https://memory.psych.upenn.edu/mediawiki/api.php?action=feedcontributions&user=Memory&feedformat=atom Computational Memory Lab - User contributions [en] 2024-03-29T01:51:14Z User contributions MediaWiki 1.26.4 https://memory.psych.upenn.edu/mediawiki/index.php?title=People&diff=6648 People 2019-03-29T20:32:27Z <p>Memory: </p> <hr /> <div><br /> &lt;big&gt;[https://memory.psych.upenn.edu/InternalWiki/Contact_List Full Contact List] (CML Internal Wiki)&lt;/big&gt;<br /> <br /> &lt;big&gt;[[More Lab Photos]]&lt;/big&gt;<br /> <br /> __FORCETOC__<br /> __TOC__<br /> <br /> == Lab Director ==<br /> &lt;gallery widths=360px heights=480px&gt;<br /> File:Mike.jpg|&lt;big&gt;[[Michael J. Kahana|Michael J. Kahana, Ph.D.]]&lt;/big&gt;&lt;br /&gt;kahana@psych.upenn.edu&lt;br /&gt;CML Principal Investigator<br /> <br /> &lt;/gallery&gt;<br /> <br /> == Postdoctoral Fellows, Medical Residents, &amp; Graduate Students ==<br /> &lt;gallery widths=225px heights=300px&gt; <br /> File:Nora1.jpg|&lt;big&gt;Nora Herweg&lt;/big&gt;&lt;br /&gt;nherweg@sas.upenn.edu&lt;br /&gt; Postdoctoral Fellow <br /> File:Solomon1.jpg|&lt;big&gt;Ethan Solomon &lt;/big&gt;&lt;br /&gt; esolo@pennmedicine.upenn.edu &lt;br /&gt; M.D./Ph.D. Student<br /> File:Rivka.jpg|&lt;big&gt;Rivka Cohen &lt;/big&gt;&lt;br /&gt; rivkac@sas.upenn.edu &lt;br /&gt; Ph.D. Student<br /> &lt;!--File:Logan1.jpg|&lt;big&gt;Logan Fickling&lt;/big&gt;&lt;br /&gt;loganf@pennmedicine.upenn.edu&lt;br /&gt; Ph.D. Student<br /> File:Daniel.jpg|&lt;big&gt;Daniel Schonhaut&lt;/big&gt;&lt;br /&gt;Daniel.Schonhaut@pennmedicine.upenn.edu&lt;br /&gt; Ph.D. Student<br /> File:Aka.jpg|&lt;big&gt;Ada Aka&lt;/big&gt;&lt;br /&gt; adaaka@wharton.upenn.edu &lt;br /&gt; Ph.D. Student<br /> &lt;/gallery&gt;<br /> <br /> == Research Staff ==<br /> &lt;gallery widths=225px heights=300px&gt;<br /> File:DebGaspari.jpg|&lt;big&gt;Deb Gaspari&lt;/big&gt;&lt;br /&gt;gaspari@sas.upenn.edu&lt;br /&gt;Grants Manager<br /> File: Wanda1.jpg‎|&lt;big&gt;Paul A. Wanda, Ph.D. &lt;/big&gt;&lt;br /&gt;pwanda@sas.upenn.edu&lt;br /&gt;Project Manager, [[RAM]]<br /> File:NKratz1.jpg|&lt;big&gt;Nicole Kratz&lt;/big&gt;&lt;br /&gt; nkratz@sas.upenn.edu &lt;br /&gt; Sr. Research Coordinator<br /> File:Tung.jpg|&lt;big&gt;Tung Phan, Ph.D. &lt;/big&gt;&lt;br /&gt; tungphan@sas.upenn.edu &lt;br /&gt;Sr. Data Scientist<br /> File:Effie.jpg|&lt;big&gt;Effie Li&lt;/big&gt;&lt;br /&gt; liyuxuan@sas.upenn.edu &lt;br /&gt; Research Specialist<br /> File:Jesse1.jpg|&lt;big&gt;Jesse Pazdera&lt;/big&gt;&lt;br /&gt;jpazdera@sas.upenn.edu&lt;br /&gt; Scientific Application Developer<br /> File: Healy.jpg|&lt;big&gt; [http://psych.colorado.edu/~ahealy/ Alice Healy, Ph.D.] &lt;/big&gt;&lt;br /&gt; alice.healy@colorado.edu &lt;br /&gt; Visiting Scholar<br /> &lt;/gallery&gt;<br /> <br /> &lt;!-- <br /> Add this back in if we hire more developers:<br /> == Software Developers ==<br /> &lt;gallery widths=225px heights=300px&gt;<br /> <br /> &lt;/gallery&gt;<br /> --&gt;<br /> <br /> == Undergraduate Students ==<br /> &lt;gallery widths=150px heights=200px&gt;<br /> &lt;!--File:Jimmy.jpg|&lt;big&gt;James Germi&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Alyssa.jpg|&lt;big&gt;Alyssa Johncola&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Johanna.jpg|&lt;big&gt;Johanna Phillips&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Stamati.jpg|&lt;big&gt;Stamati Liapis&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Tanvi.jpg|&lt;big&gt;Tanvi Patel&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Omar.jpg|&lt;big&gt;Omar Lopez&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:QK.jpg|&lt;big&gt;Q Kalantary&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:SunnyLu.jpg|&lt;big&gt;Sunny Lu&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:TGianangelo.jpg|&lt;big&gt;Taylor Gianangelo&lt;/big&gt;&lt;br /&gt;<br /> File:EashA.png|&lt;big&gt; Eash Aggarwal &lt;/big&gt;&lt;br /&gt; <br /> &lt;!--File:Belo.jpeg|&lt;big&gt;Saidah Belo-Osagie&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Chien.jpg|&lt;big&gt;Terry Chien&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:DeCorso.png|&lt;big&gt;Kevin DeCorso&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Person-placeholder.png|&lt;big&gt;David Diwik&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Goldman.JPG|&lt;big&gt;Shai Goldman&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:ShivaliGovani.jpg|&lt;big&gt;Shivali Govani&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Megha.jpg|&lt;big&gt;Megha Keshav&lt;/big&gt;&lt;br /&gt;<br /> File:Nikhita_Kunwar.jpeg|&lt;big&gt;Nikhita Kunwar&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Person-placeholder.png|&lt;big&gt;Nicole Laczewski&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Mack.png|&lt;big&gt;Lance Mack&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Lim.JPG|&lt;big&gt;Jang Won Lim&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Mansour.jpg|&lt;big&gt;Mia Mansour&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Person-placeholder.png|&lt;big&gt;Anh Tran&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Jasmine2.jpg|&lt;big&gt;Jasmine Wang&lt;/big&gt;&lt;br /&gt;--&gt;<br /> &lt;!--File:Collin1.jpg|&lt;big&gt;Collin Loughead&lt;/big&gt;&lt;br /&gt;--&gt;<br /> File:Sileo.jpg|&lt;big&gt;Joseph Sileo&lt;/big&gt;&lt;br /&gt;&lt;br/&gt;<br /> File:Matt_Levy.jpg|&lt;big&gt;Mathew Levy&lt;/big&gt;&lt;br/&gt;<br /> &lt;!--File:Kylene Photo 2.jpg|&lt;big&gt;Kylene Cochrane&lt;/big&gt;&lt;br/&gt;--&gt;<br /> File:Dhayes.JPG|&lt;big&gt;Daniel Hayes&lt;br /&gt;<br /> File:rudoler.jpg|&lt;big&gt;Joseph Rudoler&lt;br /&gt;<br /> File:dong.jpg|&lt;big&gt;Jessie Dong&lt;br /&gt;<br /> <br /> &lt;/gallery&gt;<br /> <br /> == Lab Alumni ==<br /> &lt;gallery widths=100px perrow=7&gt;<br /> File:Kelly.jpg| Kelly Addis, Ph.D.&lt;br /&gt;Safety and Health Consultant,&lt;br /&gt;Boise State University<br /> File:Kylie.jpg| Kylie Hower Alm, Ph.D.&lt;br/&gt;Postdoctoral Fellow, &lt;br/&gt; Johns Hopkins School of Medicine, &lt;br/&gt; Department of Psychiatry and Behavioral Sciences<br /> File:Franco.png|Franco Bautista &lt;br /&gt; <br /> File:Erin.jpg|Erin Beck&lt;br /&gt;Director of Site Recruitment and Management, Recruitment Partners LLC <br /> File: Broitman.jpg| Adam Broitman &lt;br /&gt;Ph.D. Student&lt;br /&gt;Cornell University<br /> File:Person-placeholder.png| Benjamin Burack &lt;br /&gt; <br /> File:Burke.jpg|[http://sites.google.com/site/johnfredburkememoryresearch/ John Burke, Ph.D.]&lt;br /&gt;Resident&lt;br /&gt;University of California, San Francisco<br /> File:Stas1.jpg|Stanislav Busygin, Ph.D.&lt;br/&gt;University of Pennsylvania,&lt;br/&gt;Department of Psychology<br /> File:JeremyC.jpg| Jeremy Caplan, Ph.D. &lt;br /&gt; Associate Professor of Science Psychology, &lt;br/&gt;University of Alberta <br /> File:Chen.jpg| Steven Chen &lt;br /&gt; Lead Developer, &lt;br /&gt; Symcat<br /> File:Cohen.jpg| Etan Cohen &lt;br /&gt; Writer and producer&lt;br/&gt;Known for Madagascar: Escape 2 Africa, &lt;br/&gt; Men in Black 3<br /> File:Liz.jpg|Elizabeth Crutchley&lt;br /&gt;Lab Manager, &lt;br /&gt; Infant Language Center, University of Pennsylvania<br /> File:Patrick.jpg|Patrick Crutchley&lt;br /&gt;Data Scientist, &lt;br /&gt; [http://qntfy.com Qntfy]<br /> File:Danoff.jpg| Michelle Danoff&lt;br /&gt; associate product manager, &lt;br /&gt; Google <br /> File:Leon1.jpg| Leon Davis &lt;br /&gt;<br /> File:Orin.jpg| Orin Davis, Ph.D. &lt;br /&gt; Principal Investigator, [http://www.qllab.org/ Quality of Life Laboratory]<br /> File:DeCorso.png|Kevin DeCorso &lt;br /&gt;<br /> File:Mike1.jpg|Michael DePalatis &lt;br /&gt; Research Scientist, Inscripta <br /> File:EmilyD.jpg| Emily Dolan, Ph.D. &lt;br /&gt;Director of Applied Research, ASPCA &lt;br/&gt;University of Washington<br /> File:Zach.jpg| Zachary Duey &lt;br /&gt; Software Engineer &lt;br /&gt; Blackfynn<br /> File:Arne.jpg| Arne Ekstrom, Ph.D. &lt;br /&gt; principle investigator, Human Spatial Cognition Laboratory, University of Arizona <br /> File:Ellner.jpg| Samantha Ellner &lt;br /&gt; senior manager strategy and business operations, Harry's, inc<br /> File:Gennady.png| Gennady Erlikhman &lt;br /&gt; Postdoctoral Researcher, &lt;br /&gt; Caplovitz Lab, &lt;br/&gt;University California, LA<br /> File:JonathanEW.jpg|Jonathan Eskreis-Winkler&lt;br /&gt; Ph.D. Student in Statistics, University of Chicago<br /> File:Youssef.jpg | [http://ezzyat.wordpress.com Youssef Ezzyat, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt;Swarthmore College<br /> File:LynneG.png| Lynne Gauthier &lt;br /&gt; Associate Professor, UMASS Lowell <br /> File:Travis.png| Travis Gebhardt &lt;br /&gt; staff engineer, Blink Health <br /> File:Aaron.jpg| Aaron Geller, M.D. &lt;br /&gt; MD Candidate, &lt;br /&gt; Northern regional epilepsy group <br /> File:Jimmy.jpg|James Germi&lt;br /&gt; Researcher, &lt;br /&gt; University of Texas, Southwestern<br /> File:TGianangelo.jpg|Taylor Gianangelo&lt;br /&gt; MD Candidate, University of Florida College of Medicine <br /> File:TomG.jpg|Tom Gradel&lt;br /&gt; Chief Technology Operator,&lt;br/&gt;Guiding Technologies Corp<br /> File:Jeff.jpg|Jeffrey Greenberg&lt;br /&gt;Ph.D. Student, University of Ohio<br /> File:Goldman.JPG|Shai Goldman&lt;br /&gt;<br /> File:ShivaliGovani.jpg|Shivali Govani&lt;br /&gt; Dental Student, University of Pennsylvania<br /> File:Person-placeholder.png| Caroline Haimm &lt;br /&gt; Research Coordinator, Duckworth Lab, &lt;br/&gt;University of Pennsylvania<br /> File:Haque.jpg|Rafi Haque&lt;br /&gt;M.D./Ph.D. Student, Emory University<br /> File:Karl.jpg|[http://karlhealey.github.com/Site/Karl_Healey.html Karl Healey, Ph.D.]&lt;br /&gt;Assistant Professor,&lt;br /&gt; Michigan State University<br /> File:Zeinab.png| Zeinab Helili &lt;br /&gt; Research Specialist, &lt;br /&gt; Hospital of the University of Pennsylvania<br /> File:chittela.jpg| Hemanth Chittela &lt;br /&gt; software engineer, bridgewater associates <br /> File:Masaki.jpg| Masaki Horii &lt;br /&gt; Systems Engineer &lt;br /&gt; Photo-Sonics, Inc.<br /> File:Marc.jpg| Marc Howard, Ph.D. &lt;br /&gt; Associate Professor, &lt;br /&gt; Boston University <br /> File:Katherine.jpg| Katherine Hurley &lt;br /&gt; Ph.D. Student, &lt;br /&gt; George Washington University<br /> File:Grace.jpg| Grace Hwang, Ph.D. &lt;br /&gt; Senior research technician, &lt;br /&gt; CHOP<br /> File:JoshJ.jpg| [http://memory.psych.upenn.edu/~josh Joshua Jacobs, Ph.D.] &lt;br /&gt; PI &lt;br /&gt; electrophysiology, memory, and navigation laboratory <br /> File:Ilana.jpg| Ilana Jerud, M.D. &lt;br /&gt; Psychiatrist, &lt;br /&gt; New York-Presbyterian/Weill Cornell<br /> File:Alyssa.jpg|Alyssa Johncola&lt;br /&gt;Researcher,&lt;br/&gt;University of Pennsylvania <br /> File:Person-placeholder.png| Pauline T. Johnsen, Ph.D. &lt;br /&gt; <br /> File: ‎Johri.jpg|Ansh Johri &lt;br /&gt; Medical Student, Penn State<br /> File:Kadel.jpg|Ally Kadel &lt;br /&gt; software engineering technical coach, Flatiron School <br /> File:Person-placeholder.png| Ester Kahana &lt;br /&gt;<br /> File:Person-placeholder.png| Brian Kamins<br /> File:Person-placeholder.png| Jonathan Kay &lt;br /&gt;<br /> File:Megha.jpg| Megha Keshav&lt;br /&gt;technical problem solver&lt;br/&gt;Epic <br /> File:RogerKhazan.png| Roger Khazan, Ph.D. &lt;br /&gt;Cybersecurity Leader, &lt;br /&gt; MIT Lincoln Laboratory <br /> File:DanK.jpg| Dan Kimball, J.D., Ph.D. &lt;br /&gt; Associate Professor, &lt;br /&gt; University of Oklahoma <br /> File:MatthewK.png| Matthew P. Kirschen, M.D., Ph.D. &lt;br /&gt; Pediatric Critical Care, Attending Physician, &lt;br /&gt; Children's Hospital of Philadelphia <br /> File:KrystalK.png| Krystal Klein, Ph.D. &lt;br /&gt; Cognitive Psychologist, Research Analyst, &lt;br /&gt; Oregon Health &amp; Science University <br /> File:Person-placeholder.png| Dov Kogen &lt;br /&gt; Associate, &lt;br /&gt; Weil, Gotshal, and Manges<br /> File:Igor.jpg| Igor Korolev, D.O., Ph.D.&lt;br /&gt; Physician, Jackson Memorial Hospital <br /> File:Kragel.jpg|James Kragel, Ph.D.&lt;br /&gt; Postdoctoral Fellow, Northwestern University<br /> File:Josh.jpg|Josh Kriegel&lt;br /&gt;Postbac, &lt;br /&gt; Columbia University<br /> File:Penina.jpg|Penina Krieger&lt;br /&gt; Gates Cambridge Scholar, &lt;br /&gt; medical student &lt;br/&gt; NYU School of Medicine <br /> File:Joel.jpg|Joel Kuhn&lt;br /&gt;Ph.D. Student, &lt;br /&gt; UC San Diego<br /> File:Person-placeholder.png|Nicole Laczewski&lt;br /&gt;strategist &lt;br /&gt;Bloomberg LP <br /> File: Sandy3.jpg|Sandra LaMonaca&lt;br /&gt;Executive Assistant to the Department Chair of Advanced Medicine, &lt;br/&gt;University of Pennsylvania<br /> File:Person-placeholder.png| Richard Lawrence &lt;br /&gt; Ph.D. Student, &lt;br /&gt; U.C. Berkley <br /> File:Person-placeholder.png| Eben Lazarus &lt;br /&gt; Ph.D. Student, &lt;br /&gt; Harvard University<br /> File:Kenton.jpg| Kenton Lee &lt;br /&gt; Ph.D. Student, &lt;br /&gt; University of Washington <br /> File:Brad.jpg| Brad Lega, M.D. &lt;br /&gt; Assistant Professor, &lt;br /&gt; UT Southwestern Medical Center<br /> File:Deb.jpg|Deborah Levy&lt;br /&gt;Ph.D. Student, &lt;br /&gt;Vanderbilt University<br /> File:TimLew.png| Tim Lew &lt;br /&gt; Data Scientist, &lt;br /&gt; Quora<br /> File:Lim.JPG| Jang Won Lim &lt;br /&gt;<br /> File:Nicole.jpg|[http://sites.google.com/site/nmarielong Nicole Long, Ph.D.]&lt;br /&gt;Postdoctoral Fellow,&lt;br /&gt;University of Oregon<br /> File:Lubken.jpg|Jason Lubken&lt;br /&gt; Sr. Data Science Software Engineer, University of Pennsylvania Health System<br /> File:Ningcheng.jpg| Ningcheng (Peter) Li &lt;br /&gt; M.D. Student, &lt;br /&gt; Yale University<br /> File:Stamati.jpg|Stamati Liapis&lt;br /&gt;faculty in boston university center for memory &amp; brain cognitive neuroimaging laboratory &lt;br /&gt; <br /> File:Lynn.jpg|[http://sites.google.com/site/lynnlohnas/ Lynn Lohnas, Ph.D.]&lt;br /&gt;Postdoctoral Fellow, NYU &lt;br /&gt; Davachi Memory Lab<br /> File:Omar.jpg|Omar Lopez&lt;br /&gt;<br /> File:Anastasia.jpg|[[Anastasia_Lyalenko_Memorial_Fund|Anastasia Lyalenko]] &lt;br /&gt; [[Anastasia_Lyalenko_Memorial_Fund| Memorial Page]]<br /> File:Mack.png|Lance Mack &lt;br /&gt; data scientist &lt;br /&gt; Uber<br /> File:Person-placeholder.png| Josh Magarick &lt;br /&gt; Member of the Voleon Group Research Staff<br /> File:JeremyM.jpg| [http://dartmouth.edu/faculty-directory/jeremy-rothman-manning Jeremy Manning, Ph.D.] &lt;br /&gt; Assistant Professor, Dartmouth College <br /> &lt;!--File:Mansour.jpg|Mia Mansour&lt;br /&gt;<br /> File:Yuvi.jpg| Yuvi Masory &lt;br /&gt; Independent consultant<br /> File:StevenMeisler.jpg| Steven Meisler &lt;br /&gt; Clinical Research Coordinator, &lt;br /&gt; Massachusetts General Hospital<br /> File: Max.jpg| Max Merkow, M.D. &lt;br /&gt;Neurosurgeon, &lt;br /&gt; East Bay Brain &amp; Spine Medical Group<br /> File:Jonathan.jpg| Jonathan Miller. Ph.D. &lt;br /&gt; Drexel University <br /> File:Matt.jpg| Matt Mollison, Ph.D &lt;br /&gt; Chief Data Scientist, &lt;br /&gt; branch international<br /> File:BryanMoore.JPG| Bryan Moore, M.D. &lt;br /&gt; graduate research fellow, University of Southern California <br /> File:Neal.jpg| Neal Morton &lt;br /&gt; Postdoctoral Fellow, &lt;br /&gt; University of Texas at Austin<br /> File:EhrenNewman.png|[http://www.thenewmanlab.com/people.html Ehren Newman, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; Indiana University, Bloomington<br /> File:Novich.jpg| Corey Novich &lt;br /&gt; Sortware Engineer, &lt;br /&gt; Harmonix Music Systems<br /> File:Logan.jpg| Logan O'Sullivan&lt;br /&gt; Career Services Organizer, &lt;br /&gt; University of Pennsylvania Law School <br /> File:Person-placeholder.png| Peter Pantelis, Ph.D. &lt;br /&gt; Director of Analytics, &lt;br /&gt; patch.com<br /> File:Isaac.jpg|Isaac Pedisich&lt;br /&gt; Software Developer, &lt;br /&gt; University of Pennsylvania<br /> File:Johanna.jpg|Johanna Phillips&lt;br /&gt;<br /> File:Sean.jpg| [http://www.polyn.com/ Sean Polyn, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; Vanderbilt University <br /> File:Person-placeholder.png| Eric Pressman &lt;br /&gt; User Experience Manager, &lt;br /&gt; Sr. User Experience Specialist, &lt;br /&gt; MathWorks <br /> File:Ashwin.jpg| Ashwin Ramayya, M.D./ Ph.D.&lt;br /&gt;Neurosurgery Resident, &lt;br /&gt; University of Pennsylvania<br /> File:Randazzo.jpg|Michael Randazzo &lt;br /&gt; Internal Medicine, &lt;br /&gt; University of Pennsylvania<br /> File:Dan.jpg| Daniel S. Rizzuto, Ph.D. &lt;br /&gt; CEO, Nia Therapeutics<br /> File:EmilyR.jpg| Emily Rosenberg &lt;br /&gt; Med Student, &lt;br /&gt; Penn State<br /> File:Rachel.jpg|Rachel Russell&lt;br /&gt; Research Coordinator, &lt;br /&gt; University of Pennsylvania<br /> File:Colin.jpg| Colin Sauder &lt;br /&gt; scientific director &lt;br /&gt; adams clinical<br /> File:Schleifer2.jpg| Ian Schleifer &lt;br /&gt; Avionics Software Development Engineer &lt;br /&gt; Blue Origin<br /> File:Person-placeholder.png| Abraham Schneider, Ph.D. &lt;br /&gt; <br /> File:GregSchwartz.png| Greg Schwartz, Ph.D. &lt;br /&gt; Assistant Professor, &lt;br /&gt; Northwestern University<br /> File:Per.jpg| [http://faculty.psy.ohio-state.edu/sederberg/ Per B. Sederberg, Ph.D.] &lt;br /&gt; Associate Professor, &lt;br /&gt; university of virginia&lt;br /&gt; Primary Investigator, &lt;br /&gt; The Ohio State Computational Memory Lab<br /> File:Seelig.jpg| David Seelig &lt;br /&gt; Harry C. Coles, &lt;br /&gt; Jr. Post-doctoral Fellow at Annenberg Public Policy Center, &lt;br /&gt; University of Pennsylvania <br /> File:Misha.jpg| Misha Serruya, M.D., Ph.D. &lt;br /&gt; Neurologist neuroscientist, &lt;br /&gt; Jefferson Hospital <br /> File:Yevgeniy.jpg| Yevgeniy Sirotin, Ph.D. &lt;br /&gt; Senior Principal Scientist, &lt;br /&gt; Manager at SAIC<br /> File:Julia.jpg| Julia (Barnathan) Skolnik &lt;br /&gt; assistant director of professional development, Franklin Institute <br /> File:Henry.jpg| Henry Solberg &lt;br /&gt; Masters Student &lt;br /&gt; Mathematics &lt;br /&gt; University of Illinois Urbana-Champaign<br /> File:Solway.jpg| Alec Solway, Ph.D. &lt;br /&gt; Postdoctoral Associate,&lt;br /&gt;The Virginia Tech Carilion School of Medicine and Research Institute <br /> File:Jessica.jpg| Jessica Spencer, M.D. &lt;br /&gt; Assistant Professor, &lt;br /&gt; Reproductive Endocrinologist, &lt;br /&gt; Emory School of Medicine <br /> File:Maciek.jpg| Maciek Swat, Ph.D. &lt;br /&gt; Inscripta<br /> File:Vitaly.jpg| Vitaly Terushkin, M.D. &lt;br /&gt; Clinical Instructor in Dermatology, &lt;br /&gt; Joan &amp; Sanford Medical College of Cornell University<br /> File:Michele.jpg| Michele Tully Tine, Ph.D. &lt;br /&gt; Associate Professor, Dartmouth College <br /> File:DanUtin.png| Dan Utin &lt;br /&gt; Research Staff, &lt;br /&gt; MIT Lincoln Laboratory <br /> File:Marieke.jpg| [http://www.ai.rug.nl/~mkvanvugt/ Marieke van Vugt, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; University of Groningen <br /> File:Jasmine2.jpg|Jasmine Wang&lt;br /&gt; VCU Chemical and Life Science Engineering, &lt;br /&gt; Virginia Commonwealth University<br /> File:ChristophW.jpg| [http://cogsci.info/ Christoph Weidemann, Ph.D.] &lt;br /&gt; Associate Professor, &lt;br /&gt; Swansea University <br /> File:Ryan.jpg|Ryan Bailey Williams &lt;br /&gt;<br /> File:Wyble.jpg| [http://wyblelab.com/ Brad Wyble, Ph.D.] &lt;br /&gt; Associate Professor, &lt;br /&gt; Pennsylvania State University<br /> File:Alison.jpg|Alison Xu&lt;br /&gt; Medical Student, Albert Einstein College of Medicine<br /> File:Xu.jpg|Jenny Xu&lt;br /&gt;<br /> File:yaffe.png|Robert Yaffe &lt;br /&gt; Software Engineer, &lt;br /&gt; Google<br /> File:Kareem.jpg| Kareem Zaghloul, M.D., Ph.D &lt;br /&gt; Investigator, &lt;br /&gt; Neurosurgery, &lt;br /&gt; National Institutes of Health<br /> File:Franklin.jpg| Franklin Zaromb, Ph.D.&lt;br /&gt; manager &lt;br /&gt; national authority for measurement and evaluation in education<br /> &lt;/gallery&gt;<br /> <br /> [[Category:People]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=People&diff=6647 People 2019-03-29T20:24:58Z <p>Memory: </p> <hr /> <div><br /> &lt;big&gt;[https://memory.psych.upenn.edu/InternalWiki/Contact_List Full Contact List] (CML Internal Wiki)&lt;/big&gt;<br /> <br /> &lt;big&gt;[[More Lab Photos]]&lt;/big&gt;<br /> <br /> __FORCETOC__<br /> __TOC__<br /> <br /> == Lab Director ==<br /> &lt;gallery widths=360px heights=480px&gt;<br /> File:Mike.jpg|&lt;big&gt;[[Michael J. Kahana|Michael J. Kahana, Ph.D.]]