2007).

An influential class of cognitive models describing this
visual recognition memory process (“summed similarity
models”) assume that participants base their recognition
decision on the sum of the similarities between the probe
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and study items' memorial representations (Hintzman, 1988;
Kahana and Sekuler, 2002; Lamberts et al., 2003; Nosofsky,
1991; Nosofsky and Kantner, 2006; Shiffrin and Steyvers, 1997).
Similarities can be computed when the multidimensional
representations of the stimuli are known (as derived, for
example, from a multidimensional scaling procedure).
Kahana and Sekuler (2002) in their Noisy Ex-emplar Model
(NEMo) extended this basic framework by incorporating item–
item similarity (the mean of all pairwise similarities between
study items) in the basic model (Kahana and Sekuler, 2002;
Sekuler and Kahana, 2008). They found that when the list is
homogeneous (i.e., the list items are highly similar to each
other), the probability of responding “yes" decreases. Visscher
et al. (2007) showed that this was still the case when probe–
item similarity was held constant. We will therefore refer to
the mean item–item similarity as a “homogeneity correction,”
which will tend to push the decision in the opposite direction
of probe–item similarity (Viswanathan et al., submitted for
publication). Including this extra term significantly improved
the model's fit to the data. Probe–item similarity and the
homogeneity correction are formalizations of the two simi-
larity types described earlier.

In this paper, we have two main objectives. First, we want
to examine whether oscillatory correlates of probe–item
similarity and the homogeneity correction can be found in
intracranial electroencephalography (EEG) recordings. Second,
we aim to exploit the neural data in a novel way, namely in
order to select among alternative models of the recognition
process. In particular, we compare the neural correlates of
probe–item similarity and the homogeneity correction to see
whether the latter is a useful addition of NEMo to summed
similarity models.

There are various possible outcomes of such an analysis.
We predict that probe–item similarity and the homogeneity
correction are associated with different neural correlates, since
behavioral evidence suggests that they involve distinct
computations (Visscher et al., 2009). It could, however, also
be the case that probe–item similarity and the homogeneity
correction are associated with the same neural signatures,
which could point to generic mechanisms that sum similarity
across items. Thirdly, if probe–item similarity and the homo-
geneity correction have similar neural signatures but are
opposite in sign, that would indicate neural processes that are
involved in computing the sum of probe–item similarity and
the homogeneity correction that forms the basis for the
recognition decision (to which probe–item and item–item
similarity make opposite contributions). Finally, if the homo-
geneity correction were to show little or no correlation with
neural activity, this would make it a less plausible addition to
the summed similarity model. If we do not find any neural
correlates of NEMo, this would indicate that oscillatory activity
is not the prime locus for visual recognition memory.

Whichbrain regionswould be expected to showcorrelates of
the two similarity signals? There is an extensive literature on
the neural correlates of short-term memory for nonverbal
stimuli such as faces, which are the stimuli we used in this
experiment. For probe–item similarity only, we expected the
neural correlates to be similar to differences in neural activity
for targets and lures (“old/new effects”) that have been reported
in the literature. These old/new effects have been found in the
Please cite this article as: van Vugt, M.K., et al., Intracranial ele
during item recognition, Brain Res. (2009), doi:10.1016/j.brainres
left parietal lobe in scalp EEG (e.g., Curran, 2000; Düzel et al.,
2005) and functional magnetic resonance imaging (fMRI)
studies (e.g., Kahnet al., 2004;Wagner et al., 2005). Furthermore,
targets and lures also showdifferential fMRI blood oxygenation
level-dependent (BOLD) activity and potentials in intracranial
EEG in the dorsolateral prefrontal cortex (DLPFC) and themedial
temporal lobe (MTL; Cabeza et al., 2001; Ludowig et al., 2008,
respectively). Given that our focus here is on the integration of
two similarity signals (probe–item similarity and the homo-
geneity correction), we also expected to see correlates of both of
these signals (probe–item similarity and the homogeneity
correction) in the frontopolar cortex (Brodmann area 10). This
is a region that has been associated with the integration of
information from multiple sub-tasks (e.g., deciding whether
multiple items share the same property) in working memory
tasks (Braver and Bonglolatti, 2002; Koechlin et al., 1999;
Koechlin and Hyafil, 2007; Ramnani and Owen, 2004; Reynolds
et al., 2006). It also shows increased activation with supraspan
memory loads and during episodicmemory retrieval (Cabeza et
al., 1997; Christoff and Gabrieli, 2000).