&lt;/big&gt;&lt;br /&gt;kahana@psych.upenn.edu&lt;br /&gt;CML Principal Investigator<br /> <br /> &lt;/gallery&gt;<br /> <br /> == Postdoctoral Fellows, Medical Residents, &amp; Graduate Students ==<br /> &lt;gallery widths=225px heights=300px&gt; <br /> File:Nora1.jpg|&lt;big&gt;Nora Herweg&lt;/big&gt;&lt;br /&gt;nherweg@sas.upenn.edu&lt;br /&gt; Postdoctoral Fellow <br /> File:Solomon1.jpg|&lt;big&gt;Ethan Solomon &lt;/big&gt;&lt;br /&gt; esolo@pennmedicine.upenn.edu &lt;br /&gt; M.D./Ph.D. Student<br /> File:Rivka.jpg|&lt;big&gt;Rivka Cohen &lt;/big&gt;&lt;br /&gt; rivkac@sas.upenn.edu &lt;br /&gt; Ph.D. Student<br /> &lt;!--File:Logan1.jpg|&lt;big&gt;Logan Fickling&lt;/big&gt;&lt;br /&gt;loganf@pennmedicine.upenn.edu&lt;br /&gt; Ph.D. Student<br /> File:Daniel.jpg|&lt;big&gt;Daniel Schonhaut&lt;/big&gt;&lt;br /&gt;Daniel.Schonhaut@pennmedicine.upenn.edu&lt;br /&gt; Ph.D. Student<br /> File:Aka.jpg|&lt;big&gt;Ada Aka&lt;/big&gt;&lt;br /&gt; adaaka@wharton.upenn.edu &lt;br /&gt; Ph.D. Student<br /> &lt;/gallery&gt;<br /> <br /> == Research Staff ==<br /> &lt;gallery widths=225px heights=300px&gt;<br /> File:DebGaspari.jpg|&lt;big&gt;Deb Gaspari&lt;/big&gt;&lt;br /&gt;gaspari@sas.upenn.edu&lt;br /&gt;Grants Manager<br /> File: Wanda1.jpg‎|&lt;big&gt;Paul A. Wanda, Ph.D. &lt;/big&gt;&lt;br /&gt;pwanda@sas.upenn.edu&lt;br /&gt;Project Manager, [[RAM]]<br /> File:NKratz1.jpg|&lt;big&gt;Nicole Kratz&lt;/big&gt;&lt;br /&gt; nkratz@sas.upenn.edu &lt;br /&gt; Sr. Research Coordinator<br /> File:Tung.jpg|&lt;big&gt;Tung Phan, Ph.D. &lt;/big&gt;&lt;br /&gt; tungphan@sas.upenn.edu &lt;br /&gt;Sr. Data Scientist<br /> File:Effie.jpg|&lt;big&gt;Effie Li&lt;/big&gt;&lt;br /&gt; liyuxuan@sas.upenn.edu &lt;br /&gt; Research Specialist<br /> File:Jesse1.jpg|&lt;big&gt;Jesse Pazdera&lt;/big&gt;&lt;br /&gt;jpazdera@sas.upenn.edu&lt;br /&gt; Scientific Application Developer<br /> File: Healy.jpg|&lt;big&gt; [http://psych.colorado.edu/~ahealy/ Alice Healy, Ph.D.] &lt;/big&gt;&lt;br /&gt; alice.healy@colorado.edu &lt;br /&gt; Visiting Scholar<br /> &lt;/gallery&gt;<br /> <br /> &lt;!-- <br /> Add this back in if we hire more developers:<br /> == Software Developers ==<br /> &lt;gallery widths=225px heights=300px&gt;<br /> <br /> &lt;/gallery&gt;<br /> --&gt;<br /> <br /> == Undergraduate Students ==<br /> &lt;gallery widths=150px heights=200px&gt;<br /> &lt;!--File:Jimmy.jpg|&lt;big&gt;James Germi&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Alyssa.jpg|&lt;big&gt;Alyssa Johncola&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Johanna.jpg|&lt;big&gt;Johanna Phillips&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Stamati.jpg|&lt;big&gt;Stamati Liapis&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Tanvi.jpg|&lt;big&gt;Tanvi Patel&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Omar.jpg|&lt;big&gt;Omar Lopez&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:QK.jpg|&lt;big&gt;Q Kalantary&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:SunnyLu.jpg|&lt;big&gt;Sunny Lu&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:TGianangelo.jpg|&lt;big&gt;Taylor Gianangelo&lt;/big&gt;&lt;br /&gt;<br /> File:EashA.png|&lt;big&gt; Eash Aggarwal &lt;/big&gt;&lt;br /&gt; <br /> &lt;!--File:Belo.jpeg|&lt;big&gt;Saidah Belo-Osagie&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Chien.jpg|&lt;big&gt;Terry Chien&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:DeCorso.png|&lt;big&gt;Kevin DeCorso&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Person-placeholder.png|&lt;big&gt;David Diwik&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Goldman.JPG|&lt;big&gt;Shai Goldman&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:ShivaliGovani.jpg|&lt;big&gt;Shivali Govani&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Megha.jpg|&lt;big&gt;Megha Keshav&lt;/big&gt;&lt;br /&gt;<br /> File:Nikhita_Kunwar.jpeg|&lt;big&gt;Nikhita Kunwar&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Person-placeholder.png|&lt;big&gt;Nicole Laczewski&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Mack.png|&lt;big&gt;Lance Mack&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Lim.JPG|&lt;big&gt;Jang Won Lim&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Mansour.jpg|&lt;big&gt;Mia Mansour&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Person-placeholder.png|&lt;big&gt;Anh Tran&lt;/big&gt;&lt;br /&gt;<br /> &lt;!--File:Jasmine2.jpg|&lt;big&gt;Jasmine Wang&lt;/big&gt;&lt;br /&gt;--&gt;<br /> &lt;!--File:Collin1.jpg|&lt;big&gt;Collin Loughead&lt;/big&gt;&lt;br /&gt;--&gt;<br /> File:Sileo.jpg|&lt;big&gt;Joseph Sileo&lt;/big&gt;&lt;br /&gt;&lt;br/&gt;<br /> File:Matt_Levy.jpg|&lt;big&gt;Mathew Levy&lt;/big&gt;&lt;br/&gt;<br /> &lt;!--File:Kylene Photo 2.jpg|&lt;big&gt;Kylene Cochrane&lt;/big&gt;&lt;br/&gt;--&gt;<br /> File:Dhayes.JPG|&lt;big&gt;Daniel Hayes&lt;br /&gt;<br /> File:rudoler.jpg|&lt;big&gt;Joseph Rudoler&lt;br /&gt;<br /> File:dong.jpg|&lt;big&gt;Jessie Dong&lt;br /&gt;<br /> <br /> &lt;/gallery&gt;<br /> <br /> == Lab Alumni ==<br /> &lt;gallery widths=100px perrow=7&gt;<br /> File:Kelly.jpg| Kelly Addis, Ph.D.&lt;br /&gt;Safety and Health Consultant,&lt;br /&gt;Boise State University<br /> File:Kylie.jpg| Kylie Hower Alm, Ph.D.&lt;br/&gt;Postdoctoral Fellow, &lt;br/&gt; Johns Hopkins School of Medicine, &lt;br/&gt; Department of Psychiatry and Behavioral Sciences<br /> File:Franco.png|Franco Bautista &lt;br /&gt; <br /> File:Erin.jpg|Erin Beck&lt;br /&gt;Director of Site Recruitment and Management, Recruitment Partners LLC <br /> File: Broitman.jpg| Adam Broitman &lt;br /&gt;Ph.D. Student&lt;br /&gt;Cornell University<br /> File:Person-placeholder.png| Benjamin Burack &lt;br /&gt; <br /> File:Burke.jpg|[http://sites.google.com/site/johnfredburkememoryresearch/ John Burke, Ph.D.]&lt;br /&gt;Resident&lt;br /&gt;University of California, San Francisco<br /> File:Stas1.jpg|Stanislav Busygin, Ph.D.&lt;br/&gt;University of Pennsylvania,&lt;br/&gt;Department of Psychology<br /> File:JeremyC.jpg| Jeremy Caplan, Ph.D. &lt;br /&gt; Associate Professor of Science Psychology, &lt;br/&gt;University of Alberta <br /> File:Chen.jpg| Steven Chen &lt;br /&gt; Lead Developer, &lt;br /&gt; Symcat<br /> File:Cohen.jpg| Etan Cohen &lt;br /&gt; Writer and producer&lt;br/&gt;Known for Madagascar: Escape 2 Africa, &lt;br/&gt; Men in Black 3<br /> File:Liz.jpg|Elizabeth Crutchley&lt;br /&gt;Lab Manager, &lt;br /&gt; Infant Language Center, University of Pennsylvania<br /> File:Patrick.jpg|Patrick Crutchley&lt;br /&gt;Data Scientist, &lt;br /&gt; [http://qntfy.com Qntfy]<br /> File:Danoff.jpg| Michelle Danoff&lt;br /&gt; associate product manager, &lt;br /&gt; Google <br /> File:Leon1.jpg| Leon Davis &lt;br /&gt;<br /> File:Orin.jpg| Orin Davis, Ph.D. &lt;br /&gt; Principal Investigator, [http://www.qllab.org/ Quality of Life Laboratory]<br /> File:DeCorso.png|Kevin DeCorso &lt;br /&gt;<br /> File:Mike1.jpg|Michael DePalatis &lt;br /&gt; Research Scientist, Inscripta <br /> File:EmilyD.jpg| Emily Dolan, Ph.D. &lt;br /&gt;Director of Applied Research, ASPCA &lt;br/&gt;University of Washington<br /> File:Zach.jpg| Zachary Duey &lt;br /&gt; Software Engineer &lt;br /&gt; Blackfynn<br /> File:Arne.jpg| Arne Ekstrom, Ph.D. &lt;br /&gt; principle investigator, Human Spatial Cognition Laboratory, University of Arizona <br /> File:Ellner.jpg| Samantha Ellner &lt;br /&gt; senior manager strategy and business operations, Harry's, inc<br /> File:Gennady.png| Gennady Erlikhman &lt;br /&gt; Postdoctoral Researcher, &lt;br /&gt; Caplovitz Lab, &lt;br/&gt;University California, LA<br /> File:JonathanEW.jpg|Jonathan Eskreis-Winkler&lt;br /&gt; Ph.D. Student in Statistics, University of Chicago<br /> File:Youssef.jpg | [http://ezzyat.wordpress.com Youssef Ezzyat, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt;Swarthmore College<br /> File:LynneG.png| Lynne Gauthier &lt;br /&gt; Associate Professor, UMASS Lowell <br /> File:Travis.png| Travis Gebhardt &lt;br /&gt; staff engineer, Blink Health <br /> File:Aaron.jpg| Aaron Geller, M.D. &lt;br /&gt; MD Candidate, &lt;br /&gt; Northern regional epilepsy group <br /> File:Jimmy.jpg|James Germi&lt;br /&gt; Researcher, &lt;br /&gt; University of Texas, Southwestern<br /> File:TGianangelo.jpg|Taylor Gianangelo&lt;br /&gt; MD Candidate, University of Florida College of Medicine <br /> File:TomG.jpg|Tom Gradel&lt;br /&gt; Chief Technology Operator,&lt;br/&gt;Guiding Technologies Corp<br /> File:Jeff.jpg|Jeffrey Greenberg&lt;br /&gt;Ph.D. Student, University of Ohio<br /> File:Goldman.JPG|Shai Goldman&lt;br /&gt;<br /> File:ShivaliGovani.jpg|Shivali Govani&lt;br /&gt; Dental Student, University of Pennsylvania<br /> File:Person-placeholder.png| Caroline Haimm &lt;br /&gt; Research Coordinator, Duckworth Lab, &lt;br/&gt;University of Pennsylvania<br /> File:Haque.jpg|Rafi Haque&lt;br /&gt;M.D./Ph.D. Student, Emory University<br /> File:Karl.jpg|[http://karlhealey.github.com/Site/Karl_Healey.html Karl Healey, Ph.D.]&lt;br /&gt;Assistant Professor,&lt;br /&gt; Michigan State University<br /> File:Zeinab.png| Zeinab Helili &lt;br /&gt; Research Specialist, &lt;br /&gt; Hospital of the University of Pennsylvania<br /> File:chittela.jpg| Hemanth Chittela &lt;br /&gt;<br /> File:Masaki.jpg| Masaki Horii &lt;br /&gt; Systems Engineer &lt;br /&gt; Photo-Sonics, Inc.<br /> File:Marc.jpg| Marc Howard, Ph.D. &lt;br /&gt; Associate Professor, &lt;br /&gt; Boston University <br /> File:Katherine.jpg| Katherine Hurley &lt;br /&gt; Ph.D. Student, &lt;br /&gt; George Washington University<br /> File:Grace.jpg| Grace Hwang, Ph.D. &lt;br /&gt; Biophysicist &amp; Neurotechnology engineer, &lt;br /&gt; The Johns Hopkins University Applied Physics Laboratory<br /> File:JoshJ.jpg| [http://memory.psych.upenn.edu/~josh Joshua Jacobs, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; Columbia University <br /> File:Ilana.jpg| Ilana Jerud, M.D. &lt;br /&gt; Psychiatrist, &lt;br /&gt; New York-Presbyterian/Weill Cornell<br /> File:Alyssa.jpg|Alyssa Johncola&lt;br /&gt;Researcher,&lt;br/&gt;University of Pennsylvania <br /> File:Person-placeholder.png| Pauline T. Johnsen, Ph.D. &lt;br /&gt; <br /> File: ‎Johri.jpg|Ansh Johri &lt;br /&gt; Medical Student, Penn State<br /> File:Kadel.jpg|Ally Kadel &lt;br /&gt; <br /> File:Person-placeholder.png| Ester Kahana &lt;br /&gt;<br /> File:Person-placeholder.png| Brian Kamins<br /> File:Person-placeholder.png| Jonathan Kay &lt;br /&gt;<br /> File:Megha.jpg| Megha Keshav&lt;br /&gt;Business Development Associate&lt;br/&gt;Oncora Medical<br /> File:RogerKhazan.png| Roger Khazan, Ph.D. &lt;br /&gt;Cybersecurity Leader, &lt;br /&gt; MIT Lincoln Laboratory <br /> File:DanK.jpg| Dan Kimball, J.D., Ph.D. &lt;br /&gt; Associate Professor, &lt;br /&gt; University of Oklahoma <br /> File:MatthewK.png| Matthew P. Kirschen, M.D., Ph.D. &lt;br /&gt; Pediatric Critical Care, Attending Physician, &lt;br /&gt; Children's Hospital of Philadelphia <br /> File:KrystalK.png| Krystal Klein, Ph.D. &lt;br /&gt; Cognitive Psychologist, Research Analyst, &lt;br /&gt; Oregon Health &amp; Science University <br /> File:Person-placeholder.png| Dov Kogen &lt;br /&gt; Associate, &lt;br /&gt; Weil, Gotshal, and Manges<br /> File:Igor.jpg| Igor Korolev, D.O., Ph.D.&lt;br /&gt; Physician, Jackson Memorial Hospital <br /> File:Kragel.jpg|James Kragel, Ph.D.&lt;br /&gt; Postdoctoral Fellow, Northwestern University<br /> File:Josh.jpg|Josh Kriegel&lt;br /&gt;Postbac, &lt;br /&gt; Columbia University<br /> File:Penina.jpg|Penina Krieger&lt;br /&gt; Gates Cambridge Scholar, &lt;br /&gt; Circle Link Health, &lt;br/&gt; University of Cambridge<br /> File:Joel.jpg|Joel Kuhn&lt;br /&gt;Ph.D. Student, &lt;br /&gt; UC San Diego<br /> File:Person-placeholder.png|Nicole Laczewski&lt;br /&gt;Brand Strategy Consultant, &lt;br /&gt;Lippincott<br /> File: Sandy3.jpg|Sandra LaMonaca&lt;br /&gt;Executive Assistant to the Department Chair of Advanced Medicine, &lt;br/&gt;University of Pennsylvania<br /> File:Person-placeholder.png| Richard Lawrence &lt;br /&gt; Ph.D. Student, &lt;br /&gt; U.C. Berkley <br /> File:Person-placeholder.png| Eben Lazarus &lt;br /&gt; Ph.D. Student, &lt;br /&gt; Harvard University<br /> File:Kenton.jpg| Kenton Lee &lt;br /&gt; Ph.D. Student, &lt;br /&gt; University of Washington <br /> File:Brad.jpg| Brad Lega, M.D. &lt;br /&gt; Assistant Professor, &lt;br /&gt; UT Southwestern Medical Center<br /> File:Deb.jpg|Deborah Levy&lt;br /&gt;Ph.D. Student, &lt;br /&gt;Vanderbilt University<br /> File:TimLew.png| Tim Lew &lt;br /&gt; Data Scientist, &lt;br /&gt; Quora<br /> File:Lim.JPG| Jang Won Lim &lt;br /&gt;<br /> File:Nicole.jpg|[http://sites.google.com/site/nmarielong Nicole Long, Ph.D.]&lt;br /&gt;Postdoctoral Fellow,&lt;br /&gt;University of Oregon<br /> File:Lubken.jpg|Jason Lubken&lt;br /&gt; Sr. Data Science Software Engineer, University of Pennsylvania Health System<br /> File:Ningcheng.jpg| Ningcheng (Peter) Li &lt;br /&gt; M.D. Student, &lt;br /&gt; Yale University<br /> File:Stamati.jpg|Stamati Liapis&lt;br /&gt; Research Specialist/Lab Manager, &lt;br /&gt; Epstein Lab, University of Pennsylvania<br /> File:Lynn.jpg|[http://sites.google.com/site/lynnlohnas/ Lynn Lohnas, Ph.D.]&lt;br /&gt;Postdoctoral Fellow, NYU &lt;br /&gt; Davachi Memory Lab<br /> File:Omar.jpg|Omar Lopez&lt;br /&gt;<br /> File:Anastasia.jpg|[[Anastasia_Lyalenko_Memorial_Fund|Anastasia Lyalenko]] &lt;br /&gt; [[Anastasia_Lyalenko_Memorial_Fund| Memorial Page]]<br /> File:Mack.png|Lance Mack &lt;br /&gt; Data Science Contractor, &lt;br /&gt; MediaMath<br /> File:Person-placeholder.png| Josh Magarick &lt;br /&gt; Member of the Voleon Group Research Staff<br /> File:JeremyM.jpg| [http://dartmouth.edu/faculty-directory/jeremy-rothman-manning Jeremy Manning, Ph.D.] &lt;br /&gt; Assistant Professor, Dartmouth College <br /> &lt;!--File:Mansour.jpg|Mia Mansour&lt;br /&gt;<br /> File:Yuvi.jpg| Yuvi Masory &lt;br /&gt; Independent consultant<br /> File:StevenMeisler.jpg| Steven Meisler &lt;br /&gt; Clinical Research Coordinator, &lt;br /&gt; Massachusetts General Hospital<br /> File: Max.jpg| Max Merkow, M.D. &lt;br /&gt;Neurosurgeon, &lt;br /&gt; East Bay Brain &amp; Spine Medical Group<br /> File:Jonathan.jpg| Jonathan Miller. Ph.D. &lt;br /&gt; Drexel University <br /> File:Matt.jpg| Matt Mollison, Ph.D &lt;br /&gt; Chief Data Scientist, &lt;br /&gt; Cofounder Ansaro Technologies<br /> File:BryanMoore.JPG| Bryan Moore, M.D. &lt;br /&gt; Associate Professor, University of Minnesota<br /> File:Neal.jpg| Neal Morton &lt;br /&gt; Postdoctoral Fellow, &lt;br /&gt; University of Texas at Austin<br /> File:EhrenNewman.png|[http://www.thenewmanlab.com/people.html Ehren Newman, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; Indiana University, Bloomington<br /> File:Novich.jpg| Corey Novich &lt;br /&gt; Sortware Engineer, &lt;br /&gt; Harmonix Music Systems<br /> File:Logan.jpg| Logan O'Sullivan&lt;br /&gt; Career Services Organizer, &lt;br /&gt; University of Pennsylvania Law School <br /> File:Person-placeholder.png| Peter Pantelis, Ph.D. &lt;br /&gt; Director of Analytics, &lt;br /&gt; patch.com<br /> File:Isaac.jpg|Isaac Pedisich&lt;br /&gt; Software Developer, &lt;br /&gt; University of Pennsylvania<br /> File:Johanna.jpg|Johanna Phillips&lt;br /&gt;<br /> File:Sean.jpg| [http://www.polyn.com/ Sean Polyn, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; Vanderbilt University <br /> File:Person-placeholder.png| Eric Pressman &lt;br /&gt; User Experience Manager, &lt;br /&gt; Sr. User Experience Specialist, &lt;br /&gt; MathWorks <br /> File:Ashwin.jpg| Ashwin Ramayya, M.D./ Ph.D.&lt;br /&gt;Neurosurgery Resident, &lt;br /&gt; University of Pennsylvania<br /> File:Randazzo.jpg|Michael Randazzo &lt;br /&gt; Internal Medicine, &lt;br /&gt; University of Pennsylvania<br /> File:Dan.jpg| Daniel S. Rizzuto, Ph.D. &lt;br /&gt; CEO, Nia Therapeutics<br /> File:EmilyR.jpg| Emily Rosenberg &lt;br /&gt; Med Student, &lt;br /&gt; Penn State<br /> File:Rachel.jpg|Rachel Russell&lt;br /&gt; Research Coordinator, &lt;br /&gt; University of Pennsylvania<br /> File:Colin.jpg| Colin Sauder &lt;br /&gt; Researcher, &lt;br /&gt; University of Texas<br /> File:Schleifer2.jpg| Ian Schleifer &lt;br /&gt; Avionics Software Development Engineer &lt;br /&gt; Blue Origin<br /> File:Person-placeholder.png| Abraham Schneider, Ph.D. &lt;br /&gt; <br /> File:GregSchwartz.png| Greg Schwartz, Ph.D. &lt;br /&gt; Assistant Professor, &lt;br /&gt; Northwestern University<br /> File:Per.jpg| [http://faculty.psy.ohio-state.edu/sederberg/ Per B. Sederberg, Ph.D.] &lt;br /&gt; Associate Professor, &lt;br /&gt; The Ohio State University. &lt;br /&gt; Primary Investigator, &lt;br /&gt; The Ohio State Computational Memory Lab<br /> File:Seelig.jpg| David Seelig &lt;br /&gt; Harry C. Coles, &lt;br /&gt; Jr. Post-doctoral Fellow at Annenberg Public Policy Center, &lt;br /&gt; University of Pennsylvania <br /> File:Misha.jpg| Misha Serruya, M.D., Ph.D. &lt;br /&gt; Neurologist neuroscientist, &lt;br /&gt; Jefferson Hospital <br /> File:Yevgeniy.jpg| Yevgeniy Sirotin, Ph.D. &lt;br /&gt; Senior Principal Scientist, &lt;br /&gt; Manager at SAIC<br /> File:Julia.jpg| Julia (Barnathan) Skolnik &lt;br /&gt; Curriculum Specialist, The Franklin Institute <br /> File:Henry.jpg| Henry Solberg &lt;br /&gt; Masters Student &lt;br /&gt; Mathematics &lt;br /&gt; University of Illinois Urbana-Champaign<br /> File:Solway.jpg| Alec Solway, Ph.D. &lt;br /&gt; Postdoctoral Associate,&lt;br /&gt;The Virginia Tech Carilion School of Medicine and Research Institute <br /> File:Jessica.jpg| Jessica Spencer, M.D. &lt;br /&gt; Assistant Professor, &lt;br /&gt; Reproductive Endocrinologist, &lt;br /&gt; Emory School of Medicine <br /> File:Maciek.jpg| Maciek Swat, Ph.D. &lt;br /&gt; Inscripta<br /> File:Vitaly.jpg| Vitaly Terushkin, M.D. &lt;br /&gt; Clinical Instructor in Dermatology, &lt;br /&gt; Joan &amp; Sanford Medical College of Cornell University<br /> File:Michele.jpg| Michele Tully Tine, Ph.D. &lt;br /&gt; Associate Professor, Dartmouth College <br /> File:DanUtin.png| Dan Utin &lt;br /&gt; Research Staff, &lt;br /&gt; MIT Lincoln Laboratory <br /> File:Marieke.jpg| [http://www.ai.rug.nl/~mkvanvugt/ Marieke van Vugt, Ph.D.] &lt;br /&gt; Assistant Professor, &lt;br /&gt; University of Groningen <br /> File:Jasmine2.jpg|Jasmine Wang&lt;br /&gt; VCU Chemical and Life Science Engineering, &lt;br /&gt; Virginia Commonwealth University<br /> File:ChristophW.jpg| [http://cogsci.info/ Christoph Weidemann, Ph.D.] &lt;br /&gt; Associate Professor, &lt;br /&gt; Swansea University <br /> File:Ryan.jpg|Ryan Bailey Williams &lt;br /&gt;<br /> File:Wyble.jpg| [http://wyblelab.com/ Brad Wyble, Ph.D.] &lt;br /&gt; Associate Professor, &lt;br /&gt; Pennsylvania State University<br /> File:Alison.jpg|Alison Xu&lt;br /&gt; Medical Student, Albert Einstein College of Medicine<br /> File:Xu.jpg|Jenny Xu&lt;br /&gt;<br /> File:yaffe.png|Robert Yaffe &lt;br /&gt; Software Engineer, &lt;br /&gt; Google<br /> File:Kareem.jpg| Kareem Zaghloul, M.D., Ph.D &lt;br /&gt; Investigator, &lt;br /&gt; Neurosurgery, &lt;br /&gt; National Institutes of Health<br /> File:Franklin.jpg| Franklin Zaromb, Ph.D.&lt;br /&gt; Research Scientist, &lt;br /&gt; ETS <br /> &lt;/gallery&gt;<br /> <br /> [[Category:People]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=MediaWiki:Sidebar&diff=3894 MediaWiki:Sidebar 2012-10-26T18:13:00Z <p>Memory: </p> <hr /> <div>* Public pages:<br /> ** mainpage|Research<br /> ** publications| Publications<br /> ** People|People<br /> ** Software|Software<br /> ** DataArchive|Data Archive<br /> ** WordPools|Word Pools<br /> ** Category:Public|All public pages <br /> *<br /> ** InternalWiki|Internal Wiki<br /> * SEARCH<br /> * TOOLBOX<br /> * LANGUAGES</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=MediaWiki:Sidebar&diff=3893 MediaWiki:Sidebar 2012-10-26T18:12:46Z <p>Memory: </p> <hr /> <div>* Public pages:<br /> ** mainpage|Research<br /> ** publications| Publications<br /> ** People|People<br /> ** Software|Software<br /> ** DataArchive|Data Archive<br /> ** WordPools|Word Pools<br /> ** Category:Public|All public pages <br /> *<br /> ** Category:InternalWiki|Internal Wiki<br /> * SEARCH<br /> * TOOLBOX<br /> * LANGUAGES</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Main_Page&diff=3892 Main Page 2012-10-26T18:07:28Z <p>Memory: </p> <hr /> <div>__NOTITLE__<br /> __NOTOC__<br /> [[File:CML_Logo.gif|center]]<br /> <br /> {| cellpadding=&quot;20&quot;<br /> |&lt;span style=&quot;font-size: 17pt; line-height: 130%&quot;&gt;The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes.&lt;/span&gt;&lt;br /&gt;&lt;br /&gt;&lt;span style=&quot;font-size: 13pt&quot;&gt;Our research is focused on neurocomputational mechanisms of human episodic and spatial memory. Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. Using conditional probability and latency analyses ([[Publications#Kaha96|Kahana, M. J., 1996]]) one can quantify the way in which people transition from one recalled word to the next (see Fig. 1). &lt;br /&gt;&lt;br /&gt;Furthermore, by studying the electrophysiology of the brain while engaged in memory tasks (as in [[Publications#SedeEtal07a|Sederberg et al., 2007]]), we can find, for example, regions that show increased or decreased activity when a word is successfully encoded (i.e., later recalled) versus when it is not successfully encoded, known as the ''subsequent memory effect'' (see Fig. 2).&lt;/span&gt;<br /> | style=&quot;background-color:#dddddd;&quot;| [[File:fhm_cover.png|175px|link=Foundations of Human Memory]]<br /> &lt;big&gt;[[Foundations of Human Memory]]&lt;/big&gt;&lt;br /&gt;by Michael J. Kahana&lt;br /&gt;&lt;br /&gt;Please [[Foundations of Human Memory|click here]] for more information and errata.<br /> |}<br /> <br /> {| style=&quot;margin: 0 auto;&quot; cellpadding=&quot;20&quot;<br /> |[[File:crp2a_square.jpg|none|thumb|350px|''Fig. 1:'' '''The contiguity effect in free recall.''' This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.]] || [[File:gamma_enc_ret.jpg|350px|none|thumb|''Fig. 2:'' '''Brain oscillations associated with successful encoding are reinstated during correct retrieval.''' The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.]]<br /> |}<br /> <br /> == Computational models of human memory ==<br /> To explain the processes underlying encoding, organization and retrieval of episodic memories, Kahana and colleagues (notably Marc Howard, Sean Polyn, Per Sederberg, and Lynn Lohnas) have developed a class of retrieved-context models. These models assume that the input to the memory system itself produces contextual drift, and that the current state of context is used to retrieve items from memory. The temporal context model (TCM; [[Publications#HowaKaha02|Howard and Kahana, 2002]]) was introduced to explain recency and contiguity effects in free recall. Specifically, recency effects appear because the context at the time of the memory test is most similar to the context associated with recent items. When an item is retrieved at test, it reinstates the context active when that item was studied. Because this context overlaps with the encoding context of the items' neighbors, a contiguity effect results. Consistent with experimental data, TCM and its variants also predict that recency and contiguity effects are approximately time-scale invariant ([[Publications#SedeEtal08|Sederberg, Howard, and Kahana, 2008]]). Most recently, the [[CMR|Context Maintenance and Retrieval model]] (CMR; [[Publications#PolyEtal09|Polyn, Norman, and Kahana, 2009]]) is a generalized version of TCM that accounts for non-temporal influences on recall dynamics.<br /> <br /> {| style=&quot;margin: 0 auto;&quot; cellpadding=&quot;20&quot;<br /> |[[File:cmr.png|center|thumb|700px|''Fig. 3:'' '''The context-maintenance and retrieval model.''' A. Schematic of CMR. When an item is studied its feature representation (fi) is activated on F. The feature representation contains both item and source features (e.g., size / animacy judgment). An associative weight matrix (MFC) allows each item to update a context representation that contains the item and source features of recently studied items. During study, the features of each item are associated with coactive context elements. During recall, the context representation reactivates (through MCF) the features of recently studied items. B. Hypothesized interactions between prefrontal cortex, temporal cortex, and medial temporal lobe during memory encoding and retrieval predicted by CMR. C. IRTs as a function of output position and total number of recalled items (4, 5, 6 or 7). D. Serial position curves for list lengths (LL) of 20, 30 and 40 items.]]<br /> |}<br /> <br /> <br /> == Neural oscillatory correlates of episodic memory ==<br /> In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with electrocorticographic (ECoG) and single neuron recordings from neurosurgical patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation and retrieval. Analyses of such recordings have shown that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall ([[Publications#SedeEtal06|Sederberg et al., 2006]]). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied ([[Publications#SedeEtal07a|Sederberg et al., 2007]]; see Fig. 2 above).<br /> <br /> {| style=&quot;margin: 0 auto;&quot; cellpadding=&quot;20&quot;<br /> |[[File:theta_gamma_2.png|500px|center|thumb|''Fig. 4:'' '''A dynamic view of the subsequent memory effect.''' Significant changes in spectral power during successful memory formation are shown for both high (62-95 Hz; top row) and low frequencies (2-8 Hz; middle row). Regions that exhibited an increase and decrease in power are colored in red and blue, respectively. Spectral power was calculated on a 500 ms time window incremented every 10 ms throughout item presentation (green bar above topographic plots). Dashed lines indicate item presentation. Bottom row, left to right: The number of regions showing (1) an increase in low-frequency power, (2) a decrease in low-frequency power, (3) an increase in high-frequency power, and (4) a decrease in high-frequency power.]]<br /> |}<br /> <br /> The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. In [[Publications#MannEtal11a|Manning et al., 2011]], we sought to determine whether contextual reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. We examined ECoG activity from 69 neurosurgical patients as they studied and recalled lists of words in a delayed free recall paradigm (Fig. 5A), and computed similarity between the ECoG patterns recorded just prior to each recall with those recorded after the patient had studied each word. We found that, upon recalling a studied word, the recorded patterns of brain activity were not only similar to the patterns observed when the word was studied, but were also similar to the patterns observed during study of neighboring list words, with similarity decreasing reliably with positional distance (Fig. 5C), just as predicted by context reinstatement models of free recall. The degree to which individual patients exhibited this neural signature of contextual reinstatement was correlated with the contiguity effect as seen in Fig. 5D. In this way, the study provides neural evidence for contextual reinstatement in humans.<br /> <br /> {| style=&quot;margin: 0 auto;&quot; cellpadding=&quot;20&quot;<br /> |[[File:neuralContext.png|center|thumb|700px|''Fig. 5:'' '''Neural evidence for contextual reinstatement in humans.''' A. After studying a list of 20 words and performing a brief distraction task, a participant recalls as many words as he can remember, in any order. ECoG activity is recorded during each study and recall event. The similarity between the recorded patterns is computed as a function of lag. B. Each dot marks the location of a single electrode [temporal lobe (1,815 electrodes), frontal lobe (1,737 electrodes), parietal lobe (512 electrodes), and occipital lobe (138 electrodes)]. C. Similarity between the activity recorded during recall of aword from serial position i and study of a word from serial position i + lag. (Black dot denotes study and recall of the same word, i.e., lag = 0.) D. Participants exhibiting stronger neural signatures of context reinstatement also exhibited more pronounced contiguity effects (as measured by a percentile-based temporal clustering score). (Figure after Manning et al., 2011.)]]<br /> |}<br /> <br /> == Neural mechanisms underlying human reward learning and decision making ==<br /> Recent studies in our lab have shown, for the first time, that the activity of individual neurons in the human basal ganglia are related to learning and decision making ([[Publications#ZaghEtal09|Zaghloul et al. 2009]], [[Publications#ZaghEtal12|Zaghloul et al., in press]]). Through clinical collaborations, we directly recorded neural activity from single-neurons in the human basal-ganglia as participants performed a probabilistic learning and and selection task. We found that dopaminergic neurons in the substantia nigra were more active when participants received unexpected rewards compared to when they received expected rewards ([[Publications#ZaghEtal09|Zaghloul et al. 2009]]). This is consistent with current theories of human reinforcement learning that implicate dopaminergic neurons in encoding prediction error, a value that increases as rewards become more surprising (Niv et al 2009). Additionally, we found that neurons in the subthalamic nucleus were more active when participants had to choose between similarly attractive options ([[Publications#ZaghEtal12|Zaghloul et al., in press]]). This also is consistent with current theories of human decision making which suggest that the subthalamic nucleus plays a critical role in making difficult &quot;high-conflict&quot; decisions (Frank et al 2006). By studying the neural mechanisms underlying human learning and decision making, we hope lay the neurophysiological groundwork for understanding the hypothesized role of the basal ganglia in addiction and pathological reward-seeking and impulsive behavior (Hyman et al., 2006).<br /> <br /> <br /> {| style=&quot;margin: 0 auto;&quot; cellpadding=&quot;20&quot;<br /> | [[File:ZaghEtal09.png|300px|center|thumb|''Fig. 6:'' '''Normalized SN firing rates for unexpected gains and losses.''' Red line indicates feedback onset. The gray region marks the 225 ms interval between 150 and 375 ms after feedback onset. Traces represent activity from 15 SN cells recorded from ten participants. (Figure from Zaghloul et al. 2009.)]] || [[File:ZaghEtal12.png|400px|center|thumb|''Fig. 7:'' '''Normalized STN firing rates during high (solid) and low (dashed) conflict decision trials.''' Red line indicates presentation of stimulus pairs. Grey shaded region represents the interval between 100 and 400 ms after stimulus onset. Traces represent activity from 27 STN cells recorded from 14 participants. (Figure from Zaghloul et al., 2012.)]]<br /> |}<br /> <br /> == Human spatial memory and cognition ==<br /> Our lab is also interested in the neural mechanisms underlying human spatial cognition. In this work, we use virtual reality computer games (Fig. 7) in which participants learn the locations of landmarks in virtual environments. To download a sample of a YellowCab session, click [http://memory.psych.upenn.edu/files/misc/yc2_movie.mov here]. Using this approach, we have documented the existence and character of the 4-8 Hz theta rhythm in the human brain as participants learned to navigate through complex virtual environments ([[Publications#KahaEtal99b|Kahana et al., 1999]]; [[Publications#CaplEtal01|Caplan et al., 2001]]; [[Publications#CaplEtal03|Caplan et al., 2003]]; [[Publications#EkstEtal05|Ekstrom et al., 2005]]; [[Publications#JacoEtal09|Jacobs et al., 2010a]]). Recording individual neurons during virtual navigation, we have discovered &quot;place cells&quot; in the human brain. These cells, which are found primarily in the human hippocampus, become active when a given spatial location is being traversed [[Publications#EkstEtal03|Ekstrom et al. (2003)]]. We also identified several other cellular responses during navigation: cells that become active in response to viewing a salient landmark (from any location), cells that become active when searching for a particular goal location (irrespective of location or view), and cells that respond when traveling in a given direction (bearing/heading).<br /> <br /> [[Publications#JacoEtal10|Jacobs et al. (2010b)]] examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, entorhinal cortex (EC) path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.<br /> <br /> {| style=&quot;margin: 0 auto;&quot; cellpadding=&quot;20&quot;<br /> | [[File:path_task.png|center|thumb|425px|''Fig. 8:'' '''The Yellow Cab virtual-navigation video game.''' (A) A patient’s on- screen view of the environment during the game. (B) Overhead map of the environment. Possible destination stores are brightly colored and outlined in red. Pale-colored buildings form the remainder of the outer and inner walls of the environment.]] || [[File:path_regions.png|center|thumb|255px|''Fig. 9:'' '''Regional distribution of path cells.''' Bars depict percentage of neurons observed in each brain area that were path cells. Dark shading indicates clockwise or counterclockwise path cells; light shading indicates complex path cells. Region key: A, amygdala; Cx, parietal and temporal cortices; EC, entorhinal cortex; Fr, Frontal cortices; H, hippocampus; PHG, parahippocampal gyrus.]]<br /> |-<br /> |colspan=&quot;2&quot;| [[File:pathcell.png|center|thumb|700px|''Fig. 10:'' '''Clockwise and counterclockwise path cell activity.''' Firing rate of a clockwise path cell from a single patient's right entorhinal cortex during one testing session. Panel 1: Mean firing rate during clockwise movement at each location in the virtual environment. Color indicates the mean firing rate (in Hz), and gray lines indicate the path of the patient. Panel 2: Neuronal activity during counterclockwise movements. Panel 3: Indication of whether firing rate at each location was statistically greater (rank-sum test) during clockwise movements (red) or during counterclockwise movements (blue). Panel 4: Firing rate of this neuron combined across all regions of the environment for clockwise (&quot;CW&quot;) and counterclockwise (&quot;CCW&quot;) movements during straight movements and turns (&quot;Turn&quot;). Panel 4 inset: Activity of a neuron recorded from this same microelectrode in a different testing session; the two cells have very different firing rates and thus are likely distinct, nearby neurons. (Figure from Jacobs et al., 2010b.)]]<br /> |}<br /> <br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Publications&diff=3686 Publications 2012-10-18T19:03:59Z <p>Memory: Replaced content with &quot;__NOTITLE__ &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/pubs.html&quot; /&gt; Category:Public&quot;</p> <hr /> <div>__NOTITLE__<br /> &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/pubs.html&quot; /&gt;<br /> <br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3685 Data Archive 2012-10-18T19:03:24Z <p>Memory: </p> <hr /> <div>__NOTITLE__<br /> &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3684 Data Archive 2012-10-18T18:59:05Z <p>Memory: </p> <hr /> <div><br /> &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3683 Data Archive 2012-10-18T18:58:57Z <p>Memory: </p> <hr /> <div>&lt;html&gt;<br /> &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> &lt;/html&gt;<br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3682 Data Archive 2012-10-18T18:57:58Z <p>Memory: </p> <hr /> <div>&lt;html&gt;&lt;h1&gt; HELLO! &lt;/h1&gt; &lt;/html&gt;<br /> <br /> &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3681 Data Archive 2012-10-18T18:57:53Z <p>Memory: </p> <hr /> <div>&lt;html&gt;&lt;h1&gt; HELLO! &lt;/h1&gt; &lt;/html&gt;<br /> &lt;html&gt;<br /> &lt;include nopre noesc src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> &lt;/html&gt;<br /> <br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3676 Data Archive 2012-10-18T18:56:17Z <p>Memory: Replaced content with &quot;&lt;html&gt;&lt;h1&gt; HELLO! &lt;/h1&gt; &lt;/html&gt; &lt;html&gt; &lt;include nopre src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt; &lt;/html&gt; Category:Public&quot;</p> <hr /> <div>&lt;html&gt;&lt;h1&gt; HELLO! &lt;/h1&gt; &lt;/html&gt;<br /> &lt;html&gt;<br /> &lt;include nopre src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> &lt;/html&gt;<br /> <br /> [[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3675 Data Archive 2012-10-18T18:55:55Z <p>Memory: </p> <hr /> <div>&lt;html&gt;&lt;h1&gt; HELLO! &lt;/h1&gt; &lt;/html&gt;<br /> &lt;html&gt;<br /> &lt;include nopre src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> &lt;/html&gt;<br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3671 Data Archive 2012-10-18T18:55:07Z <p>Memory: </p> <hr /> <div><br /> &lt;include nopre src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3670 Data Archive 2012-10-18T18:55:01Z <p>Memory: </p> <hr /> <div>&lt;html&gt;<br /> &lt;include nopre src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> &lt;/html&gt;<br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3669 Data Archive 2012-10-18T18:54:31Z <p>Memory: </p> <hr /> <div>&lt;html&gt;<br /> &lt;include ATTRIBUTE1=&quot;nopre&quot; src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> &lt;/html&gt;<br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3668 Data Archive 2012-10-18T18:54:17Z <p>Memory: </p> <hr /> <div>&lt;include ATTRIBUTE1=&quot;nopre&quot; src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3667 Data Archive 2012-10-18T18:53:37Z <p>Memory: </p> <hr /> <div>&lt;include src=&quot;http://grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Data_Archive&diff=3666 Data Archive 2012-10-18T18:52:47Z <p>Memory: </p> <hr /> <div>&lt;include src=&quot;grok.psych.upenn.edu/files/pages/dataArchive.html&quot; /&gt;<br /> <br /> __NOTOC__<br /> &lt;!-- #format html --&gt;<br /> &lt;style type=&quot;text/css&quot;&gt;<br /> h2 {<br /> font-family: verdana, arial, helvetica, sans-serif; <br /> font-size: 16pt;<br /> font-weight: bold;<br /> background: #dddddd;<br /> }<br /> &lt;/style&gt;<br /> <br /> &lt;p&gt;&lt;h2&gt;Data Archive&lt;/h2&gt;&lt;/p&gt;&lt;ul&gt;<br /> &lt;li&gt;&lt;a href=&quot;#Submitted&quot;&gt;Submitted&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#In Press&quot;&gt;In Press&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2007&quot;&gt;2007&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2006&quot;&gt;2006&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a href=&quot;#2003 and Earlier&quot;&gt;2003 and Earlier&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;Submitted&quot; /&gt;&lt;p&gt;&lt;h2&gt;Submitted&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[KahaEtal08b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Mollison, M.&amp;nbsp;V., and Addis, K.&amp;nbsp;M.<br /> <br /> Positional and sequential cues in serial learning.<br /> &lt;em&gt;Submitted&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal08b.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal08b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;In Press&quot; /&gt;&lt;p&gt;&lt;h2&gt;In Press&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[GoloEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Golomb, J.&amp;nbsp;D., Peelle, J.&amp;nbsp;E., Addis, K.&amp;nbsp;M., Kahana, M.&amp;nbsp;J., and<br /> Wingfield, A.<br /> <br /> Effects of adult aging on utilization of temporal and semantic associations<br /> during free and serial recall.<br /> &lt;em&gt;Memory and Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/GoloEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/GoloEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[PantEtal08]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Pantelis, P.&amp;nbsp;C., van Vugt, M.&amp;nbsp;K., Sekuler, R., Wilson, H.&amp;nbsp;R., and<br /> Kahana, M.&amp;nbsp;J.<br /> <br /> Why are some people's names easier to learn than others? The effects of<br /> similarity on memory for face-name associations.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/PantEtal08.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/PantEtal08.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2007&quot; /&gt;&lt;p&gt;&lt;h2&gt;2007&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[NewmEtal07]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Newman, E.