In addition to judging the plausibility of the model and its
neural correlates on their spatial locations, we will examine
their location in frequency space. Based on a scalp EEG study
(van Vugt et al., submitted for publication), we expect probe–
item similarity to correlate with left parietal 4–9 Hz theta
oscillations. Oscillations in both the theta (4–9 Hz) and gamma
(28–128 Hz) bands have frequently been associated with
memory and attentional processes (e.g., Osipova et al., 2006;
Rizzuto et al., 2006; Sederberg et al., 2007b). If we fail to find
oscillatory correlates in BA 10, parietal areas and the MTL, in
frequencybands that include thetaandgamma, thenoscillatory
activity does not play a large role in visual recognitionmemory.

To study the oscillatory correlates of probe–item similarity
and the homogeneity correction we tested participants in a
visual Sternberg task (Sternberg, 1966). The stimuli consisted
of a set of synthetic male faces (Wilson et al., 2002). The
advantages of using this face set are that, although the face
stimuli are well controlled, they still can be identified with
high accuracy (Wilson et al., 2002), and it is possible to
measure their inter-item similarity precisely. Moreover, the
face stimuli are realistic enough to generate strong responses
in the fusiform face area (Loffler et al., 2005), and we have
previously shown how their similarity structure affects
recognition memory performance (van Vugt et al., submitted
for publication) and the learning of name–face associations
(Pantelis et al., 2008).

Detecting medial temporal lobe activity and separating it
from, e.g., themedial temporal gyrus requires excellent spatial
resolution, beyond that of scalp EEG. For that reason, we used
intracranial EEG (iEEG) recordings to study the oscillatory
correlates of probe–item similarity and the homogeneity
correction. Although we focus our analyses mainly on the
above-mentioned regions of interest, we will also use whole-
brain analyses to examine the specificity of the effects.
2. Results

The Noisy Exemplar Model (Kahana and Sekuler, 2002)
assumes that participants base their recognition decision
ctroencephalography reveals two distinct similarity effects
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Table 1 –Modeling short-term recognition of faces: root-
mean-square deviation (RMSD) and mean (standard error
of mean) NEMo parameters obtained using a genetic
algorithm, fitted for each participant separately. Note that
α1 was fixed to 1.

Parameters Values Parameters Values

β -0.38 (0.13) τ 8.87 (0.89)
α2 0.88 (0.021) c1 0.35 (0.13)
α3 0.79 (0.040) c2 0.32 (0.15)
α4 0.68 (0.027) c3 0.34 (0.13)

c4 0.15 (0.36)
σ1 0.068 (0.053) w1 0.088 (0.049)
σ2 0.078 (0.051) w2 0.11 (0.058)
σ3 0.080 (0.11) w3 0.29 (0.092)
σ4 0.16 (0.039) w4 0.50 (0.11)
RMSD 0.168 (0.012)
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largely on the summed pairwise similarity between an item's
memorial representation and the representation of the test
probe. Formally, this probe–item similarity is given by:

S =
XL

i = 1

aie�sjsi−pj ð1Þ

Here L refers to the length of the study list, αi is a forgetting
parameter as described below, τ determines the form of the
exponential generalization gradient (Shepard, 1987), si is the
vector representing the coordinates of the memorial repre-
sentation of stimulus i, and p is the representation of the
probe item. The summed similarity of a target probe to the
members of the study list typically exceeds the summed
similarity of lure probes to the members of the study list.
NEMo extends the basic summed similarity framework for
item recognition (Hintzman, 1988; Nosofsky, 1991) by showing
that the degree of summed similarity required to respond
“yes" varies with list homogeneity (i.e., the mean similarity
among list items). With greater list homogeneity, participants
will respond “yes" at lower levels of summed similarity
(Kahana et al., 2007; Nosofsky and Kantner, 2006; Visscher et
al., 2007). Formally, homogeneity is defined as the average
similarity among the L studied items:

H =
2b

L L� 1ð Þ
XL�1

i = 1

XL

j = i + 1

e�sjsi−sj j ð2Þ

In this equation, β determines the influence of list homo-
geneity. According toNEMo, theprobability of responding “yes"
is given by:

P yesð Þ = P S +H > cLð ð3Þ
Here cL is a separate decision criterion for every list length.
Each item's memorial representation, si, is defined by sum-
ming the coordinates obtained from an MDS study (Pantelis
et al., 2008; van Vugt et al., submitted for publication) with a
noise vector whose components are zero-mean Gaussians
whose standard deviation (σ) depends on the stimulus
dimensions comprising that item. In using this noise term,
we can adopt a fully deterministic decision rule (Ashby and
Maddox, 1998). Variability in participant's responses from one
occurrence to another are modeled by the sampling of each
item from the distribution of its noisy representation si. To
simulate forgetting, NEMo assumes that the most recent
stimulus contributes the most to the summed similarity, and
that earlier items contribute less and less. This is simulated by
the parameter α, which increases with lag (i=1 indicating the
most recently studied item). Finally, NEMo allows for the
possibility that participants differentially weight the contri-
butions of different stimulus dimensions. These weights,
which are not shown in equation (1), also insure that the
measured distances are not sensitive to absolute variations in
the scale of the dimensions.

The model parameters were estimated by using a genetic
algorithm (Mitchell, 1996) to minimize the root-mean-square
deviation (RMSD) between the observed and predicted binned
accuracy for each participant. Simulated participants respond
yes when S+H>cL. The genetic algorithm was run for 20
generations of 2000 individuals each. The obtained estimates
of the best-fitting parameters (Table 1) are similar to those
Please cite this article as: van Vugt, M.K., et al., Intracranial ele
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reported in previous applications of NEMo (Kahana and
Sekuler, 2002; Kahana et al., 2007; Nosofsky and Kantner,
2006; van Vugt et al., submitted for publication; Visscher et al.,
2007; Yotsumoto et al., 2007). In particular, the parameter β is
significantly smaller than zero [t(14)= -11.7, p<0.001]. This
indicates that list homogeneity contributes significantly to the
old/new decision.

2.1. Oscillatory correlates of probe–item and item–item
similarity

Our main research question was whether probe–item similar-
ity and the homogeneity correction have distinct neural
correlates and whether these neural correlates support
NEMO. To investigate the oscillatory correlates of these two
variables simultaneously, we used a regression model, which
we have introduced in previous scalp EEG studies (Jacobs et al.,
2006; van Vugt et al., submitted for publication). We regressed
oscillatory power on three factors: summed probe–item
similarity (S), mean interitem similarity (homogeneity, H),
and lag (lag):

Targets model : Pfreq;electrode;time = b0 + b1S + b2H + b3lagT +a ð4Þ

Lures model : Pfreq;electrode;time = b0 + b1S + b2H + b3lagL +a ð5Þ

In these regression models, the lag variable measures how
recently a probe item has been last studied, either on the
current list (for targets) or on a previously studied list (for
lures). This variable was included to statistically remove
recency and proactive interference effects (e.g., McElree and
Dosher, 1989; Monsell, 1978). Since recency and proactive
interference were not a focus of the present study, we will not
discuss oscillatory correlates of the lag variable here.

We computed these regressions separately for each
electrode, frequency band, and each of 10 successive 100-ms
time intervals following probe onset. To avoid confounding
the oscillatory correlates of probe–item similarity with well-
known old/new effects (Düzel et al., 2003), we fit separate
regressionmodels to data for targets and lures. The regression
coefficients were combined in Brodmann areas as described in
the Experimental Procedures (see also Sederberg et al., 2007a).
The results are presented in tabular format, in which a
positive or negative sign indicates a significantly positive or
ctroencephalography reveals two distinct similarity effects
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negative correlation between oscillatory activity and S or H in
at least 1 of the 10 time bins. The number of participants
contributing electrodes to each region are shown in the last
two columns of each table. Note that this table shows 18
significant results, of which 0.18 on average (i.e., 1%) are
spurious according to the FDR procedure.

We will discuss each of the regions of interest in turn: first
the frontopolar cortex, which, because of its role in informa-
tion integration (e.g., Ramnani and Owen, 2004), should show
correlates of both S and H. After that, we will discuss the
DLPFC, the left parietal lobe, and lastly temporal regions. The
results are presented in Table 2.

In Brodmann area (BA) 10 (the frontopolar cortex), 2–4 Hz
delta oscillations increase with both S and H for targets. For
Table 2 – Overview of significant correlations between probe–ite
lure probes.

“l” indicates left hemisphere, whereas “r” indicates right hemisphere. The
homogeneity correction. Frontal areas have a blue background, memory-re
areas have a green background. Brodmann areas are considered significant i
columns indicate the number of participants (Ns) and number of electrodes (
the gamma subband: 1=28–48 Hz; 2=48–90 Hz; 3=90–128 Hz. Abbreviations:
22=STG; entorh=entorhinal; hipp=hippocampus; BA 7=parietal; BA 39=pa

Please cite this article as: van Vugt, M.K., et al., Intracranial ele
during item recognition, Brain Res. (2009), doi:10.1016/j.brainres
lures, 9–14 Hz alpha oscillatory power decreases and increases
with S and H, respectively. Additionally, 90–128 Hz gamma
oscillatory power is positively and negatively correlated with S
for lures and targets, respectively. Note that this effect could
reflect task difficulty because higher probe–item similarity (S)
is more difficult for lures and easier for targets.