&amp;nbsp;L., Caplan, J.&amp;nbsp;B., Kirschen, M.&amp;nbsp;P., Korolev, I.&amp;nbsp;O., Sekuler,<br /> R., and Kahana, M.&amp;nbsp;J.<br /> (2007).<br /> Learning your way around town: How virtual taxicab drivers learn to use both<br /> layout and landmark information.<br /> &lt;em&gt;Cognition&lt;/em&gt;, &lt;b&gt;104&lt;/b&gt;(2), 231&amp;ndash;253.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/NewmEtal07.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/NewmEtal07.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2006&quot; /&gt;&lt;p&gt;&lt;h2&gt;2006&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;[[ZaroEtal06]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Zaromb, F.&amp;nbsp;M., Howard, M.&amp;nbsp;W., Dolan, E.&amp;nbsp;D., Sirotin, Y.&amp;nbsp;B., Tully, M.,<br /> Wingfield, A., et al.<br /> (2006).<br /> Temporal associations and prior-list intrusions in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;32&lt;/b&gt;(4), 792&amp;ndash;804.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/ZaroEtal06.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/ZaroEtal06.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> &lt;a name=&quot;2003 and Earlier&quot; /&gt;&lt;p&gt;&lt;h2&gt;2003 and Earlier&lt;/h2&gt;&lt;ul&gt;<br /> &lt;a name=&quot;Kaha02&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J.<br /> (2002).<br /> Associative symmetry and memory theory.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 823&amp;ndash;840.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Kaha02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/Kaha02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaCapl02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Caplan, J.&amp;nbsp;B.<br /> (2002).<br /> Associative asymmetry in probed recall of serial lists.<br /> &lt;em&gt;Memory &amp;amp; Cognition&lt;/em&gt;, &lt;b&gt;30&lt;/b&gt;, 841-849.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaCapl02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaCapl02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaEtal02]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J., Howard, M.&amp;nbsp;W., Zaromb, F., and Wingfield, A.<br /> (2002).<br /> Age dissociates recency and lag recency effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;28&lt;/b&gt;, 530&amp;ndash;540.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaEtal02.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaEtal02.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaJaco00]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Jacobs, J.<br /> (2000).<br /> Inter-response times in serial recall: Effects of intraserial repetition.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;26&lt;/b&gt;, 1188-1197.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaJaco00.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaJaco00.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[HowaKaha99]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Howard, M.&amp;nbsp;W. and Kahana, M.&amp;nbsp;J.<br /> (1999).<br /> Contextual variability and serial position effects in free recall.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory, and Cognition&lt;/em&gt;,<br /> &lt;b&gt;25&lt;/b&gt;, 923&amp;ndash;941.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/HowaKaha99.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/HowaKaha99.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[KahaBenn94]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Kahana, M.&amp;nbsp;J. and Bennett, P.&amp;nbsp;J.<br /> (1994).<br /> Classification and perceived similarity of compound gratings that differ in<br /> relative spatial phase.<br /> &lt;em&gt;Perception &amp;amp; Psychophysics&lt;/em&gt;, &lt;b&gt;55&lt;/b&gt;, 642-656.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/KahaBenn94.pdf&quot;&gt;pdf&lt;/a&gt;, &lt;a href=&quot;/files/pubs/KahaBenn94.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdKaha93b]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Kahana, M.&amp;nbsp;J.<br /> (1993).<br /> List-strength and list-length effects: Reply to Shiffrin, Ratcliff,<br /> Murnane, and Nobel.<br /> &lt;em&gt;Journal of Experimental Psychology: Learning, Memory and Cognition&lt;/em&gt;,<br /> &lt;b&gt;19&lt;/b&gt;, 1450-1453.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdKaha93b.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[RomnEtal93]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Romney, A.&amp;nbsp;K., Brewer, D.&amp;nbsp;D., and Batchelder, W.&amp;nbsp;H.<br /> (1993).<br /> Predicting clustering from semantic structure.<br /> &lt;em&gt;Psychological Science&lt;/em&gt;, &lt;b&gt;4&lt;/b&gt;, 28-34.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/RomnEtal93.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdMetc78]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Metcalfe, J.<br /> (1978).<br /> Controlled rehearsal in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;17&lt;/b&gt;, 309-324.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdMetc78.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Robe72&quot; /&gt;&lt;li&gt;&lt;p&gt;Roberts, W.&amp;nbsp;A.<br /> (1972).<br /> Free recall of word lists varying in length and rate of presentation: A test of<br /> total-time hypotheses.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;92&lt;/b&gt;, 365-372.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Robe72.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Madi71&quot; /&gt;&lt;li&gt;&lt;p&gt;Madigan, S.&amp;nbsp;A.<br /> (1971).<br /> Modality and recall order interactions in short-term memory for serial order.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;87&lt;/b&gt;, 294-296.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Madi71.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdOkad70]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Okada, R.<br /> (1970).<br /> Interresponse times in single- trial free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;86&lt;/b&gt;, 263-267.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdOkad70.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;[[MurdWalk69]]&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B. and Walker, K.&amp;nbsp;D.<br /> (1969).<br /> Modality effects in free recall.<br /> &lt;em&gt;Journal of Verbal Learning and Verbal Behavior&lt;/em&gt;, &lt;b&gt;8&lt;/b&gt;, 665-676.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/MurdWalk69.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;a name=&quot;Murd62&quot; /&gt;&lt;li&gt;&lt;p&gt;Murdock, B.&amp;nbsp;B.<br /> (1962).<br /> The serial position effect of free recall.<br /> &lt;em&gt;Journal of Experimental Psychology&lt;/em&gt;, &lt;b&gt;64&lt;/b&gt;, 482-488.<br /> &lt;br /&gt;(&lt;a href=&quot;/files/pubs/Murd62.data.tgz&quot;&gt;data&lt;/a&gt;)&lt;/p&gt;&lt;/li&gt;<br /> &lt;/ul&gt;&lt;/p&gt;<br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Michael_J._Kahana&diff=3656 Michael J. Kahana 2012-10-15T21:13:12Z <p>Memory: </p> <hr /> <div>[[File:Mike.jpg|frame]]<br /> <br /> = Michael J. Kahana =<br /> <br /> ~+ Professor&lt;BR&gt;<br /> [[http://www.psych.upenn.edu|Department of Psychology]]&lt;&lt;BR&gt;&gt;<br /> [[http://www.upenn.edu|University of Pennsylvania]]<br /> <br /> Director, [[Research|Computational Memory Lab]] +~<br /> <br /> e-mail: kahana@psych.upenn.edu<br /> <br /> [[http://memory.psych.upenn.edu/~kahana/KahanaCV.pdf|Curriculum Vitae (PDF)]]<br /> <br /> === Personal History ===<br /> <br /> Born May 7, 1969, St Louis, MO.<br /> Married to [[http://finance.wharton.upenn.edu/~jwachter/|Jessica Wachter]].<br /> <br /> === Employment ===<br /> <br /> * 2004-present, University of Pennsylvania, Professor.<br /> * 2000-2004, Brandeis University, Associate Professor.<br /> * 1994-2000, Brandeis University, Assistant Professor.<br /> <br /> === Education ===<br /> <br /> * 1989, Case Western Reserve University, B.A.<br /> * 1993, University of Toronto, Ph.D.<br /> * 1994, Harvard University, Postdoctoral Fellow<br /> <br /> === Research Interests ===<br /> <br /> Human memory and its neural mechanisms: especially episodic memory, spatial memory, and recognition memory.<br /> <br /> For more information, please see the Computational Memory Lab's research overview [[Research|here]].<br /> <br /> === Monograph ===<br /> <br /> || [[FHM|{{attachment:FHM/fhm_cover.png|Foundations of Human Memory}}]] || ~+[[FHM|Foundations of Human Memory]] (2012).+~&lt;BR&gt;Oxford University Press, New York, NY.&lt;BR&gt;&lt;BR&gt;~-Please [[FHM|click here]] for more information.-~ ||<br /> <br /> === Publications ===<br /> [[Publications|Click here for a complete list]] of peer-reviewed publications.</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Michael_J._Kahana&diff=3655 Michael J. Kahana 2012-10-15T21:12:10Z <p>Memory: </p> <hr /> <div>[[File:Mike.jpg]]<br /> <br /> = Michael J. Kahana =<br /> <br /> ~+ Professor&lt;BR&gt;<br /> [[http://www.psych.upenn.edu|Department of Psychology]]&lt;&lt;BR&gt;&gt;<br /> [[http://www.upenn.edu|University of Pennsylvania]]<br /> <br /> Director, [[Research|Computational Memory Lab]] +~<br /> <br /> e-mail: kahana@psych.upenn.edu<br /> <br /> [[http://memory.psych.upenn.edu/~kahana/KahanaCV.pdf|Curriculum Vitae (PDF)]]<br /> <br /> === Personal History ===<br /> <br /> Born May 7, 1969, St Louis, MO.<br /> Married to [[http://finance.wharton.upenn.edu/~jwachter/|Jessica Wachter]].<br /> <br /> === Employment ===<br /> <br /> * 2004-present, University of Pennsylvania, Professor.<br /> * 2000-2004, Brandeis University, Associate Professor.<br /> * 1994-2000, Brandeis University, Assistant Professor.<br /> <br /> === Education ===<br /> <br /> * 1989, Case Western Reserve University, B.A.<br /> * 1993, University of Toronto, Ph.D.<br /> * 1994, Harvard University, Postdoctoral Fellow<br /> <br /> === Research Interests ===<br /> <br /> Human memory and its neural mechanisms: especially episodic memory, spatial memory, and recognition memory.<br /> <br /> For more information, please see the Computational Memory Lab's research overview [[Research|here]].<br /> <br /> === Monograph ===<br /> <br /> || [[FHM|{{attachment:FHM/fhm_cover.png|Foundations of Human Memory}}]] || ~+[[FHM|Foundations of Human Memory]] (2012).+~&lt;BR&gt;Oxford University Press, New York, NY.&lt;BR&gt;&lt;BR&gt;~-Please [[FHM|click here]] for more information.-~ ||<br /> <br /> === Publications ===<br /> [[Publications|Click here for a complete list]] of peer-reviewed publications.</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Michael_J._Kahana&diff=3654 Michael J. Kahana 2012-10-15T21:11:12Z <p>Memory: Created page with &quot;{{attachment:../People/mike.jpg|Michael J. Kahana|align=&quot;right&quot;}} = Michael J. Kahana = ~+ Professor&lt;BR&gt; Department of Psychology&lt;&lt;BR&gt;&gt; [[http...&quot;</p> <hr /> <div>{{attachment:../People/mike.jpg|Michael J. Kahana|align=&quot;right&quot;}}<br /> <br /> = Michael J. Kahana =<br /> <br /> ~+ Professor&lt;BR&gt;<br /> [[http://www.psych.upenn.edu|Department of Psychology]]&lt;&lt;BR&gt;&gt;<br /> [[http://www.upenn.edu|University of Pennsylvania]]<br /> <br /> Director, [[Research|Computational Memory Lab]] +~<br /> <br /> e-mail: kahana@psych.upenn.edu<br /> <br /> [[http://memory.psych.upenn.edu/~kahana/KahanaCV.pdf|Curriculum Vitae (PDF)]]<br /> <br /> === Personal History ===<br /> <br /> Born May 7, 1969, St Louis, MO.<br /> Married to [[http://finance.wharton.upenn.edu/~jwachter/|Jessica Wachter]].<br /> <br /> === Employment ===<br /> <br /> * 2004-present, University of Pennsylvania, Professor.<br /> * 2000-2004, Brandeis University, Associate Professor.<br /> * 1994-2000, Brandeis University, Assistant Professor.<br /> <br /> === Education ===<br /> <br /> * 1989, Case Western Reserve University, B.A.<br /> * 1993, University of Toronto, Ph.D.<br /> * 1994, Harvard University, Postdoctoral Fellow<br /> <br /> === Research Interests ===<br /> <br /> Human memory and its neural mechanisms: especially episodic memory, spatial memory, and recognition memory.<br /> <br /> For more information, please see the Computational Memory Lab's research overview [[Research|here]].<br /> <br /> === Monograph ===<br /> <br /> || [[FHM|{{attachment:FHM/fhm_cover.png|Foundations of Human Memory}}]] || ~+[[FHM|Foundations of Human Memory]] (2012).+~&lt;BR&gt;Oxford University Press, New York, NY.&lt;BR&gt;&lt;BR&gt;~-Please [[FHM|click here]] for more information.-~ ||<br /> <br /> === Publications ===<br /> [[Publications|Click here for a complete list]] of peer-reviewed publications.</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS&diff=3649 CEMS 2012-10-15T21:07:34Z <p>Memory: </p> <hr /> <div>= Context and Episodic Memory Symposium =<br /> <br /> The '''Context and Episodic Memory Symposium (CEMS)''', now in its eighth year, is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> == Future Symposium ==<br /> [[CEMS/2012|CEMS 2012, Bloomington, IN]]<br /> <br /> == Past Symposia ==<br /> [[CEMS/2010|CEMS 2010, Philadelphia, PA]]<br /> <br /> [[CEMS/2011|CEMS 2011, Philadelphia, PA]]<br /> <br /> [[Category: CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS&diff=3648 CEMS 2012-10-15T21:07:21Z <p>Memory: Created page with &quot;= Context and Episodic Memory Symposium = The '''Context and Episodic Memory Symposium (CEMS)''', now in its eighth year, is designed to be a forum for the exchange of ideas ...&quot;</p> <hr /> <div>= Context and Episodic Memory Symposium =<br /> <br /> The '''Context and Episodic Memory Symposium (CEMS)''', now in its eighth year, is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> == Future Symposium ==<br /> [[CEMS/2012|CEMS 2012, Bloomington, IN]]<br /> <br /> == Past Symposia ==<br /> [[CEMS/2010|CEMS 2010, Philadelphia, PA]]<br /> <br /> [[CEMS/2011|CEMS 2011, Philadelphia, PA]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=MediaWiki:Sidebar&diff=3646 MediaWiki:Sidebar 2012-10-15T21:04:09Z <p>Memory: </p> <hr /> <div>* public pages:<br /> ** mainpage|Research<br /> ** publications| Publications<br /> ** People|People<br /> ** Software|Software<br /> ** DataArchive|Data Archive<br /> ** WordPools|Word Pools<br /> ** Category:Public|All public pages <br /> *<br /> ** Category:InternalWiki|Internal Wiki<br /> * SEARCH<br /> * TOOLBOX<br /> * LANGUAGES</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2009&diff=3643 CEMS 2009 2012-10-13T21:53:04Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2009 =<br /> == January 2 - January 3, 2009, Palm Beach, Florida ==<br /> <br /> Here you will find information relating to the upcoming Context and Episodic Memory Symposium (CEMS), being held on the days of January 2nd and 3rd, 2009, in Palm Beach, Florida. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> === Travel and Hotel ===<br /> The symposium is being held at the Ritz-Carlton Hotel in Palm Beach. As an attendee at the meeting, you can reserve a room at the hotel at a discount rate. In order to so, you can click [http://www.ritzcarlton.com/en/Properties/PalmBeach/Default.htm here] and enter &quot;UNPUNPA&quot; as the Group Code when you make your reservation. The nights for which the reduced rate apply are the 1st, 2nd, and 3rd of January. The discount rate for rooms is $319 per night. (Palm Beach is very expensive at that time of year, and the regular rates are over $600 per night). If you want to make reservations by phone, make sure to mention the name of the conference in order to receive the discount room rate. When traveling to the area, the most convenient airports are either Palm Beach International Airport (PBI) or Fort Lauderdale-Hollywood International Airport (FLL). There are still some decent fares (around $500 roundtrip for direct flights, as of early November). '''Note''': in order to receive the discount rate, you must reserve your room by December 2nd.<br /> <br /> === Registration ===<br /> The registration fee for the symposium is $280, which will include breakfast, refreshments, and lunches. You can find the registration website [http://www.seattletech.com/registrations/index.php?968-10013-i-t here].<br /> <br /> === Program ===<br /> Downloadable versions of the following program are available: [[attachment:CEMS2009_Program.pdf|PDF]], [[attachment:CEMS2009_Program.doc|Word]]<br /> -------<br /> '''Context and Episodic Memory Symposium &lt;&lt;BR&gt;&gt;Palm Beach, Florida&lt;&lt;BR&gt;&gt;January 2 – January 3, 2009'''<br /> -----<br /> '''''Friday'''''<br /> -----<br /> '''8:00''' BREAKFAST<br /> <br /> '''8:30''' Michael Kahana welcome and introductory remarks<br /> <br /> '''8:45''' Caren Rotello, University of Massachusetts&lt;&lt;BR&gt;&gt;<br /> ''Modeling Source Memory''<br /> <br /> '''9:15''' William Hockley, Wilfrid Laurier University &lt;&lt;BR&gt;&gt;<br /> ''The Effects of Environmental Context on Recognition Memory and Claims of Remembering''<br /> <br /> '''9:45''' Jason Ardnt, Middleberry College&lt;&lt;BR&gt;&gt;<br /> ''MINERVA-DP: A dual-process model of recognition memory''<br /> ----<br /> '''10:15''' BREAK<br /> ----<br /> '''10:30''' Amy Criss, Syracuse University&lt;&lt;BR&gt;&gt;<br /> ''An application of the diffusion model to the strength based mirror effect in recognition memory''<br /> <br /> '''11:00''' Jeff Starns, The Ohio State University&lt;&lt;BR&gt;&gt;<br /> ''Enhancing lure rejection by strengthening studied items: Contrasting encoding- and retrieval-based mechanisms from REM and BCDMEM''<br /> <br /> '''11:30''' Ken Malmberg, University of South Florida&lt;&lt;BR&gt;&gt;<br /> ''The Implications of Recognition Priming for Models of Recognition Memory''<br /> ----<br /> '''12:00''' LUNCH<br /> ----<br /> '''1:00''' Geoff Ward, University of Essex&lt;&lt;BR&gt;&gt;<br /> ''Free recall and Episodic memory: comparisons across tasks and timescales''<br /> <br /> '''1:30''' Lynn Lohnas, University of Pennsylvania&lt;&lt;BR&gt;&gt;<br /> ''Expanding the scope of memory search: Intra-list and inter-list effects in free recall''<br /> <br /> '''2:00''' Marc Howard, Syracuse University&lt;&lt;BR&gt;&gt;<br /> ''Temporal context, past, present, and future''<br /> <br /> '''2:30''' Jeremy Caplan, University of Alberta&lt;&lt;BR&gt;&gt;<br /> ''Is there a context-coding basis for paired associate learning?''<br /> ----<br /> '''3:00''' BREAK<br /> ----<br /> '''3:15''' David Huber, University of California, San Diego<br /> ''Testing signal-detection models of yes/no and two-alternative forced-choice recognition memory''<br /> <br /> '''3:45''' Ken Norman, Princeton University<br /> ''Can memories be weakened?''<br /> <br /> '''4:15''' Per Sederberg, Princeton University<br /> ''Tracking the dynamics of semantic and temporal cuing during free recall''<br /> -----<br /> '''''Saturday'''''<br /> -----<br /> <br /> '''8:30''' BREAKFAST<br /> <br /> '''9:00''' Roger Ratcliff, The Ohio State University<br /> ''Priming and associative recognition''<br /> <br /> '''9:35''' Simon Dennis, The Ohio State University<br /> ''The Inverse List Length Effect and the Return of the Global Matching Models''<br /> <br /> '''10:10''' Ben Murdock, University of Toronto&lt;&lt;BR&gt;&gt;<br /> ''The spacing and mirror and word-frequency effect''<br /> ----<br /> '''10:45''' BREAK<br /> ----<br /> '''11:15''' Rich Shiffrin, Indiana University<br /> ''The co-evolution of knowledge and event memory''<br /> ----<br /> '''12:00''' LUNCH<br /> ----<br /> '''1:15''' Mark Steyvers, University of California, Irvine&lt;&lt;BR&gt;&gt;<br /> ''A Bayesian theory of reconstructive memory''<br /> <br /> '''1:45''' Dan Kimball, University of Oklahoma&lt;&lt;BR&gt;&gt;<br /> ''Conjunctive and summative processes in human memory''<br /> <br /> '''2:15''' General discussion and wrap up<br /> <br /> '''2:45''' Group photo at the ocean<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2011&diff=3642 CEMS 2011 2012-10-13T21:52:49Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2011 =<br /> <br /> == May 5th - May 6th, Philadelphia, Pennsylvania ==<br /> <br /> The 2011 Context and Episodic Memory Symposium (CEMS) will be held in Philadelphia, Pennsylvania, on the days of May 5th and May 6th. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> === Hotel ===<br /> The symposium will be held at the [http://www.rittenhousehotel.com Rittenhouse Hotel] in Philadelphia. Please make reservations prior to April 4, 2011. You can make a reservation by telephoning the Reservations Department at, (800) 635-1042 or (215) 546-9000 and asking for the special ''2011 Context &amp; Episodic Memory Symposium rate''. Rooms can be reserved at $235 per night.<br /> <br /> &lt;&lt;html(&lt;iframe width=&quot;425&quot; height=&quot;425&quot; frameborder=&quot;0&quot; scrolling=&quot;no&quot; marginheight=&quot;0&quot; marginwidth=&quot;0&quot; src=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;output=embed&quot;&gt;&lt;/iframe&gt;&lt;br /&gt;&lt;small&gt;&lt;a href=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;source=embed&quot; style=&quot;color:#0000FF;text-align:left&quot;&gt;View Larger Map&lt;/a&gt;&lt;/small&gt;)&gt;&gt;<br /> <br /> === Registration ===<br /> <br /> Registration for the conference is closed.<br /> <br /> == Schedule ==<br /> Click the link to download CEMS 2011 schedule: [http://memory.psych.upenn.edu/files/misc/CEMS2011_schedule.pdf CEMS 2011 Schedule]<br /> <br /> === Spoken Presentations ===<br /> <br /> Accepted spoken presentations:<br /> <br /> * '''Becker, Sue'''; McMaster University; ''Hippocampal neurogenesis is required for contextual memory formation: Empirical evidence from rats and humans''<br /> ** Commentator: Isabel Muzzio, University of Pennsylvania<br /> * '''Benjamin, Aaron'''; University of Illinois; ''Representational explanations of “process” dissociations in recognition: The DRYAD theory of aging and memory judgments''<br /> ** Commentator: Karl Healey, University of Pennsylvania<br /> * '''Howard, Marc'''; ''Syracuse University; Time in episodic memory''<br /> ** Commentator: Simon Dennis, Ohio State University <br /> * '''Lee, Michael'''; UC Irvine, ''Modeling multitrial free recall with unknown rehearsal times''<br /> ** Commentator: Geoff Ward, University of Essex<br /> * '''McClelland, Jay'''; Stanford University; ''REMERGE: A new approach to the neural basis of generalization and memory-based inference''<br /> ** Commentator: Ken Norman, Princeton University<br /> * '''Nosofsky, Rob'''; Indiana University; ''Short-Term Memory Scanning Viewed as Exemplar-Based Categorization''<br /> ** Commentator: Robert Sekuler, Brandeis University<br /> * '''Polyn, Sean'''; Vanderbilt University; ''Neural correlates of organization and distinctiveness''<br /> ** Commentator: David Donaldson, University of Sterling<br /> * '''Sahakyan, Lili'''; U.N.C. Greensboro; ''How Difficulty of Retrieval Affects Context Retrieval and Context Change in Free Recall''<br /> ** Commentator: Almut Hupbach, Lehigh University<br /> * '''Sederberg, Per'''; Ohio State University; ''Modeling the role of context and prediction error in encoding variability''<br /> ** Commentator: Amy Criss, Syracuse University<br /> * '''Shiffrin, Richard'''; Indiana University; ''Criterion setting and the dynamics of recognition memory''<br /> ** Commentator: Marc Howard, Syracuse University<br /> * '''Steyvers, Mark'''; U. C. Irvine; ''Wisdom of crowds in human memory: reconstructing past events by aggregating retrieved memories across individuals''<br /> ** Commentator: Sam Gershman, Princeton University<br /> * '''Turk-Browne, Nicholas'''; Princeton University; S''cene representations in parahippocampal cortex depend on temporal context''<br /> ** Commentator: Lila Davachi, New York University<br /> * '''van Zandt, Trish'''; Ohio State University; ''The Pervasive Problem of Criterion Setting''<br /> ** Commentator: Ken Malmberg, University of South Florida<br /> <br /> === Posters ===<br /> The Symposium will include two poster session. Posters should be no larger than 40&quot; by 60&quot;.<br /> <br /> * '''Aue, William R., Criss, Amy H., and Fischetti, Nicholas W'''; ''Associative information in memory: Evidence from cued recall.''<br /> * '''Biss, Renée K., and Hasher, Lynn'''; ''Distraction: An Intervention to Eliminate Older Adults’ Forgetting.''<br /> * '''Campbell, Karen L., Zimerman, Shira, and Hasher, Lynn'''; ''Age-related advantage in visual statistical learning.''<br /> * '''Chapman, Allison, and Dennis, Simon'''; ''Item noise in the Sternberg paradigm.''<br /> * '''Criss, Amy H., Wheeler, Mark E., &amp; McClelland, Jay L.'''; ''A differentiation account of recognition memory: Evidence from fMRI.''<br /> * '''Donaldson, David'''; ''Does brain activity really provide a legitimate biomarker of episodic memory?''<br /> * '''Gray, Kendra, and Sahakyan, Lili'''; ''The Impact of Testing and Spacing on the Storage of Contextual Information.''<br /> * '''Hupbach, Almut'''; ''What Affects Episodic Memory Updating?''<br /> * '''Kilic, Asli, Criss, Amy H., and Howard, Marc W.'''; ''Probed Recall: Empirical Evidence and Theoretical Implications.''<br /> * '''Kragel, James E., Morton, Neal W, Cohen, Zachary D., McCluey, Joshua D., and Polyn, Sean M.'''; ''Neural correlates of organization in free recall.''<br /> * '''Lohnas, Lynn, and Kahana, Michael'''; ''Compound cueing in free recall.''<br /> * '''Long, Nicole, Sederberg, Per, Miller, Jonathan, and Kahana, Michael'''; ''Neural correlates of temporal and semantic clustering in free recall.''<br /> * '''Manning, Jeremy, and Kahana, Michael'''; ''Temporal and frontal networks reveal how conceptual memories are organized.''<br /> * '''Morton, Neal W, and Polyn, Sean M.'''; ''Oscillatory neural correlates of category cuing during memory search.''<br /> * '''Osth, Adam, and Dennis, Simon'''; ''What are the boundary conditions of differentiation?''<br /> * '''Smith, Stephen K., and Dennis, Simon'''; ''False Memory for Sentences.''<br /> * '''Sreekumar, Vishnu, Zhang, Yuwen, Dennis, Simon, and Belkin, Mikhail'''; ''The dimensionality of visual environmental input.''<br /> * '''Turner, Brandon, and Dennis, Simon, and van Zandt, Trish'''; ''Bayesian techniques for memory models.''<br /> * '''Ward, Geoff, and Tan, Lydia'''; ''Free recall and Cued Recall of Categorised word lists using the overt rehearsal method: Recency-based implications for cue-overload.''<br /> * '''Westfall, Holly, and Malmberg, Kenneth'''; ''Visual Search Enhances Subsequent Mnemonic Search: Theta in Action?''<br /> * '''Yim, Hyungwook, Dennis, Simon J., and Sloutsky, Vladimir M.'''; ''The development of context use and three way bindings in episodic memory.''<br /> <br /> === Past Symposia ===<br /> For information about the 2010 CEMS, please [[CEMS/2010|click here]].<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2013&diff=3641 CEMS 2013 2012-10-13T21:52:32Z <p>Memory: </p> <hr /> <div>_<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2012&diff=3639 CEMS 2012 2012-10-13T21:52:06Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2012 =<br /> <br /> == May 10th, Bloomington, IN ==<br /> <br /> The 2012 Context and Episodic Memory Symposium (CEMS) will be held in Bloomington, Indiana, on May 10th. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> '''The schedule for talks has been finalized. See the schedule [[#schedule|here]].'''<br /> <br /> '''Registration information is now available! Please see [[#registration|below]].'''<br /> <br /> '''A preliminary list of poster presentations is available [[#posters|here]].'''<br /> <br /> ==== Festschrift ====<br /> <br /> Please note that this year CEMS is scheduled to follow a [http://cogs.indiana.edu/FestschriftForRichShiffrin Festschrift in honor of Richard M. Shiffrin]. CEMS attendees are invited to attend the Festschrift, which will begin the evening of May 7 and close with a banquet on the evening of May 9.<br /> <br /> More information, including registration information, can be found [http://cogs.indiana.edu/FestschriftForRichShiffrin on the Festschrift website].<br /> <br /> == Location &amp; Hotel ==<br /> The symposium will be held at the Indiana University Memorial Union, which also serves as the host hotel for the conference.<br /> <br /> &lt;&lt;html(&lt;iframe width=&quot;425&quot; height=&quot;350&quot; frameborder=&quot;0&quot; scrolling=&quot;no&quot; marginheight=&quot;0&quot; marginwidth=&quot;0&quot; src=&quot;http://maps.google.com/maps?f=q&amp;amp;source=s_q&amp;amp;hl=en&amp;amp;geocode=&amp;amp;q=&amp;amp;sll=39.167801,-86.523535&amp;amp;sspn=0.016703,0.024698&amp;amp;vpsrc=6&amp;amp;gl=us&amp;amp;ie=UTF8&amp;amp;ll=39.167668,-86.523621&amp;amp;spn=0.016703,0.024698&amp;amp;t=m&amp;amp;z=16&amp;amp;output=embed&quot;&gt;&lt;/iframe&gt;&lt;br /&gt;&lt;small&gt;&lt;a href=&quot;http://maps.google.com/maps?f=q&amp;amp;source=embed&amp;amp;hl=en&amp;amp;geocode=&amp;amp;q=&amp;amp;sll=39.167801,-86.523535&amp;amp;sspn=0.016703,0.024698&amp;amp;vpsrc=6&amp;amp;gl=us&amp;amp;ie=UTF8&amp;amp;ll=39.167668,-86.523621&amp;amp;spn=0.016703,0.024698&amp;amp;t=m&amp;amp;z=16&quot; style=&quot;color:#0000FF;text-align:left&quot;&gt;View Larger Map&lt;/a&gt;&lt;/small&gt;)&gt;&gt;<br /> <br /> === Hotel ===<br /> &lt;&lt;[[SeeSaw]](section=&quot;hotel&quot;,type=button,toshow=&quot;Click here to show hotel information&quot;,tohide=&quot;Click here to hide hotel information&quot;)&gt;&gt;<br /> <br /> &lt;pre&gt;&lt;nowiki&gt;{#!wiki seesaw hotel<br /> <br /> .'''Indiana Memorial Union (IMU)'''<br /> .900 East 7th Street<br /> .Bloomington, IN 47405<br /> <br /> '''The Indiana Memorial Union (IMU)''' operates as a hotel, a conference center and a student union. It is located in the center of campus in a scenic setting surrounded by woods, walking paths and a stream. Conference registration, all sessions and social functions will be centered at the IMU. For your convenience, we recommend that you book your hotel reservations at the IMU. <br /> <br /> '''Reservations'''<br /> <br /> *Phone: 800.209.8145 or 812.856.6381 FAX: 812.855.3426<br /> <br /> *If phoning, inform the reservation staff person that you would like to reserve a room from the ''Episodic Memory and Shiffrin Conference block''. Unless you identify yourself as a conference participant, you may be unable to obtain a room.<br /> <br /> *Online:Make reservations online at http://www.imu.indiana.edu/hotel/index.shtml <br /> <br /> *Enter Group Code: '''shiffrin'''<br /> <br /> .We encourage you to make your reservations early as accommodations at the IMU may be limited. The ''Conference'' block of hotel rooms will be released to the general public on '''April 9, 2012'''.<br /> <br /> '''Rates'''<br /> <br /> Hotel room rates vary based on <br /> <br /> *Type of room (single, double)<br /> *Weekday (Sunday – Thursday) or weekend (Friday &amp; Saturday) check-in<br /> <br /> The following are ''representative hotel room charges'' projected for the summer of 2012<br /> .Single, weekday room w/one double bed $105.00<br /> .Single, weekday room w/one king bed $135.00<br /> .Double, weekday room w/2 double beds $125.00<br /> .Double, weekday room w/2 queen beds $135.00<br /> <br /> Weekend rates are approximately $20.00 - $30.00 per day additional charge.<br /> <br /> All rooms are subject to 12% tax.<br /> <br /> '''Internet Access'''<br /> <br /> Free, wireless internet access is available throughout the IMU.<br /> <br /> '''Additional Lodging Options'''<br /> <br /> Bloomington has many lodging options. Although we recommend that you stay at the IMU, we invite you to check out other choices at [[http://visitbloomington.com|visitbloomington.com]].<br /> &lt;/nowiki&gt;&lt;/pre&gt;<br /> }<br /> <br /> === Travel ===<br /> &lt;&lt;[[SeeSaw]](section=&quot;travel&quot;,type=button,toshow=&quot;Click here to show travel information&quot;,tohide=&quot;Click here to hide travel information&quot;)&gt;&gt;<br /> <br /> &lt;pre&gt;&lt;nowiki&gt;{#!wiki seesaw travel<br /> '''Flight Information'''<br /> <br /> Domestic and International Participants: Most participants will find that traveling to Indiana University through Indianapolis International Airport is most convenient. International guests can elect to schedule direct flights into either Chicago O’Hara or Cincinnati International and then take a short 30 minute flight into Indianapolis.<br /> <br /> .Airport: Indianapolis International Airport<br /> .Airport Symbol: IND<br /> .Location: 50 miles (93 kilometers) north of Bloomington, Indiana<br /> <br /> '''Travel Agency Assistance'''<br /> <br /> If you would like assistance with your travel arrangements, we suggest that you contact Travel Leaders [[http://www.travelleaders.com/cts|www.travelleaders.com/cts]], a major international travel management company with offices in Bloomington, Indiana.<br /> <br /> .Phone: 812.339.7800 or 800.467.7800<br /> .FAX: 812.339.7854<br /> .Email: tgrafewampler@travlead.com<br /> <br /> '''Ground Transportation from Indianapolis International Airport to Indiana Memorial Union'''<br /> <br /> Shuttle: Go Express Travel (Formally Bloomington Shuttle)<br /> *Service 9 times daily between airport and Bloomington campus <br /> *Shuttle drop off points include Indiana Memorial Union (host hotel), Hampton Inn and Marriott Courtyard<br /> *Advance reservations: Recommended<br /> *Rates: currently $16.00 one way (rates are subject to change)<br /> *Reservations: On-line at: [[http://www.goexpresstravel.com]]<br /> *Phone: 800.589.6004 or 812.332.6004<br /> *Airport pick-up location: Ground Transportation Center. Lower level, outside of airport Baggage Claim<br /> <br /> Shuttle: Star of America<br /> *Service 9 times daily between airport and Bloomington campus <br /> *Shuttle drop off points include Indiana Memorial Union (host hotel), Hilton Garden Inn and other area hotels<br /> *Rates: currently $15.00 one way, for advanced reservations and $20.00 one way, for non-advanced reservations (rates are subject to change)<br /> *Reservations: On-line at: [[http://www.starofamerica.com|www.starofamerica.com]]<br /> *Phone: 800.933.0097 or 812.876.7851<br /> <br /> Limousine: Classic Touch Limousine<br /> *Door-to-door service from airport to any location in Bloomington<br /> *Advance reservations: Required<br /> *Rates: $122.00 roundtrip per person<br /> *when making your reservations, inform Classic touch that you are attending SSSS 2012 Conference<br /> *rate is for shared ride service, private car is not guaranteed<br /> *Reservations: On-line at: [[http://www.classictouchlimo.com]]<br /> *Phone: 800.319.0082 or 812.339.7269, select &quot;reservations&quot;<br /> *Airport Pick-up Location: Ground Transportation Center. Lower level, outside of airport Baggage Claim <br /> <br /> Car Rental: Most major car rental companies<br /> *[[http://www.avis.com|Avis]]<br /> *[[http://www.budget.com|Budget]]<br /> *[[http://www.enterprise.com|Enterprise]]<br /> *[[http://www.hertz.com|Hertz]]<br /> *[[http://www.nationalcar.com|National]]<br /> *[[http://www.thrifty.com|Thrifty]]<br /> <br /> Driving from Indianapolis airport to Indiana Memorial Union (center of IU campus)<br /> 1. When departing the airport, follow the signs to exit onto Ameriplex Parkway<br /> 1. Follow Ameriplex Parkway to IN-67 South/Kentucky Ave.<br /> 1. Turn Right onto IN-67 South/Kentucky Ave.<br /> 1. Follow IN-67 South to IN-39S<br /> 1. Turn left onto IN-39S<br /> 1. Follow IN-39S through Martinsville to IN-37S<br /> 1. Merge onto IN-37S to Bloomington<br /> 1. Exit RIGHT off Hwy 37 at “College &amp; Walnut” (you will emerge on to College Ave.)<br /> 1. Continue on College Avenue to 7th Street <br /> 1. Turn LEFT on 7th Street <br /> 1. Continue about 7 blocks <br /> 1. Turn RIGHT into the circle drive in front of the Indiana Memorial Union (parking is available in one of two lots adjacent to the IMU)<br /> <br /> '''Parking'''<br /> <br /> Free parking is available to all guests who stay at the Indiana Memorial Union. Commuters or participants who elect to stay at a hotel other than the IMU, may park in one of the two parking lots indicated on the map. View Map. Discount parking passes will be available at the symposium registration desk.<br /> <br /> &lt;/nowiki&gt;&lt;/pre&gt;<br /> }<br /> <br /> === Campus/Surrounding Area ===<br /> &lt;&lt;[[SeeSaw]](section=&quot;campus&quot;,type=button,toshow=&quot;Click here to show location information&quot;,tohide=&quot;Click here to hide location information&quot;)&gt;&gt;<br /> <br /> &lt;pre&gt;&lt;nowiki&gt;{#!wiki seesaw campus<br /> <br /> '''Bloomington Campus of Indiana University'''<br /> <br /> The Context and Episodic Memory Symposium (CEMS) will be held on the campus of Indiana University, located close to downtown Bloomington, Indiana, about 50 miles south of Indianapolis, Indiana. A comprehensive Bloomington Visitor’s Guide will be included with your conference check-in materials or you may request one [[http://www.visitbloomington.com/|online here]]. <br /> <br /> '''Scenic'''<br /> <br /> The IU Bloomington campus is a magnificent blend of traditional and modern architecture set in a landscaped environment. Walkways meander alongside streams, through woods and along tree lined paths. We invite you to preview some of the scenes that await you by taking a [[http://www.iub.edu/tour|virtual campus tour]].<br /> <br /> '''Culturally Rich'''<br /> <br /> IU Bloomington’s cultural offerings will surprise you with an impressive art museum, a full opera and symphony season, a non-circulating library of rare books and manuscripts and a museum of world culture….and that is just on the campus. The community of Bloomington is alive with art and music – international, classical, jazz, bluegrass, early and popular music. To obtain information about events which are occurring during the meeting, check the Events Calendar at http://indianapublicmedia.org/events/<br /> <br /> '''Local Time and Weather'''<br /> <br /> Bloomington is located in the Eastern Time Zone. At the time of the symposium, Bloomington will be operating on Eastern Daylight Time, the same time as New York City and the East Coast of the United States, and one hour ahead of Chicago.<br /> <br /> May weather can be variable with daytime temperature in the mid 60’s to low 70’s and nights in the mid to upper 50’s. It is also a time of year where some rainfall can be expected. Indoor meeting rooms are air-conditioned and often require a light sweater or jacket.<br /> <br /> '''Dining in Bloomington'''<br /> <br /> There are many pleasant pubs, restaurants and coffee houses located a short walking distance from campus. <br /> *Kirkwood Avenue is a main street leading from campus to downtown Bloomington. Along Kirkwood you will find many casual eating options.<br /> *4th Street is renowned for its unusual and unusually large selection of ethnic restaurants –Indian, Italian, Moroccan, Thai, Burmese, Mexican, Cajun, Korean and featuring authentic Tibetan cuisine.<br /> *Downtown Bloomington – a variety of eateries ranging from California-style coffee shop to sports bars to cafes to a long-standing Greek restaurant. Downtown Bloomington has two establishments – each with master chefs who have established national and international recognition for their culinary expertise.<br /> <br /> '''MUSEUMS &amp; SPECIAL EXHIBITS'''<br /> *The Kinsey Institute for Research in Sex, Gender and Reproduction [[http://www.kinseyinstitute.org/index.html|(website)]]<br /> .The unique history, collections and research of the Kinsey Institute have established it as a leader internationally in scholarship, teaching and service in sexuality, gender and reproduction. Self-guided tours are available during normal working hours. Visitors may view the Kinsey Art Gallery Monday through Friday 2:00 – 4:00pm.<br /> *IU Art Museum [[http://www.indiana.edu/~iuam|(website)]]<br /> .Designed by I.M. Pei, the building itself is a work of art. Galleries include Western Art, Ancient and Asian Art, Africa, Oceaniana and the Americas, and Special Exhibitions. Excellent gift shop. <br /> *Lilly Library [[http://www.indiana.edu/~liblilly|(website)]]<br /> .View rare and historic books, manuscripts and letters, as well as an extensive collection of mechanical puzzles. <br /> *Mathers Museum of World Cultures [[http://www.indiana.edu/~mathers|(website)]]<br /> .Travel the world from Australia to Zanzibar without leaving Bloomington. <br /> *School of Fine Arts (SoFA) Gallery [[http://www.fa.indiana.edu/~sofa|(website)]]<br /> .Enjoy contemporary art by nationally known artists and IU’s own students.