In addition to the low-frequency integration signals in the
frontopolar cortex, we found similar effects in the DLPFC. In
right BA 46 (part of the DLPFC), 2–4 Hz delta oscillatory power
increases bothwith S andH. Another region in the DLPFC, BA 9
(DLPFC) shows a decrease in 28–48 Hz gamma power with S,
which might again reflect difficulty.

Furthermore, we expected to see correlates of S in the left
parietal lobe, a region that has frequently been found to show
m similarity (S) and homogeneity (H) and oscillatory power for

left column represents probe–item similarity and the right column the
lated areas a yellow background, left parietal areas are pink, and motor
f they show a significant correlation in at least one timebin. The last two
Ne) in each Brodmann area. For the gamma band, the subscript indicates
BA 10= frontopolar cortex; BA 46=DLPFC; BA 9=DLPFC; MA 21=MTG; BA
rietal; BA 40=parietal; BA 4/6=(pre)motor.

ctroencephalography reveals two distinct similarity effects
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old/new effects. These are notably absent. This might in large
part be related to the fact that there are relatively few
electrodes in the left hemisphere (see Table 2).

The last regions of interest are those in the temporal lobe.
These memory-related areas show different effects for S and
H. In the left medial temporal gyrus (MTG; BA 21), a brain
region that was previously shown to exhibit subsequent
memory effects in the gamma band (Sederberg et al., 2007b),
24–48 Hz gamma oscillatory power decreases with S. In the
right superior temporal gyrus (STG; BA 22) on the other hand,
14–28 Hz beta and 90–128 Hz gamma power increase with S.
These regions on the temporal gyrus do not show a significant
correlation with H. This is in contrast with deeper temporal
regions, where alpha power in the right entorhinal cortex and
left hippocampus increase with H and there is no significant
effect of S.

To formally test the interaction between similarity effect
and brain region/frequency, we performed a similarity type
(S, H) by region (hippocampus, entorhinal, BA 21, BA 22) by
time bin (early, 0–500 ms; late, 500–1000 ms) by frequency
band ANOVA. This analysis revealed significant main effects
of similarity type [F(1, 7112)=9.78, p<0.01], region [F(3, 7112)=
11.67, p<0.001], and frequency [F(6, 7112)=21.52, p<0.001].
Crucially, there is also an interaction between similarity type
and region [F(3, 7112)=9.68, p<0.001]. This interaction indi-
cates that the temporal gyrus areas has larger regression
coefficients for S, and the MTL areas (hippocampus and
entorhinal cortex) have larger regression coefficients for H.

We then performed a whole-brain analysis to check the
specificity of the effects. Appendix A shows that in addition to
the above-mentioned regions of interest, there are significant
similarity effects in BA 4/6, the (pre-)motor cortex. This
Brodmann area shows (for targets) an increase of 4–9 Hz
theta oscillatory power with S, but a decrease with H (Table 2).
For lures, 9–14 Hz alpha power increases with probe–item
similarity. This comports well with behavioral findings of
Kahana and Sekuler (2002) and Nosofsky and Kantner (2006),
which show that probe–item similarity and the homogeneity
correction are summed with opposite signs, such that they
push the yes/no decision in opposite directions.
3. Discussion

We demonstrated that correlations can be found between
oscillatory brain activity and two theoretical constructs:
probe–item similarity and the homogeneity correction. The
homogeneity correction is a relatively recent addition to the
summed similarity framework, and our finding of neural
correlates provides further support for its addition. For
oscillatory activity to show clear involvement in visual
recognition memory, we required three parts of the brain
(BA 10, left parietal lobe and the MTL) to show significant
correlations with the model. We found neural correlates of
NEMo in two of these three areas. In BA 10, oscillatory gamma
power decreased with S for targets and increased with S for
lures. In the temporal lobe, we found in fact a dissociation
between S and H, where S was related to gamma oscillatory
power in the temporal gyrus, and H to alpha oscillatory power
in the entorhinal cortex and hippocampus. This suggests that
Please cite this article as: van Vugt, M.K., et al., Intracranial ele
during item recognition, Brain Res. (2009), doi:10.1016/j.brainres
probe–item similarity and the homogeneity correction are
indeed two different neural processes. Not anticipated was an
increase of 4–9 Hz theta oscillatory power with S and a
decrease with H in the motor cortex (BA 4/6), although, as we
will elaborate on, this could be expected based on the
perceptual decision making literature. We will now discuss
the caveats of the study, followed by the implications of each
of our main findings in turn.

3.1. The relation between probe–item similarity and the
homogeneity correction

First, one might worry that S and H are not completely
independent, which might lead to collinearity issues in the
regression analysis. Although their correlation is fairly weak
(r= -0.12 on average across participants). This correlation is
stronger for targets (r= -0.40) than for lures (r=0.01). One can
easily intuit that by realizing that when probe–item similarity
is high, necessarilymany of the list items reside close together
in similarity space. In addition to theweak correlation of S and
H themselves, their neural correlates also do not show
evidence for a strong correlation, given that the effects in
Table 2 sometimes go in the same direction for S and H, and
sometimes in opposite directions. Nevertheless, it is helpful to
keep in mind that there may be some instability in the
obtained regression coefficients, due to the small correlation
between S and H. Although there is a potential instability in
the individual-subject regression coefficients, the effect on the
overall results is small because we use an across-subjects
analysis where individual-subject noise will cancel out.

3.2. Similarity between neural correlates for targets
and lures

On the basis of NEMo and other summed-similarity models,
we expected to find similar neural correlates of S for targets
and lures. A potential explanation for the differences between
target and lure effects reported in Table 2 is that the neural
populations that correlate with components of summed
similarity do not show enough variance in their similarity-
related responses for both targets and lures to be detected,
since summed similarity is known to vary less for the target
population than for the lure population (Sekuler and Kahana,
2008). Another possibility is that S has different effects on
targets and lures, contrary to the assumptions of NEMo and
other summed similarity models.

3.3. Alpha oscillations

In the literature on oscillations in the hippocampus and
entorhinal cortex, the most prominent frequency is theta (4–
9 Hz; Buzsaki, 2002). In our study, we reported changes in the
slightly higher-frequency alpha oscillations with summed
similarity. Although previous literature focuses mostly on
theta activity, recently oscillations in the alpha frequency
have also been related to spatial learning (DeCoteau et al.,
2007) and environment familiarity (Nerad and Bilkey, 2005) in
rats. In addition, it is important to note that in the animal
spatial navigation literature, inmany cases theta band activity
is defined up to about 13 Hz, which is what we refer to as alpha
ctroencephalography reveals two distinct similarity effects
.2009.07.016
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activity in the current study. In human spatial learning too,
prominent alpha activity is found in the MTL (Ekstrom et al.,
2005). We propose that learning in humans too might not be
restricted to the theta band, although this frequency band has
been emphasized in the previous literature (e.g., Kahana et al.,
2001; Sederberg et al., 2003).

3.4. Role of frontopolar cortex in visual recognition
memory

Earlier, we suggested that failure to find a correlate of NEMo in
the frontopolar cortex would cast doubts on the neural
correlates of the model, because this brain area has been
implicated in integrating information in memory tasks. Inte-
grating information is a crucial component in computing the
sum of the similarities between two items. In our analysis we
found that delta and theta oscillations in the frontopolar cortex
(BA 10) increased with both S and H. This finding comports well
with neuroimaging studies that have shown the frontopolar
cortex to be important for subgoal processing during working
memory tasks (Braver and Bonglolatti, 2002), and to working
memory updating (Van der Linden et al., 1999). The sub-goal in
this context of the decision-making process is the summing of
the similarities of items. A recent study found activation of the
left frontopolar cortexwhendetermining thesimilarity between
word pairs (Green et al., 2006). The right-hemisphere lateraliza-
tion in our study, using nonverbalizable faces, is in agreement
with findings that show right-hemisphere working memory
processing for nonverbal stimuli and left-hemisphere proces-
sing for verbal stimuli (e.g., Kelley et al., 1998).

We propose that in the frontopolar cortex, a sum is
computed of the similarities between the probe and list
items, and among the list items themselves. In order to add
these two factors into the decisionmaking process, the sign of
the interitem similarity term will need to be inverted, because
this factor pushes the recognition decision in the opposite
direction of probe–item similarity. We propose that this
happens in a different brain area. For this proposal to hold, S
and H should correlate with different subpopulations of cells
within the frontopolar cortex.

Another region that shows this low-frequency effect is BA
46 in the DLPFC. Previous studies have found that BA 46 is very
important in perceptual decision-making (Heekeren et al.,
2008), where it has been proposed to aggregate the accumu-
lated sensory information to come to a perceptual decision. In
addition, it shows differential activity for targets and lures
(e.g., Cabeza et al., 2001). We propose that in this case BA 46
works together with the frontopolar cortex to sum the
similarities of study items to each other and to the probe. It
would be interesting to apply accumulator models of recogni-
tionmemory (e.g., Lamberts et al., 2003; Nosofsky and Palmeri,
1997) to these data, and to examine their neural correlates to
strengthen evidence for this proposal.