<br /> *Jordan Hall Greenhouse [[http://www.bio.indiana.edu/faculty/facilities/greenhouse.shtml|(website)]]<br /> .IU Biology provides space to grow plants that serve the teaching and research needs of the Department. The greenhouses contain many plants from around the world, which are grown in conservatory rooms open to the public. <br /> *Kirkwood Observatory [[http://www.astro.indiana.edu/kirkwood.shtml|(website)]] <br /> .Observe the skies on a summer evening. Check web site for schedule. <br /> <br /> '''PERFORMING ARTS'''<br /> *Jacobs School of Music [[http://www.music.indiana.edu|(website)]]<br /> .Attend an opera, recital concert, band performance from a world class school of music performed by world class musicians. <br /> *Department of Theatre &amp; Drama [[http://www.indiana.edu/~thtr/|(website)]]<br /> .Experience award-winning classics and bold new premieres on three different stages and at the summer theatre in Nashville, Indiana (20 miles from the Bloomington campus) <br /> &lt;/nowiki&gt;&lt;/pre&gt;<br /> }<br /> <br /> &lt;span id=&quot;registration&quot;&gt;&lt;/span&gt;<br /> == Registration ==<br /> <br /> '''Conference Registration includes:'''<br /> * Participation in all sessions <br /> * Conference materials <br /> * Lunch<br /> * Morning and afternoon refreshment breaks <br /> * Poster Session Reception<br /> <br /> '''Registration fees:'''<br /> * Faculty: $250 on or before April 10 ($300 after April 10)<br /> * Students/Postdocs: $200 on or before April 10 ($250 after April 10)<br /> <br /> '''How to Register:'''<br /> * '''Online:''' Payment by credit card check, or purchase order. [https://indianauniv-web.ungerboeck.com/reg/reg_p1_form.aspx?oc=10&amp;ct=GENERAL&amp;eventid=5188 Click here to register.]<br /> * '''Phone:''' Call 1.800.933.9330 and ask to speak with the Conference Registrar.<br /> * '''To pay by check:''' Register online, select the pay by check option, print the registration invoice and mail with your check made payable to Indiana University #33-12 to:<br /> .Indiana University<br /> .IU Conferences<br /> .P.O. Box 6212<br /> .Indianapolis, IN 46206-6212<br /> <br /> '''Cancellation of Registration''' <br /> * On or before April 10, 2012: Full refund, less a $50.00 processing fee.<br /> * After April 10, 2012: No refund, but we would be happy to accept substitute participants. <br /> * /!\ '''Note:''' Cancellations must be submitted in writing to the Conference Registrar at iuconfs@indiana.edu.<br /> <br /> '''Questions about Registration?'''<br /> <br /> .Contact the Conference Registrar at iuconfs@indiana.edu or call 1.800.933.9330.<br /> <br /> &lt;span id=&quot;abstracts&quot;&gt;&lt;/span&gt;<br /> == Abstract submission ==<br /> '''Submission of abstracts for both posters and talks has closed.'''<br /> <br /> The format of CEMS is to have a relatively small number of spoken presentations each followed by a commentary given by a scientist working on related problems. The program committee aims to identify submissions that highlight major new theoretical and/or empirical advances. Papers not selected for these spoken presentations can be given as poster presentations. In previous years, posters have been a major highlight of the meeting and have been very well attended. The Bennet B. Murdock award will be given for the best poster or spoken presentation by a young investigator, as determined by the committee.<br /> <br /> &lt;span id=&quot;schedule&quot;&gt;&lt;/span&gt;<br /> == Schedule &amp; Spoken Presentations ==<br /> <br /> '''8:00 Breakfast''' in Frangipani Room<br /> <br /> '''8:25 Michael Kahana''': Welcome and introductory remarks in Frangipani Room<br /> <br /> '''8:30 Jeroen Raaijmakers''', University of Amsterdam: ''Is retrieval induced forgetting an inhibitory process?''<br /> * Commentator: Ken Norman, Princeton University<br /> <br /> '''9:10 Aaron Benjamin''', University of Illinois: ''What makes distributed practice effective?''<br /> * Commentator: Jeroen Raaijmakers, University of Amsterdam<br /> <br /> '''9:50 Per Sederberg''', Ohio State University: ''The context repetition effect: Repeating temporal context improves recognition for once-presented items''<br /> * Commentator: Lynn Lohnas, University of Pennsylvania<br /> <br /> '''10:30 Break''' in Tree Suite Lounge<br /> <br /> '''10:45 Yuji Naya''', New York University: ''Integrating what and when across the primate medial temporal lobe''<br /> * Commentator: Marc Howard, Boston University<br /> <br /> '''11:25 Kate Jeffery''', University College London: ''Origin of contextual inputs to the hippocampal place cells''<br /> * Commentator: Jeremy Caplan, University of Alberta<br /> <br /> '''12:05 David Smith''', Cornell University: ''Hippocampal context representations: Form and function''<br /> * Commentator: Sue Becker, McMaster University<br /> <br /> '''12:45 Lunch''' in State Room East &amp; West<br /> <br /> '''1:45 Group Photo''' (Location TBD)<br /> <br /> '''2:00 Jeffrey Starns''', University of Massachusetts: ''Testing the unequal-variance account of zROC slope without a zROC in sight''<br /> * Commentator: Christoph Weidemann, Swansea University<br /> <br /> '''2:40 David Donaldson''', University of Stirling: ''Does episodic recollection really fail sometimes, or does it just feel like that?''<br /> * Commentator: Rachel Diana, Virginia Tech<br /> <br /> '''3:20 Break''' in Tree Suite Lounge<br /> <br /> '''3:35 Greg Cox''', Indiana University: ''Modeling of recognition decision making''<br /> * Commentator: Asli Kilic, Syracuse University<br /> <br /> '''4:15 Brandon Turner''', University of California, Irvine: ''ABCDE: A practical likelihood-free Bayesian analysis technique with applications to computational models of memory and decision-making''<br /> * Commentator: EJ Wagenmakers, University of Amsterdam<br /> <br /> '''6:00 Reception and Posters''' in Solarium (Hors D'oeuvres, cash bar)<br /> <br /> &lt;span id=&quot;posters&quot;&gt;&lt;/span&gt;<br /> === Posters ===<br /> <br /> &lt;span style=&quot;font-size: smaller&quot;&gt;(Presenting author given in '''bold type'''. Please contact [[mailto:context.symposium@gmail.com|Patrick Crutchley]] with any corrections.)&lt;/span&gt;<br /> <br /> * '''William Aue''' &amp; Amy Criss, ''Syracuse University'': Item strength and associative information: Examining the role of item repetition on subsequent cued recall<br /> * '''Hunter Ball''', G. A. Brewer, M. R. DeWitt, J. B. Knight, R. L. Marsh, &amp; J. L. Hicks: Successful source memory in the absence of item memory<br /> * '''John F. Burke''' and Michael J. Kahana, ''University of Pennsylvania'': Theta oscillations and high-gamma activity mark episodic memory retrieval<br /> * '''Yvonne Y. Chen''', Kirstie Lithgow, Jumjury A. Hemmerich, Jeremy B. Caplan, ''University of Alberta'': Is what goes in what comes out? Encoding and retrieval ERP components in recognition memory are related<br /> * '''Brian Dillon''', Alan Mishler, Shayne Sloggett, and Colin Phillips, ''UMass Amherst'': Contrasting cues to subjecthood: comparing verbal agreement and reflexive anaphors<br /> * '''Jonathan Eskreis-Winkler''', Lynn Lohnas, and Michael J. Kahana, ''University of Pennsylvania'': sCMR: A context maintenance and retrieval model of both serial and free recall<br /> * Samuel J. Gershman, Anna C. Schapiro, Almut Hupbach*, '''Kenneth A. Norman*''', ''Princeton University'': Neural context reinstatement predicts memory misattribution<br /> * '''Karl Healey''', Lynn Lohnas &amp; Michael J. Kahana, ''University of Pennsylvania'': Modeling age-related changes in episodic memory<br /> * '''Pernille Hemmer''', Amy Criss &amp; Brad Wyble, ''Syracuse University'': Assessing a Neural Basis for Differentiation Accounts of Recognition Memory<br /> * '''Marc Howard''', ''Syracuse University'': A distributed representation of spatial and temporal context in the medial temporal lobe<br /> * '''Brendan T. Johns''' &amp; Michael N. Jones, ''Indiana University'': A Synchronization Model of Recognition and Source Memory<br /> * '''George Kachergis''', Gregory E. Cox, and Richard M. Shiffrin, ''Indiana University'': Dynamic Effects of Perceptual and Categorical Similarity on Recognition Memory<br /> * '''Asli Kilic''' &amp; Amy Criss, ''Syracuse University'': The Strength Based Mirror Effect and Output Interference in Recognition Memory<br /> * '''James Kragel''' and Sean Polyn, ''Vanderbilt University'': The dynamics of frontoparietal and medial temporal lobe networks during self-initiated memory search<br /> * '''Joel Kuhn''', Lynn Lohnas, and Michael J. Kahana, ''University of Pennsylvania'': A single-store account of the negative recency effect in final free recall<br /> * '''Jarrod A. Lewis-Peacock''' &amp; Kenneth A. Norman, ''Princeton University'': Moderate activation of items in working memory can weaken long-term memory<br /> * '''Yang S. Liu''', Michelle Chan, Jeremy B. Caplan, ''University of Alberta'': Contextual versus sequential-search models of judgements of relative order<br /> * '''Lynn Lohnas''' &amp; Michael Kahana, ''University of Pennsylvania'': A retrieved-context account of repetition effects in free recall<br /> * '''Jeremy R. Manning''', David M. Blei, and Kenneth A. Norman, ''Princeton University'': Tracking item representations during free recall<br /> * Max Montenegro, '''Jay Myung''' and Mark Pitt, ''Ohio State University'': Unidentifiability of Simulation-based Models of Recognition Memory<br /> * '''Neal W. Morton''' and Sean M. Polyn, ''Vanderbilt University'': Manipulating the forward asymmetry of the contiguity effect with categorized stimuli<br /> * '''Adam F. Osth''' and Simon Dennis, ''Ohio State University'': A global model of episodic memory tasks<br /> * '''Gabriel Recchia''' and Michael N. Jones, ''Indiana University'': Different representational frameworks for abstract and concrete words? A closer look.<br /> * '''Lili Sahakyan''' and James R. Smith, ''University of North Carolina Greensboro'': Forgetting and subjective passage of time<br /> * '''Brian Siefke''', Troy A. Smith, Per B. Sederberg, ''Ohio State University'': Prediction-violation elicits von Restorff-like effects in the absence of feature-based item distinctiveness<br /> * '''Vishnu Sreekumar''', Yuwen Zhuang, Isidoras Doxas, Simon Dennis, Mikhail Belkin, ''Ohio State University'': The geometry, dynamics and network structure of context<br /> * '''Geoff Ward''', Rachel Grenfell-Essam, Jessica Spurgeon, and Lydia Tan, ''University of Essex'': Examining the Relationship Between Immediate Free Recall (IFR) and Immediate Serial Recall (ISR)<br /> * '''Hyungwook Yim''', Simon J. Dennis, &amp; Vladimir M. Sloutsky, ''Ohio State University'': The Role of Attention in Three-way binding in Episodic Memory<br /> * Wenyi Zhou, Andrea G. Hohmann, &amp; '''Jonathon D. Crystal''', ''Indiana University'': Rats use episodic memory to report on incidentally encoded information<br /> <br /> Posters should be no larger than 40&quot; by 60&quot;.<br /> <br /> === Past Symposia ===<br /> For information about previous years' CEMS, please [[CEMS|click here]].<br /> <br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2010&diff=3638 CEMS 2010 2012-10-13T21:51:45Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2010 =<br /> <br /> === Group Photo ===<br /> <br /> &lt;&lt;html(&lt;a href=&quot;/files/misc/cems_photo.tif&quot;&gt;Click&lt;/a&gt;)&gt;&gt; to view a group photo of symposium attendees in Rittenhouse Square, Philadelphia.<br /> <br /> == April 27 - April 29, 2010, Philadelphia, Pennsylvania ==<br /> <br /> The 2010 Context and Episodic Memory Symposium (CEMS) was held in Philadelphia, Pennsylvania, on the days of April 28th and April 29th. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> === Hotel ===<br /> The symposium was held at the [http://www.rittenhousehotel.com Rittenhouse Hotel] in Philadelphia.<br /> <br /> &lt;&lt;html(&lt;iframe width=&quot;425&quot; height=&quot;425&quot; frameborder=&quot;0&quot; scrolling=&quot;no&quot; marginheight=&quot;0&quot; marginwidth=&quot;0&quot; src=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;output=embed&quot;&gt;&lt;/iframe&gt;&lt;br /&gt;&lt;small&gt;&lt;a href=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;source=embed&quot; style=&quot;color:#0000FF;text-align:left&quot;&gt;View Larger Map&lt;/a&gt;&lt;/small&gt;)&gt;&gt;<br /> <br /> === Registration ===<br /> The registration fee of $250 includes breakfast, refreshments, and lunches. Registration is closed.<br /> <br /> === Posters ===<br /> The Symposium will include a poster session. Posters should be no larger than 40&quot; by 60&quot;.<br /> <br /> === Schedule ===<br /> <br /> Click to download a pdf of the schedule: [[attachment:CEMS2010_schedule.pdf|CEMS 2010 Schedule]]<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=MediaWiki:Sidebar&diff=2742 MediaWiki:Sidebar 2012-10-12T19:56:23Z <p>Memory: </p> <hr /> <div>* navigation<br /> ** mainpage|Research<br /> ** public pages:<br /> *** publications| Publications<br /> *** People|People<br /> *** Software|Software<br /> *** DataArchive|Data Archive<br /> *** WordPools|Word Pools<br /> *** Category:InternalWiki|Internal Wiki<br /> ** recentchanges-url|recentchanges<br /> ** helppage|help<br /> * SEARCH<br /> * TOOLBOX<br /> * LANGUAGES</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=MediaWiki:Sidebar&diff=2741 MediaWiki:Sidebar 2012-10-12T19:55:49Z <p>Memory: </p> <hr /> <div>* navigation<br /> ** mainpage|Research<br /> ** public pages:<br /> *** publications| Publications<br /> *** People|People<br /> *** Software|Software<br /> *** DataArchive|Data Archive<br /> *** WordPools|Word Pools<br /> ** recentchanges-url|recentchanges<br /> ** helppage|help<br /> * SEARCH<br /> * TOOLBOX<br /> * LANGUAGES</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=MediaWiki:Sidebar&diff=2739 MediaWiki:Sidebar 2012-10-12T19:54:41Z <p>Memory: Created page with &quot;* navigation ** mainpage|Research ** public pages: *** publications|publications *** People|People *** Software|Software *** Data_Archive|Data archive *** Wordpools|Word pools...&quot;</p> <hr /> <div>* navigation<br /> ** mainpage|Research<br /> ** public pages:<br /> *** publications|publications<br /> *** People|People<br /> *** Software|Software<br /> *** Data_Archive|Data archive<br /> *** Wordpools|Word pools<br /> ** recentchanges-url|recentchanges<br /> ** helppage|help<br /> * SEARCH<br /> * TOOLBOX<br /> * LANGUAGES</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Category:CEMS&diff=2736 Category:CEMS 2012-10-12T19:47:19Z <p>Memory: Created page with &quot;Category:Public&quot;</p> <hr /> <div>[[Category:Public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2013&diff=2735 CEMS 2013 2012-10-12T19:46:19Z <p>Memory: </p> <hr /> <div>_<br /> [[Category:Public]]<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2010&diff=2730 CEMS 2010 2012-10-12T19:45:46Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2010 =<br /> <br /> === Group Photo ===<br /> <br /> &lt;&lt;html(&lt;a href=&quot;/files/misc/cems_photo.tif&quot;&gt;Click&lt;/a&gt;)&gt;&gt; to view a group photo of symposium attendees in Rittenhouse Square, Philadelphia.<br /> <br /> == April 27 - April 29, 2010, Philadelphia, Pennsylvania ==<br /> <br /> The 2010 Context and Episodic Memory Symposium (CEMS) was held in Philadelphia, Pennsylvania, on the days of April 28th and April 29th. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> === Hotel ===<br /> The symposium was held at the [http://www.rittenhousehotel.com Rittenhouse Hotel] in Philadelphia.<br /> <br /> &lt;&lt;html(&lt;iframe width=&quot;425&quot; height=&quot;425&quot; frameborder=&quot;0&quot; scrolling=&quot;no&quot; marginheight=&quot;0&quot; marginwidth=&quot;0&quot; src=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;output=embed&quot;&gt;&lt;/iframe&gt;&lt;br /&gt;&lt;small&gt;&lt;a href=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;source=embed&quot; style=&quot;color:#0000FF;text-align:left&quot;&gt;View Larger Map&lt;/a&gt;&lt;/small&gt;)&gt;&gt;<br /> <br /> === Registration ===<br /> The registration fee of $250 includes breakfast, refreshments, and lunches. Registration is closed.<br /> <br /> === Posters ===<br /> The Symposium will include a poster session. Posters should be no larger than 40&quot; by 60&quot;.<br /> <br /> === Schedule ===<br /> <br /> Click to download a pdf of the schedule: [[attachment:CEMS2010_schedule.pdf|CEMS 2010 Schedule]]<br /> [[Category:public]]<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2011&diff=2731 CEMS 2011 2012-10-12T19:45:46Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2011 =<br /> <br /> == May 5th - May 6th, Philadelphia, Pennsylvania ==<br /> <br /> The 2011 Context and Episodic Memory Symposium (CEMS) will be held in Philadelphia, Pennsylvania, on the days of May 5th and May 6th. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> === Hotel ===<br /> The symposium will be held at the [http://www.rittenhousehotel.com Rittenhouse Hotel] in Philadelphia. Please make reservations prior to April 4, 2011. You can make a reservation by telephoning the Reservations Department at, (800) 635-1042 or (215) 546-9000 and asking for the special ''2011 Context &amp; Episodic Memory Symposium rate''. Rooms can be reserved at $235 per night.<br /> <br /> &lt;&lt;html(&lt;iframe width=&quot;425&quot; height=&quot;425&quot; frameborder=&quot;0&quot; scrolling=&quot;no&quot; marginheight=&quot;0&quot; marginwidth=&quot;0&quot; src=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;output=embed&quot;&gt;&lt;/iframe&gt;&lt;br /&gt;&lt;small&gt;&lt;a href=&quot;http://maps.google.com/maps?client=safari&amp;amp;oe=UTF-8&amp;amp;ie=UTF8&amp;amp;q=rittenhouse+hotel&amp;amp;fb=1&amp;amp;gl=us&amp;amp;hq=rittenhouse+hotel&amp;amp;hnear=Philadelphia,+PA&amp;amp;cid=0,0,3867394407394689544&amp;amp;ei=a57USpDrONSV8Ab79bmLDQ&amp;amp;ved=0CCQQnwIwAw&amp;amp;ll=39.950033,-75.172834&amp;amp;spn=0.006295,0.006295&amp;amp;iwloc=B&amp;amp;source=embed&quot; style=&quot;color:#0000FF;text-align:left&quot;&gt;View Larger Map&lt;/a&gt;&lt;/small&gt;)&gt;&gt;<br /> <br /> === Registration ===<br /> <br /> Registration for the conference is closed.<br /> [[Category:public]]<br /> == Schedule ==<br /> Click the link to download CEMS 2011 schedule: [http://memory.psych.upenn.edu/files/misc/CEMS2011_schedule.pdf CEMS 2011 Schedule]<br /> <br /> === Spoken Presentations ===<br /> <br /> Accepted spoken presentations:<br /> <br /> * '''Becker, Sue'''; McMaster University; ''Hippocampal neurogenesis is required for contextual memory formation: Empirical evidence from rats and humans''<br /> ** Commentator: Isabel Muzzio, University of Pennsylvania<br /> * '''Benjamin, Aaron'''; University of Illinois; ''Representational explanations of “process” dissociations in recognition: The DRYAD theory of aging and memory judgments''<br /> ** Commentator: Karl Healey, University of Pennsylvania<br /> * '''Howard, Marc'''; ''Syracuse University; Time in episodic memory''<br /> ** Commentator: Simon Dennis, Ohio State University <br /> * '''Lee, Michael'''; UC Irvine, ''Modeling multitrial free recall with unknown rehearsal times''<br /> ** Commentator: Geoff Ward, University of Essex<br /> * '''McClelland, Jay'''; Stanford University; ''REMERGE: A new approach to the neural basis of generalization and memory-based inference''<br /> ** Commentator: Ken Norman, Princeton University<br /> * '''Nosofsky, Rob'''; Indiana University; ''Short-Term Memory Scanning Viewed as Exemplar-Based Categorization''<br /> ** Commentator: Robert Sekuler, Brandeis University<br /> * '''Polyn, Sean'''; Vanderbilt University; ''Neural correlates of organization and distinctiveness''<br /> ** Commentator: David Donaldson, University of Sterling<br /> * '''Sahakyan, Lili'''; U.N.C. Greensboro; ''How Difficulty of Retrieval Affects Context Retrieval and Context Change in Free Recall''<br /> ** Commentator: Almut Hupbach, Lehigh University<br /> * '''Sederberg, Per'''; Ohio State University; ''Modeling the role of context and prediction error in encoding variability''<br /> ** Commentator: Amy Criss, Syracuse University<br /> * '''Shiffrin, Richard'''; Indiana University; ''Criterion setting and the dynamics of recognition memory''<br /> ** Commentator: Marc Howard, Syracuse University<br /> * '''Steyvers, Mark'''; U. C. Irvine; ''Wisdom of crowds in human memory: reconstructing past events by aggregating retrieved memories across individuals''<br /> ** Commentator: Sam Gershman, Princeton University<br /> * '''Turk-Browne, Nicholas'''; Princeton University; S''cene representations in parahippocampal cortex depend on temporal context''<br /> ** Commentator: Lila Davachi, New York University<br /> * '''van Zandt, Trish'''; Ohio State University; ''The Pervasive Problem of Criterion Setting''<br /> ** Commentator: Ken Malmberg, University of South Florida<br /> <br /> === Posters ===<br /> The Symposium will include two poster session. Posters should be no larger than 40&quot; by 60&quot;.