3.5. Dissociation in temporal regions between probe–item
and item–item similarity

S was associated with gamma oscillations in the left medial
temporal gyrus (MTG) and right superior temporal gyrus (STG),
whereas H was associated with an increase in alpha oscilla-
Please cite this article as: van Vugt, M.K., et al., Intracranial ele
during item recognition, Brain Res. (2009), doi:10.1016/j.brainres
tions in the right entorhinal cortex and left hippocampus. This
might be analogous to a finding by Konishi et al. (2006), who
found that encoding of isolated items in a word list was
associated with more lateral temporal activation, whereas
encoding of words focusing on the relations between items led
to more hippocampal involvement.

In our study, the dissociation between the two similarity
effects in brain regionsand frequency could reflect the fact that
in computing S one needs to combine currently available
information (the probe) with retrieved information from
episodic memory (the more distant list items). Therefore, in
the case of H, the focus is on relations between items in the
study list, whereas for S, there is a larger focus on the probe
item. Binding probe and item information requires rehearsal
mechanisms and episodic memory, both of which have been
associated with the right STG (Klingberg et al., 1996; Osaka
et al., 2003) and the leftMTG (Elliott andDolan, 1998).Moreover,
the right STG has also been associated with distinguishing
probes from similar lures (Kensinger and Schacter, 2007). H, in
contrast, almost only uses retrieved list item information, and
hence it will recruit more strongly structures that are involved
in episodic memory (Buckmaster et al., 2004).

Another possibility is thatH is mainly computed during the
list presentation, instead of during probe presentation. In
terms used to describe algorithms in computer science, these
could be called the eager and lazy strategies (e.g., Aha, 1997). It
will be important to examine at what time H is computed,
because in the previous literature the eager approach has been
implicitly assumed but never tested. In fact, it could well be
that the neural correlates of H reported here are only the tip of
the iceberg, and that much stronger effects are present during
list presentation.

3.6. Similarity effects in motor regions

The motor regions were not among our a priori regions of
interest. Nevertheless, we found an increase in 4–9 Hz theta
oscillatory power with S in the motor cortices, and a decrease
with H. A closer examination of the literature reveals that this
is not implausible. BA 4/6 has often been reported to be
activated in visual and spatial working memory (e.g., Garavan
et al., 2000; Postle and Hamidi, 2007; Rypma et al., 1999; Stern
et al., 2000). Moreover, it has recently been suggested that “the
humanmotor system also has an important role in perceptual
decision making” (Heekeren et al., 2008). Our finding of a
positive relation between theta oscillations and S, and a
decrease with H is exactly what one would expect if the motor
cortex implements a lowering of the decision threshold (which
is the homogeneity correction) as part of the decision making
process (Nosofsky and Kantner, 2006; Viswanathan et al.,
submitted for publication). If the mean interitem similarity is
high, then a smaller level of probe–item similarity is required
to evoke a yes response than when interitem similarity is low
(Kahana and Sekuler, 2002; Nosofsky and Kantner, 2006;
Visscher et al., 2007; Viswanathan et al., submitted for
publication). The localization of this effect in theta oscillations
comports well with the finding of Raghavachari et al. (2001)
that theta oscillations gate the Sternberg (1966) task.

In summary, we have shown that neural correlates of
NEMo can be found, and these occur mostly in the expected
ctroencephalography reveals two distinct similarity effects
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brain regions and frequency ranges. This indicates that
oscillatory activity plays a large role in visual item recognition.
The main correlates of probe–item similarity (S) and the
homogeneity correction (H) were found in the frontal lobe and
MTL. Whereas the frontal areas show generally similar
increases in low-frequency activity for S and H, the correlates
for the two similarity signals are distinct in memory-related
areas. In these memory-related regions, S is related to gamma
oscillations in the superior and medial temporal gyrus, and H
is related to increases in alpha oscillations in the entorhinal
cortex and hippocampus. S and H are correlated in opposite
directions with theta oscillations in the (pre-)motor cortex, in
agreement with their relation in NEMo. Together, these
findings provide further support for the idea of adding H to
summed similarity models of recognition memory, as was
proposed by Kahana and Sekuler in their NEMo model.
4. Experimental Procedures

We recorded iEEG in 1,155 electrodes from 15 neurosurgical
patients (ages 15–58; six female, nine male) being treated for
pharmacologically intractable epilepsy. These patients were
implanted with arrays of subdural and/or depth electrodes for
seizure localization and functionalmapping. The clinical team
determined the placement of the electrodes with these goals
in mind. Our research protocol was approved by the appro-
priate institutional review boards, and informed consent was
obtained from the participants and their guardians. The
recordings took place at Brigham and Women's Hospital in
Boston, the Hospital of the University of Pennsylvania in
Philadelphia, and Universitäts Klinikum Freiburg in Germany.