<br /> <br /> * '''Aue, William R., Criss, Amy H., and Fischetti, Nicholas W'''; ''Associative information in memory: Evidence from cued recall.''<br /> * '''Biss, Renée K., and Hasher, Lynn'''; ''Distraction: An Intervention to Eliminate Older Adults’ Forgetting.''<br /> * '''Campbell, Karen L., Zimerman, Shira, and Hasher, Lynn'''; ''Age-related advantage in visual statistical learning.''<br /> * '''Chapman, Allison, and Dennis, Simon'''; ''Item noise in the Sternberg paradigm.''<br /> * '''Criss, Amy H., Wheeler, Mark E., &amp; McClelland, Jay L.'''; ''A differentiation account of recognition memory: Evidence from fMRI.''<br /> * '''Donaldson, David'''; ''Does brain activity really provide a legitimate biomarker of episodic memory?''<br /> * '''Gray, Kendra, and Sahakyan, Lili'''; ''The Impact of Testing and Spacing on the Storage of Contextual Information.''<br /> * '''Hupbach, Almut'''; ''What Affects Episodic Memory Updating?''<br /> * '''Kilic, Asli, Criss, Amy H., and Howard, Marc W.'''; ''Probed Recall: Empirical Evidence and Theoretical Implications.''<br /> * '''Kragel, James E., Morton, Neal W, Cohen, Zachary D., McCluey, Joshua D., and Polyn, Sean M.'''; ''Neural correlates of organization in free recall.''<br /> * '''Lohnas, Lynn, and Kahana, Michael'''; ''Compound cueing in free recall.''<br /> * '''Long, Nicole, Sederberg, Per, Miller, Jonathan, and Kahana, Michael'''; ''Neural correlates of temporal and semantic clustering in free recall.''<br /> * '''Manning, Jeremy, and Kahana, Michael'''; ''Temporal and frontal networks reveal how conceptual memories are organized.''<br /> * '''Morton, Neal W, and Polyn, Sean M.'''; ''Oscillatory neural correlates of category cuing during memory search.''<br /> * '''Osth, Adam, and Dennis, Simon'''; ''What are the boundary conditions of differentiation?''<br /> * '''Smith, Stephen K., and Dennis, Simon'''; ''False Memory for Sentences.''<br /> * '''Sreekumar, Vishnu, Zhang, Yuwen, Dennis, Simon, and Belkin, Mikhail'''; ''The dimensionality of visual environmental input.''<br /> * '''Turner, Brandon, and Dennis, Simon, and van Zandt, Trish'''; ''Bayesian techniques for memory models.''<br /> * '''Ward, Geoff, and Tan, Lydia'''; ''Free recall and Cued Recall of Categorised word lists using the overt rehearsal method: Recency-based implications for cue-overload.''<br /> * '''Westfall, Holly, and Malmberg, Kenneth'''; ''Visual Search Enhances Subsequent Mnemonic Search: Theta in Action?''<br /> * '''Yim, Hyungwook, Dennis, Simon J., and Sloutsky, Vladimir M.'''; ''The development of context use and three way bindings in episodic memory.''<br /> <br /> === Past Symposia ===<br /> For information about the 2010 CEMS, please [[CEMS/2010|click here]].<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2012&diff=2732 CEMS 2012 2012-10-12T19:45:46Z <p>Memory: </p> <hr /> <div>__NOTOC__<br /> = Context and Episodic Memory Symposium 2012 =<br /> <br /> == May 10th, Bloomington, IN ==<br /> <br /> The 2012 Context and Episodic Memory Symposium (CEMS) will be held in Bloomington, Indiana, on May 10th. The symposium is designed to be a forum for the exchange of ideas among colleagues working on theoretical and empirical approaches to the study of context and episodic memory, broadly construed.<br /> <br /> '''The schedule for talks has been finalized. See the schedule [[#schedule|here]].'''<br /> <br /> '''Registration information is now available! Please see [[#registration|below]].'''<br /> <br /> '''A preliminary list of poster presentations is available [[#posters|here]].'''<br /> <br /> ==== Festschrift ====<br /> <br /> Please note that this year CEMS is scheduled to follow a [http://cogs.indiana.edu/FestschriftForRichShiffrin Festschrift in honor of Richard M. Shiffrin]. CEMS attendees are invited to attend the Festschrift, which will begin the evening of May 7 and close with a banquet on the evening of May 9.<br /> <br /> More information, including registration information, can be found [http://cogs.indiana.edu/FestschriftForRichShiffrin on the Festschrift website].<br /> <br /> == Location &amp; Hotel ==<br /> The symposium will be held at the Indiana University Memorial Union, which also serves as the host hotel for the conference.<br /> <br /> &lt;&lt;html(&lt;iframe width=&quot;425&quot; height=&quot;350&quot; frameborder=&quot;0&quot; scrolling=&quot;no&quot; marginheight=&quot;0&quot; marginwidth=&quot;0&quot; src=&quot;http://maps.google.com/maps?f=q&amp;amp;source=s_q&amp;amp;hl=en&amp;amp;geocode=&amp;amp;q=&amp;amp;sll=39.167801,-86.523535&amp;amp;sspn=0.016703,0.024698&amp;amp;vpsrc=6&amp;amp;gl=us&amp;amp;ie=UTF8&amp;amp;ll=39.167668,-86.523621&amp;amp;spn=0.016703,0.024698&amp;amp;t=m&amp;amp;z=16&amp;amp;output=embed&quot;&gt;&lt;/iframe&gt;&lt;br /&gt;&lt;small&gt;&lt;a href=&quot;http://maps.google.com/maps?f=q&amp;amp;source=embed&amp;amp;hl=en&amp;amp;geocode=&amp;amp;q=&amp;amp;sll=39.167801,-86.523535&amp;amp;sspn=0.016703,0.024698&amp;amp;vpsrc=6&amp;amp;gl=us&amp;amp;ie=UTF8&amp;amp;ll=39.167668,-86.523621&amp;amp;spn=0.016703,0.024698&amp;amp;t=m&amp;amp;z=16&quot; style=&quot;color:#0000FF;text-align:left&quot;&gt;View Larger Map&lt;/a&gt;&lt;/small&gt;)&gt;&gt;<br /> <br /> === Hotel ===<br /> &lt;&lt;[[SeeSaw]](section=&quot;hotel&quot;,type=button,toshow=&quot;Click here to show hotel information&quot;,tohide=&quot;Click here to hide hotel information&quot;)&gt;&gt;<br /> <br /> &lt;pre&gt;&lt;nowiki&gt;{#!wiki seesaw hotel<br /> <br /> .'''Indiana Memorial Union (IMU)'''<br /> .900 East 7th Street<br /> .Bloomington, IN 47405<br /> <br /> '''The Indiana Memorial Union (IMU)''' operates as a hotel, a conference center and a student union. It is located in the center of campus in a scenic setting surrounded by woods, walking paths and a stream. Conference registration, all sessions and social functions will be centered at the IMU. For your convenience, we recommend that you book your hotel reservations at the IMU. <br /> <br /> '''Reservations'''<br /> <br /> *Phone: 800.209.8145 or 812.856.6381 FAX: 812.855.3426<br /> <br /> *If phoning, inform the reservation staff person that you would like to reserve a room from the ''Episodic Memory and Shiffrin Conference block''. Unless you identify yourself as a conference participant, you may be unable to obtain a room.<br /> <br /> *Online:Make reservations online at http://www.imu.indiana.edu/hotel/index.shtml <br /> <br /> *Enter Group Code: '''shiffrin'''<br /> <br /> .We encourage you to make your reservations early as accommodations at the IMU may be limited. The ''Conference'' block of hotel rooms will be released to the general public on '''April 9, 2012'''.<br /> <br /> '''Rates'''<br /> <br /> Hotel room rates vary based on <br /> <br /> *Type of room (single, double)<br /> *Weekday (Sunday – Thursday) or weekend (Friday &amp; Saturday) check-in<br /> <br /> The following are ''representative hotel room charges'' projected for the summer of 2012<br /> .Single, weekday room w/one double bed $105.00<br /> .Single, weekday room w/one king bed $135.00<br /> .Double, weekday room w/2 double beds $125.00<br /> .Double, weekday room w/2 queen beds $135.00<br /> <br /> Weekend rates are approximately $20.00 - $30.00 per day additional charge.<br /> <br /> All rooms are subject to 12% tax.<br /> <br /> '''Internet Access'''<br /> <br /> Free, wireless internet access is available throughout the IMU.<br /> <br /> '''Additional Lodging Options'''<br /> <br /> Bloomington has many lodging options. Although we recommend that you stay at the IMU, we invite you to check out other choices at [[http://visitbloomington.com|visitbloomington.com]].<br /> &lt;/nowiki&gt;&lt;/pre&gt;<br /> }<br /> <br /> === Travel ===<br /> &lt;&lt;[[SeeSaw]](section=&quot;travel&quot;,type=button,toshow=&quot;Click here to show travel information&quot;,tohide=&quot;Click here to hide travel information&quot;)&gt;&gt;<br /> <br /> &lt;pre&gt;&lt;nowiki&gt;{#!wiki seesaw travel<br /> '''Flight Information'''<br /> <br /> Domestic and International Participants: Most participants will find that traveling to Indiana University through Indianapolis International Airport is most convenient. International guests can elect to schedule direct flights into either Chicago O’Hara or Cincinnati International and then take a short 30 minute flight into Indianapolis.<br /> <br /> .Airport: Indianapolis International Airport<br /> .Airport Symbol: IND<br /> .Location: 50 miles (93 kilometers) north of Bloomington, Indiana<br /> <br /> '''Travel Agency Assistance'''<br /> <br /> If you would like assistance with your travel arrangements, we suggest that you contact Travel Leaders [[http://www.travelleaders.com/cts|www.travelleaders.com/cts]], a major international travel management company with offices in Bloomington, Indiana.<br /> <br /> .Phone: 812.339.7800 or 800.467.7800<br /> .FAX: 812.339.7854<br /> .Email: tgrafewampler@travlead.com<br /> <br /> '''Ground Transportation from Indianapolis International Airport to Indiana Memorial Union'''<br /> <br /> Shuttle: Go Express Travel (Formally Bloomington Shuttle)<br /> *Service 9 times daily between airport and Bloomington campus <br /> *Shuttle drop off points include Indiana Memorial Union (host hotel), Hampton Inn and Marriott Courtyard<br /> *Advance reservations: Recommended<br /> *Rates: currently $16.00 one way (rates are subject to change)<br /> *Reservations: On-line at: [[http://www.goexpresstravel.com]]<br /> *Phone: 800.589.6004 or 812.332.6004<br /> *Airport pick-up location: Ground Transportation Center. Lower level, outside of airport Baggage Claim<br /> <br /> Shuttle: Star of America<br /> *Service 9 times daily between airport and Bloomington campus <br /> *Shuttle drop off points include Indiana Memorial Union (host hotel), Hilton Garden Inn and other area hotels<br /> *Rates: currently $15.00 one way, for advanced reservations and $20.00 one way, for non-advanced reservations (rates are subject to change)<br /> *Reservations: On-line at: [[http://www.starofamerica.com|www.starofamerica.com]]<br /> *Phone: 800.933.0097 or 812.876.7851<br /> <br /> Limousine: Classic Touch Limousine<br /> *Door-to-door service from airport to any location in Bloomington<br /> *Advance reservations: Required<br /> *Rates: $122.00 roundtrip per person<br /> *when making your reservations, inform Classic touch that you are attending SSSS 2012 Conference<br /> *rate is for shared ride service, private car is not guaranteed<br /> *Reservations: On-line at: [[http://www.classictouchlimo.com]]<br /> *Phone: 800.319.0082 or 812.339.7269, select &quot;reservations&quot;<br /> *Airport Pick-up Location: Ground Transportation Center. Lower level, outside of airport Baggage Claim <br /> <br /> Car Rental: Most major car rental companies<br /> *[[http://www.avis.com|Avis]]<br /> *[[http://www.budget.com|Budget]]<br /> *[[http://www.enterprise.com|Enterprise]]<br /> *[[http://www.hertz.com|Hertz]]<br /> *[[http://www.nationalcar.com|National]]<br /> *[[http://www.thrifty.com|Thrifty]]<br /> <br /> Driving from Indianapolis airport to Indiana Memorial Union (center of IU campus)<br /> 1. When departing the airport, follow the signs to exit onto Ameriplex Parkway<br /> 1. Follow Ameriplex Parkway to IN-67 South/Kentucky Ave.<br /> 1. Turn Right onto IN-67 South/Kentucky Ave.<br /> 1. Follow IN-67 South to IN-39S<br /> 1. Turn left onto IN-39S<br /> 1. Follow IN-39S through Martinsville to IN-37S<br /> 1. Merge onto IN-37S to Bloomington<br /> 1. Exit RIGHT off Hwy 37 at “College &amp; Walnut” (you will emerge on to College Ave.)<br /> 1. Continue on College Avenue to 7th Street <br /> 1. Turn LEFT on 7th Street <br /> 1. Continue about 7 blocks <br /> 1. Turn RIGHT into the circle drive in front of the Indiana Memorial Union (parking is available in one of two lots adjacent to the IMU)<br /> <br /> '''Parking'''<br /> <br /> Free parking is available to all guests who stay at the Indiana Memorial Union. Commuters or participants who elect to stay at a hotel other than the IMU, may park in one of the two parking lots indicated on the map. View Map. Discount parking passes will be available at the symposium registration desk.<br /> <br /> &lt;/nowiki&gt;&lt;/pre&gt;<br /> }<br /> <br /> === Campus/Surrounding Area ===<br /> &lt;&lt;[[SeeSaw]](section=&quot;campus&quot;,type=button,toshow=&quot;Click here to show location information&quot;,tohide=&quot;Click here to hide location information&quot;)&gt;&gt;<br /> <br /> &lt;pre&gt;&lt;nowiki&gt;{#!wiki seesaw campus<br /> <br /> '''Bloomington Campus of Indiana University'''<br /> <br /> The Context and Episodic Memory Symposium (CEMS) will be held on the campus of Indiana University, located close to downtown Bloomington, Indiana, about 50 miles south of Indianapolis, Indiana. A comprehensive Bloomington Visitor’s Guide will be included with your conference check-in materials or you may request one [[http://www.visitbloomington.com/|online here]]. <br /> <br /> '''Scenic'''<br /> <br /> The IU Bloomington campus is a magnificent blend of traditional and modern architecture set in a landscaped environment. Walkways meander alongside streams, through woods and along tree lined paths. We invite you to preview some of the scenes that await you by taking a [[http://www.iub.edu/tour|virtual campus tour]].<br /> <br /> '''Culturally Rich'''<br /> <br /> IU Bloomington’s cultural offerings will surprise you with an impressive art museum, a full opera and symphony season, a non-circulating library of rare books and manuscripts and a museum of world culture….and that is just on the campus. The community of Bloomington is alive with art and music – international, classical, jazz, bluegrass, early and popular music. To obtain information about events which are occurring during the meeting, check the Events Calendar at http://indianapublicmedia.org/events/<br /> <br /> '''Local Time and Weather'''<br /> <br /> Bloomington is located in the Eastern Time Zone. At the time of the symposium, Bloomington will be operating on Eastern Daylight Time, the same time as New York City and the East Coast of the United States, and one hour ahead of Chicago.<br /> <br /> May weather can be variable with daytime temperature in the mid 60’s to low 70’s and nights in the mid to upper 50’s. It is also a time of year where some rainfall can be expected. Indoor meeting rooms are air-conditioned and often require a light sweater or jacket.<br /> <br /> '''Dining in Bloomington'''<br /> <br /> There are many pleasant pubs, restaurants and coffee houses located a short walking distance from campus. <br /> *Kirkwood Avenue is a main street leading from campus to downtown Bloomington. Along Kirkwood you will find many casual eating options.<br /> *4th Street is renowned for its unusual and unusually large selection of ethnic restaurants –Indian, Italian, Moroccan, Thai, Burmese, Mexican, Cajun, Korean and featuring authentic Tibetan cuisine.<br /> *Downtown Bloomington – a variety of eateries ranging from California-style coffee shop to sports bars to cafes to a long-standing Greek restaurant. Downtown Bloomington has two establishments – each with master chefs who have established national and international recognition for their culinary expertise.<br /> <br /> '''MUSEUMS &amp; SPECIAL EXHIBITS'''<br /> *The Kinsey Institute for Research in Sex, Gender and Reproduction [[http://www.kinseyinstitute.org/index.html|(website)]]<br /> .The unique history, collections and research of the Kinsey Institute have established it as a leader internationally in scholarship, teaching and service in sexuality, gender and reproduction. Self-guided tours are available during normal working hours. Visitors may view the Kinsey Art Gallery Monday through Friday 2:00 – 4:00pm.<br /> *IU Art Museum [[http://www.indiana.edu/~iuam|(website)]]<br /> .Designed by I.M. Pei, the building itself is a work of art. Galleries include Western Art, Ancient and Asian Art, Africa, Oceaniana and the Americas, and Special Exhibitions. Excellent gift shop. <br /> *Lilly Library [[http://www.indiana.edu/~liblilly|(website)]]<br /> .View rare and historic books, manuscripts and letters, as well as an extensive collection of mechanical puzzles. <br /> *Mathers Museum of World Cultures [[http://www.indiana.edu/~mathers|(website)]]<br /> .Travel the world from Australia to Zanzibar without leaving Bloomington. <br /> *School of Fine Arts (SoFA) Gallery [[http://www.fa.indiana.edu/~sofa|(website)]]<br /> .Enjoy contemporary art by nationally known artists and IU’s own students.<br /> *Jordan Hall Greenhouse [[http://www.bio.indiana.edu/faculty/facilities/greenhouse.shtml|(website)]]<br /> .IU Biology provides space to grow plants that serve the teaching and research needs of the Department. The greenhouses contain many plants from around the world, which are grown in conservatory rooms open to the public. <br /> *Kirkwood Observatory [[http://www.astro.indiana.edu/kirkwood.shtml|(website)]] <br /> .Observe the skies on a summer evening. Check web site for schedule. <br /> <br /> '''PERFORMING ARTS'''<br /> *Jacobs School of Music [[http://www.music.indiana.edu|(website)]]<br /> .Attend an opera, recital concert, band performance from a world class school of music performed by world class musicians. <br /> *Department of Theatre &amp; Drama [[http://www.indiana.edu/~thtr/|(website)]]<br /> .Experience award-winning classics and bold new premieres on three different stages and at the summer theatre in Nashville, Indiana (20 miles from the Bloomington campus) <br /> &lt;/nowiki&gt;&lt;/pre&gt;<br /> }<br /> <br /> &lt;span id=&quot;registration&quot;&gt;&lt;/span&gt;<br /> == Registration ==<br /> <br /> '''Conference Registration includes:'''<br /> * Participation in all sessions <br /> * Conference materials <br /> * Lunch<br /> * Morning and afternoon refreshment breaks <br /> * Poster Session Reception<br /> <br /> '''Registration fees:'''<br /> * Faculty: $250 on or before April 10 ($300 after April 10)<br /> * Students/Postdocs: $200 on or before April 10 ($250 after April 10)<br /> <br /> '''How to Register:'''<br /> * '''Online:''' Payment by credit card check, or purchase order. [https://indianauniv-web.ungerboeck.com/reg/reg_p1_form.aspx?oc=10&amp;ct=GENERAL&amp;eventid=5188 Click here to register.]<br /> * '''Phone:''' Call 1.800.933.9330 and ask to speak with the Conference Registrar.<br /> * '''To pay by check:''' Register online, select the pay by check option, print the registration invoice and mail with your check made payable to Indiana University #33-12 to:<br /> .Indiana University<br /> .IU Conferences<br /> .P.O. Box 6212<br /> .Indianapolis, IN 46206-6212<br /> <br /> '''Cancellation of Registration''' <br /> * On or before April 10, 2012: Full refund, less a $50.00 processing fee.<br /> * After April 10, 2012: No refund, but we would be happy to accept substitute participants. <br /> * /!\ '''Note:''' Cancellations must be submitted in writing to the Conference Registrar at iuconfs@indiana.edu.<br /> <br /> '''Questions about Registration?'''<br /> <br /> .Contact the Conference Registrar at iuconfs@indiana.edu or call 1.800.933.9330.<br /> <br /> &lt;span id=&quot;abstracts&quot;&gt;&lt;/span&gt;<br /> == Abstract submission ==<br /> '''Submission of abstracts for both posters and talks has closed.'''<br /> <br /> The format of CEMS is to have a relatively small number of spoken presentations each followed by a commentary given by a scientist working on related problems. The program committee aims to identify submissions that highlight major new theoretical and/or empirical advances. Papers not selected for these spoken presentations can be given as poster presentations. In previous years, posters have been a major highlight of the meeting and have been very well attended. The Bennet B. Murdock award will be given for the best poster or spoken presentation by a young investigator, as determined by the committee.