4.1. Behavioral task

Participantsperformedashort-termitemrecognition task (Fig. 1).
Lists consisted of one, two, and three faces for which the
similarity space has beenwell characterized (Pantelis et al., 2008;
van Vugt et al., submitted for publication; Wilson et al., 2002).

The faces were designed to vary along the four principal
components of a 37-dimensional face space (Wilson et al.,
2002). This face space had been created by taking 37 measure-
ments on a set of (normalized) photographs of Caucasian
males, and then reconstructing the faces from the principal
Fig. 1 – Trial structure of the short-term item recognition task. Pa
probe. Their task is to indicate whether the probe matches one o
randomly drawn from a pool of 16 stimuli, as described in the te
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components that could be extracted from the matrix of these
measurements. A stimulus set of 16 faces was created from all
permutations of steps of one standard deviation away from the
mean face (of the 37-dimensional face space) in the directions
of each of the first four principal components (one standard
deviation is approximately the threshold for 75% correct
discrimination between two faces that are flashed for 110 ms;
see Appendix A). To determine the psychological representa-
tion of our stimuli, we performed a separatemultidimensional
scaling (MDS) study, which is described more extensively in
Pantelis et al. (2008). Briefly, 23 participants saw all combina-
tions of three faces twice, and were requested to identify the
“odd-one-out”. From these ratings, a similarity matrix was
constructed by increasing the similarity value for each of the
two nonchosen faces (see Kahana and Bennett, 1994, for
details). This similaritymatrix was transformed into similarity
coordinates for every face using individual differences multi-
dimensional scaling (INDSCAL/ALSCAL; Takane et al., 1977). A
four-dimensional solution was chosen, which was a good fit
according to an inspection of the scree plot, and also
corresponded to the number of dimensions on the basis of
which the faces had been generated. The MDS-derived
coordinates were then used in the model fitting process.

During the recognition memory trials, the stimuli were
constrained such thatnonecouldbe repeatedontwosuccessive
lists, with the exception of the lure probes that could have been
a study item 1, 2, or 3 lists ago (a “recent negatives” manipula-
tion; Monsell, 1978). Each trial started with presentation of a
fixation cross (1000–1075 ms, jittered). Each list item was then
shown for 700–775 ms, with a 275–350 ms interstimulus
interval. The participant was asked to indicate whether the
probe item that appeared after a delay of 3000–3300 ms was or
was not a member of the just-presented list (i.e., target or lure),
and was given immediate feedback on their accuracy. The
participant could then initiate the next trial with a button press.
Temporal jitter was employed to avoid spurious correlations
between ongoing oscillations and the structure of the task. The
experiment was programmed in the freely available Python-
based experiment programming library PyEPL (http://pyepl.
sourceforge.net; described in Geller et al., 2007).

We ensured equal probabilities of target and lure items, of
the three list lengths, of the three levels of proactive
interference (the list lags of the lure probes), and of the three
possible item lags of target probes. We created blocks of trials
rticipants see a sequence of one to three faces followed by a
f the study items. This illustrates a trial with three stimuli
xt.
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Fig. 2 – Significant increases (red) and decreases (blue) of oscillatory activity with probe–item similarity and the homogeneity
correction for targets. Brodmann areas shown in black do not meet our criterion for doing a statistical analysis. In each row, the
views are from left to right: left sagittal, inferior, right sagittal.
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such that each block comprised 15 lists in which there are an
equal number of target and lure trials, and each item served as
a lure only once. We randomized the order of blocks across
participants but kept the list order within blocks fixed, which
ensured that every participant saw lists with the same levels
of proactive interference. Every session was preceded by two
16-trial training blocks, plus 40 additional one-item lists to
familiarize the participant with the face stimuli. Participants
were given feedback on their average accuracy and RT at the
end of each block. Incorrect trials and trials with RTs shorter
than 200 ms or longer than 3500 ms were removed from the
analysis.

4.2. iEEG recordings

The iEEG signal was recorded from either subdural grids or
depth electrodes, using either a NeuroFile or Nicolet digital
Please cite this article as: van Vugt, M.K., et al., Intracranial ele
during item recognition, Brain Res. (2009), doi:10.1016/j.brainres
recording system (depending on the site). Depending on the
amplifier, the signals were sampled at 250, 256, 400, 512, or
1024 Hz, and band-pass filtered between 0.3 and 70 Hz or 0.1
and 100 Hz. Data were subsequently notch-filtered with a
Butterworth filter with zero phase distortion between 48 and
52 Hz or 58 and 62 Hz to eliminate the relevant line noise.
Intervals of interest in the EEG signal were scanned for
artifacts by means of a kurtosis threshold; events were
discarded if their kurtosis exceeded a threshold of 5 (Delorme
and Makeig, 2004).

To synchronize the electrophysiological recordings with
behavioral events, the experimental computer sent pulses
through the parallel or USB port via an optical isolator into an
unused recording channel or digital input on the amplifier.
The time stamps associated with these pulses aligned the
experimental computer's clock with the iEEG clock to a
precision well under the sampling interval of the iEEG
ctroencephalography reveals two distinct similarity effects
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Fig. 3 – Significant increases (red) and decreases (blue) of oscillatory activity with probe–item similarity and the homogeneity
correction for lures. Brodmann areas shown in black do not meet our criterion for doing a statistical analysis. In each row, the
views are from left to right: left sagittal, inferior, right sagittal. There is additionally a decrease of 9–14 alpha oscillationswith the
homogeneity correction in the hippocampus.
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recording (<4 ms). For all participants, the locations of the
electrodes were determined by means of coregistered post-
operative CTs and preoperative MRIs, or from postoperative
MRIs, by an indirect stereotactic technique, and converted into
Talairach coordinates.

4.3. Data analysis

After resampling the data to 256 Hz, we used the Morlet
wavelet transform with a wave number of 6 to compute
spectral power as a function of time for the EEG signals of
interest (Tallon-Baudry et al., 1997; van Vugt et al., 2007). For
each trial, the time window of interest extended from 1000ms
before probe onset, until 2000 ms after the probe. The first and
last second of this interval only served as a buffer to avoid
edge artifacts and were subsequently discarded. For every
Please cite this article as: van Vugt, M.K., et al., Intracranial ele
during item recognition, Brain Res. (2009), doi:10.1016/j.brainres
frequency, we z-transformed the data to the mean and
standard deviation of the power during the 1000-ms fixation
interval. This normalizes any drift that may be in the data and
ameliorates the low-frequency bias (Freeman, 2006). We
assumed that the effects of interest took place at a 100-ms
timescale, and therefore calculated the average oscillatory
power within each 100-ms time interval.

For the analysis of the retrieval interval we utilized a
multiple regression approach to predict the influence of
multiple interference variables simultaneously (Jacobs et al.,
2006; van Vugt et al., submitted for publication). This model
was applied separately to every electrode, time interval, and
frequency, after which the maximum regression coefficient
was taken within each frequency band. We then asked
whether the regression coefficients of the electrodes within
any particular Brodmann area (defined by the Talairach
ctroencephalography reveals two distinct similarity effects
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Daemon; Lancaster et al., 2000) significantly differed from
zero. This hypothesis was tested with a Wilcoxon signed rank
test. Final significance was determined using a p-value
threshold set by a False Discovery Rate (FDR) procedure
(Benjamini and Hochberg, 1995). A FDR of 0.01, which is the
threshold we used, means that on average 1% of the
significant electrodes across all frequency bands and time
intervals could be false positives. Note that this differs from
conventional p-value testing, where a p-value of 0.05 indicates
that on average 5% of cases that in fact do not reject the null
hypothesis will be called significant. In our study, a FDR of 0.01
corresponded to a p-value threshold of 1.4⁎10-4. Only Brod-
mann areas with a minimum of 10 electrodes and 4
contributing participants were included in the analyses.

To examine whether the regression coefficients differed
between regions and similarity type (probe–item similarity,
item–item similarity/homogeneity correction), we applied a
multiway ANOVA on the regression coefficients with the
factors frequency band, time interval (early (0–500 ms) vs. late
(500–1000 ms)), Brodmann area, and similarity effect (probe–
item or item–item). The number of time bins was reduced to 2,
because an inspection of the time course of the results
revealed that the effect is on the order of 500 ms. This
reduction in time bins us to simplify the analysis. For the
region of interest analysis, we then separately plotted the time
courses for each of the regions of interest (i.e., frontal and
memory regions). To visualize the whole-brain analyses, we
overlaid the Brodmann areas defined by the Talairach
Daemon on the standard MNI brain by using information in
the WFU PickAtlas toolbox (Maldjian et al., 2003).
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Appendix A. Whole-brain analyses

In Figs. 2 and 3, we report the oscillatory correlates of probe–
item similarity and the homogeneity correction for targets and
lures, respectively. Black regions indicate those Brodmann
areas that we excluded from our analyses because they
contain data from fewer than 4 participants and 10 electrodes.
Blue and red regions show significant decreases and increases
of oscillatory power with the regressor, respectively.
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