<br /> <br /> &lt;span id=&quot;schedule&quot;&gt;&lt;/span&gt;<br /> == Schedule &amp; Spoken Presentations ==<br /> <br /> '''8:00 Breakfast''' in Frangipani Room<br /> <br /> '''8:25 Michael Kahana''': Welcome and introductory remarks in Frangipani Room<br /> <br /> '''8:30 Jeroen Raaijmakers''', University of Amsterdam: ''Is retrieval induced forgetting an inhibitory process?''<br /> * Commentator: Ken Norman, Princeton University<br /> <br /> '''9:10 Aaron Benjamin''', University of Illinois: ''What makes distributed practice effective?''<br /> * Commentator: Jeroen Raaijmakers, University of Amsterdam<br /> <br /> '''9:50 Per Sederberg''', Ohio State University: ''The context repetition effect: Repeating temporal context improves recognition for once-presented items''<br /> * Commentator: Lynn Lohnas, University of Pennsylvania<br /> <br /> '''10:30 Break''' in Tree Suite Lounge<br /> <br /> '''10:45 Yuji Naya''', New York University: ''Integrating what and when across the primate medial temporal lobe''<br /> * Commentator: Marc Howard, Boston University<br /> <br /> '''11:25 Kate Jeffery''', University College London: ''Origin of contextual inputs to the hippocampal place cells''<br /> * Commentator: Jeremy Caplan, University of Alberta<br /> <br /> '''12:05 David Smith''', Cornell University: ''Hippocampal context representations: Form and function''<br /> * Commentator: Sue Becker, McMaster University<br /> <br /> '''12:45 Lunch''' in State Room East &amp; West<br /> <br /> '''1:45 Group Photo''' (Location TBD)<br /> <br /> '''2:00 Jeffrey Starns''', University of Massachusetts: ''Testing the unequal-variance account of zROC slope without a zROC in sight''<br /> * Commentator: Christoph Weidemann, Swansea University<br /> <br /> '''2:40 David Donaldson''', University of Stirling: ''Does episodic recollection really fail sometimes, or does it just feel like that?''<br /> * Commentator: Rachel Diana, Virginia Tech<br /> <br /> '''3:20 Break''' in Tree Suite Lounge<br /> <br /> '''3:35 Greg Cox''', Indiana University: ''Modeling of recognition decision making''<br /> * Commentator: Asli Kilic, Syracuse University<br /> <br /> '''4:15 Brandon Turner''', University of California, Irvine: ''ABCDE: A practical likelihood-free Bayesian analysis technique with applications to computational models of memory and decision-making''<br /> * Commentator: EJ Wagenmakers, University of Amsterdam<br /> <br /> '''6:00 Reception and Posters''' in Solarium (Hors D'oeuvres, cash bar)<br /> <br /> &lt;span id=&quot;posters&quot;&gt;&lt;/span&gt;<br /> === Posters ===<br /> <br /> &lt;span style=&quot;font-size: smaller&quot;&gt;(Presenting author given in '''bold type'''. Please contact [[mailto:context.symposium@gmail.com|Patrick Crutchley]] with any corrections.)&lt;/span&gt;<br /> <br /> * '''William Aue''' &amp; Amy Criss, ''Syracuse University'': Item strength and associative information: Examining the role of item repetition on subsequent cued recall<br /> * '''Hunter Ball''', G. A. Brewer, M. R. DeWitt, J. B. Knight, R. L. Marsh, &amp; J. L. Hicks: Successful source memory in the absence of item memory<br /> * '''John F. Burke''' and Michael J. Kahana, ''University of Pennsylvania'': Theta oscillations and high-gamma activity mark episodic memory retrieval<br /> * '''Yvonne Y. Chen''', Kirstie Lithgow, Jumjury A. Hemmerich, Jeremy B. Caplan, ''University of Alberta'': Is what goes in what comes out? Encoding and retrieval ERP components in recognition memory are related<br /> * '''Brian Dillon''', Alan Mishler, Shayne Sloggett, and Colin Phillips, ''UMass Amherst'': Contrasting cues to subjecthood: comparing verbal agreement and reflexive anaphors<br /> * '''Jonathan Eskreis-Winkler''', Lynn Lohnas, and Michael J. Kahana, ''University of Pennsylvania'': sCMR: A context maintenance and retrieval model of both serial and free recall<br /> * Samuel J. Gershman, Anna C. Schapiro, Almut Hupbach*, '''Kenneth A. Norman*''', ''Princeton University'': Neural context reinstatement predicts memory misattribution<br /> * '''Karl Healey''', Lynn Lohnas &amp; Michael J. Kahana, ''University of Pennsylvania'': Modeling age-related changes in episodic memory<br /> * '''Pernille Hemmer''', Amy Criss &amp; Brad Wyble, ''Syracuse University'': Assessing a Neural Basis for Differentiation Accounts of Recognition Memory<br /> * '''Marc Howard''', ''Syracuse University'': A distributed representation of spatial and temporal context in the medial temporal lobe<br /> * '''Brendan T. Johns''' &amp; Michael N. Jones, ''Indiana University'': A Synchronization Model of Recognition and Source Memory<br /> * '''George Kachergis''', Gregory E. Cox, and Richard M. Shiffrin, ''Indiana University'': Dynamic Effects of Perceptual and Categorical Similarity on Recognition Memory<br /> * '''Asli Kilic''' &amp; Amy Criss, ''Syracuse University'': The Strength Based Mirror Effect and Output Interference in Recognition Memory<br /> * '''James Kragel''' and Sean Polyn, ''Vanderbilt University'': The dynamics of frontoparietal and medial temporal lobe networks during self-initiated memory search<br /> * '''Joel Kuhn''', Lynn Lohnas, and Michael J. Kahana, ''University of Pennsylvania'': A single-store account of the negative recency effect in final free recall<br /> * '''Jarrod A. Lewis-Peacock''' &amp; Kenneth A. Norman, ''Princeton University'': Moderate activation of items in working memory can weaken long-term memory<br /> * '''Yang S. Liu''', Michelle Chan, Jeremy B. Caplan, ''University of Alberta'': Contextual versus sequential-search models of judgements of relative order<br /> * '''Lynn Lohnas''' &amp; Michael Kahana, ''University of Pennsylvania'': A retrieved-context account of repetition effects in free recall<br /> * '''Jeremy R. Manning''', David M. Blei, and Kenneth A. Norman, ''Princeton University'': Tracking item representations during free recall<br /> * Max Montenegro, '''Jay Myung''' and Mark Pitt, ''Ohio State University'': Unidentifiability of Simulation-based Models of Recognition Memory<br /> * '''Neal W. Morton''' and Sean M. Polyn, ''Vanderbilt University'': Manipulating the forward asymmetry of the contiguity effect with categorized stimuli<br /> * '''Adam F. Osth''' and Simon Dennis, ''Ohio State University'': A global model of episodic memory tasks<br /> * '''Gabriel Recchia''' and Michael N. Jones, ''Indiana University'': Different representational frameworks for abstract and concrete words? A closer look.<br /> * '''Lili Sahakyan''' and James R. Smith, ''University of North Carolina Greensboro'': Forgetting and subjective passage of time<br /> * '''Brian Siefke''', Troy A. Smith, Per B. Sederberg, ''Ohio State University'': Prediction-violation elicits von Restorff-like effects in the absence of feature-based item distinctiveness<br /> * '''Vishnu Sreekumar''', Yuwen Zhuang, Isidoras Doxas, Simon Dennis, Mikhail Belkin, ''Ohio State University'': The geometry, dynamics and network structure of context<br /> * '''Geoff Ward''', Rachel Grenfell-Essam, Jessica Spurgeon, and Lydia Tan, ''University of Essex'': Examining the Relationship Between Immediate Free Recall (IFR) and Immediate Serial Recall (ISR)<br /> * '''Hyungwook Yim''', Simon J. Dennis, &amp; Vladimir M. Sloutsky, ''Ohio State University'': The Role of Attention in Three-way binding in Episodic Memory<br /> * Wenyi Zhou, Andrea G. Hohmann, &amp; '''Jonathon D. Crystal''', ''Indiana University'': Rats use episodic memory to report on incidentally encoded information<br /> <br /> Posters should be no larger than 40&quot; by 60&quot;.<br /> <br /> === Past Symposia ===<br /> For information about previous years' CEMS, please [[CEMS|click here]].<br /> [[Category:public]]<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2013&diff=2734 CEMS 2013 2012-10-12T19:45:46Z <p>Memory: </p> <hr /> <div>_<br /> [[Category:CEMS]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Category:Public&diff=2729 Category:Public 2012-10-12T19:42:31Z <p>Memory: </p> <hr /> <div><br /> &lt;categorytree mode=pages&gt;Public&lt;/categorytree&gt;</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Main_Page&diff=2728 Main Page 2012-10-12T19:38:29Z <p>Memory: </p> <hr /> <div>__NOTITLE__<br /> __NOTOC__<br /> [[File:CML_logo.gif|center]]<br /> <br /> [[File:fhm_cover.png|frame|&lt;big&gt;Foundations of Human Memory&lt;/big&gt;&lt;br /&gt;by Michael J. Kahana&lt;br /&gt;&lt;br /&gt;Please [[FHM|click here]] for more information and errata.]]<br /> <br /> &lt;big&gt;The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes. &lt;br&gt;&lt;br&gt;Our research is focused on neurocomputational mechanisms of human episodic and spatial memory. Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. Using conditional probability and latency analyses ([[Publications#Kaha96|Kahana, M. J., 1996]]) one can quantify the way in which people transition from one recalled word to the next (see Fig. 1).&lt;br&gt;&lt;br&gt;Furthermore, by studying the electrophysiology of the brain while engaged in memory tasks (as in [[Publications#SedeEtal07a|Sederberg et al., 2007]]), we can find, for example, regions that show increased or decreased activity when a word is successfully encoded (i.e., later recalled) versus when it is not successfully encoded, known as the ''subsequent memory effect'' (see Fig. 2).&lt;/big&gt;<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> |[[File:crp2a_square.jpg|none|thumb|400px|''Fig. 1:'' '''The contiguity effect in free recall.''' This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.]] || [[File:gamma_enc_ret.jpg|400px|none|thumb|''Fig. 2:'' '''Brain oscillations associated with successful encoding are reinstated during correct retrieval.''' The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.]]<br /> |}<br /> <br /> == Computational models of human memory ==<br /> To explain the processes underlying encoding, organization and retrieval of episodic memories, Kahana and colleagues (notably Marc Howard, Sean Polyn, Per Sederberg, and Lynn Lohnas) have developed a class of retrieved-context models. These models assume that the input to the memory system itself produces contextual drift, and that the current state of context is used to retrieve items from memory. The temporal context model (TCM; [[Publications#HowaKaha02|Howard and Kahana, 2002]]) was introduced to explain recency and contiguity effects in free recall. Specifically, recency effects appear because the context at the time of the memory test is most similar to the context associated with recent items. When an item is retrieved at test, it reinstates the context active when that item was studied. Because this context overlaps with the encoding context of the items' neighbors, a contiguity effect results. Consistent with experimental data, TCM and its variants also predict that recency and contiguity effects are approximately time-scale invariant ([[Publications#SedeEtal08|Sederberg, Howard, and Kahana, 2008]]). Most recently, the [[CMR|Context Maintenance and Retrieval model]] (CMR; [[Publications#PolyEtal09|Polyn, Norman, and Kahana, 2009]]) is a generalized version of TCM that accounts for non-temporal influences on recall dynamics.<br /> <br /> [[File:cmr.png|center|frame|''Fig. 3:'' '''The context-maintenance and retrieval model.''' A. Schematic of CMR. When an item is studied its feature representation (fi) is activated on F. The feature representation contains both item and source features (e.g., size / animacy judgment). An associative weight matrix (MFC) allows each item to update a context representation that contains the item and source features of recently studied items. During study, the features of each item are associated with coactive context elements. During recall, the context representation reactivates (through MCF) the features of recently studied items. B. Hypothesized interactions between prefrontal cortex, temporal cortex, and medial temporal lobe during memory encoding and retrieval predicted by CMR. C. IRTs as a function of output position and total number of recalled items (4, 5, 6 or 7). D. Serial position curves for list lengths (LL) of 20, 30 and 40 items.]]<br /> <br /> <br /> == Neural oscillatory correlates of episodic memory ==<br /> In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with electrocorticographic (ECoG) and single neuron recordings from neurosurgical patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation and retrieval. Analyses of such recordings have shown that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall ([[Publications#SedeEtal06|Sederberg et al., 2006]]). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied ([[Publications#SedeEtal07a|Sederberg et al., 2007]]; see Fig. 2 above).<br /> <br /> [[File:theta_gamma_2.png|500px|center|thumb|''Fig. 4:'' '''A dynamic view of the subsequent memory effect.''' Significant changes in spectral power during successful memory formation are shown for both high (62-95 Hz; top row) and low frequencies (2-8 Hz; middle row). Regions that exhibited an increase and decrease in power are colored in red and blue, respectively. Spectral power was calculated on a 500 ms time window incremented every 10 ms throughout item presentation (green bar above topographic plots). Dashed lines indicate item presentation. Bottom row, left to right: The number of regions showing (1) an increase in low-frequency power, (2) a decrease in low-frequency power, (3) an increase in high-frequency power, and (4) a decrease in high-frequency power.]]<br /> <br /> The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. In [[Publications#MannEtal11a|Manning et al., 2011]], we sought to determine whether contextual reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. We examined ECoG activity from 69 neurosurgical patients as they studied and recalled lists of words in a delayed free recall paradigm (Fig. 5A), and computed similarity between the ECoG patterns recorded just prior to each recall with those recorded after the patient had studied each word. We found that, upon recalling a studied word, the recorded patterns of brain activity were not only similar to the patterns observed when the word was studied, but were also similar to the patterns observed during study of neighboring list words, with similarity decreasing reliably with positional distance (Fig. 5C), just as predicted by context reinstatement models of free recall. The degree to which individual patients exhibited this neural signature of contextual reinstatement was correlated with the contiguity effect as seen in Fig. 5D. In this way, the study provides neural evidence for contextual reinstatement in humans.<br /> <br /> [[File:neuralContext.png|center|frame|''Fig. 5:'' '''Neural evidence for contextual reinstatement in humans.''' A. After studying a list of 20 words and performing a brief distraction task, a participant recalls as many words as he can remember, in any order. ECoG activity is recorded during each study and recall event. The similarity between the recorded patterns is computed as a function of lag. B. Each dot marks the location of a single electrode [temporal lobe (1,815 electrodes), frontal lobe (1,737 electrodes), parietal lobe (512 electrodes), and occipital lobe (138 electrodes)]. C. Similarity between the activity recorded during recall of aword from serial position i and study of a word from serial position i + lag. (Black dot denotes study and recall of the same word, i.e., lag = 0.) D. Participants exhibiting stronger neural signatures of context reinstatement also exhibited more pronounced contiguity effects (as measured by a percentile-based temporal clustering score). (Figure after Manning et al., 2011.)]]<br /> <br /> == Neural mechanisms underlying human reward learning and decision making ==<br /> Recent studies in our lab have shown, for the first time, that the activity of individual neurons in the human basal ganglia are related to learning and decision making ([[Publications#ZaghEtal09|Zaghloul et al. 2009]], [[Publications#ZaghEtal12|Zaghloul et al., in press]]). Through clinical collaborations, we directly recorded neural activity from single-neurons in the human basal-ganglia as participants performed a probabilistic learning and and selection task. We found that dopaminergic neurons in the substantia nigra were more active when participants received unexpected rewards compared to when they received expected rewards ([[Publications#ZaghEtal09|Zaghloul et al. 2009]]). This is consistent with current theories of human reinforcement learning that implicate dopaminergic neurons in encoding prediction error, a value that increases as rewards become more surprising (Niv et al 2009). Additionally, we found that neurons in the subthalamic nucleus were more active when participants had to choose between similarly attractive options ([[Publications#ZaghEtal12|Zaghloul et al., in press]]). This also is consistent with current theories of human decision making which suggest that the subthalamic nucleus plays a critical role in making difficult &quot;high-conflict&quot; decisions (Frank et al 2006). By studying the neural mechanisms underlying human learning and decision making, we hope lay the neurophysiological groundwork for understanding the hypothesized role of the basal ganglia in addiction and pathological reward-seeking and impulsive behavior (Hyman et al., 2006).<br /> <br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:ZaghEtal09.png|300px|center|frame|''Fig. 6:'' '''Normalized SN firing rates for unexpected gains and losses.''' Red line indicates feedback onset. The gray region marks the 225 ms interval between 150 and 375 ms after feedback onset. Traces represent activity from 15 SN cells recorded from ten participants. (Figure from Zaghloul et al. 2009.)]] || [[File:ZaghEtal12.png|300px|center|frame|''Fig. 7:'' '''Normalized STN firing rates during high (solid) and low (dashed) conflict decision trials.''' Red line indicates presentation of stimulus pairs. Grey shaded region represents the interval between 100 and 400 ms after stimulus onset. Traces represent activity from 27 STN cells recorded from 14 participants. (Figure from Zaghloul et al., 2012.)]]<br /> |}<br /> <br /> == Human spatial memory and cognition ==<br /> Our lab is also interested in the neural mechanisms underlying human spatial cognition. In this work, we use virtual reality computer games (Fig. 7) in which participants learn the locations of landmarks in virtual environments. To download a sample of a YellowCab session, click &lt;&lt;[[ExtLink]](/files/misc/yc2_movie.mov,here)&gt;&gt;. Using this approach, we have documented the existence and character of the 4-8 Hz theta rhythm in the human brain as participants learned to navigate through complex virtual environments ([[Publications#KahaEtal99b|Kahana et al., 1999]]; [[Publications#CaplEtal01|Caplan et al., 2001]]; [[Publications#CaplEtal03|Caplan et al., 2003]]; [[Publications#EkstEtal05|Ekstrom et al., 2005]]; [[Publications#JacoEtal09|Jacobs et al., 2010a]]). Recording individual neurons during virtual navigation, we have discovered &quot;place cells&quot; in the human brain. These cells, which are found primarily in the human hippocampus, become active when a given spatial location is being traversed [[Publications#EkstEtal03|Ekstrom et al. (2003)]]. We also identified several other cellular responses during navigation: cells that become active in response to viewing a salient landmark (from any location), cells that become active when searching for a particular goal location (irrespective of location or view), and cells that respond when traveling in a given direction (bearing/heading).<br /> <br /> [[Publications#JacoEtal10|Jacobs et al. (2010b)]] examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, entorhinal cortex (EC) path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:path_task.png|center|frame|''Fig. 8:'' '''The Yellow Cab virtual-navigation video game.''' (A) A patient’s on- screen view of the environment during the game. (B) Overhead map of the environment. Possible destination stores are brightly colored and outlined in red. Pale-colored buildings form the remainder of the outer and inner walls of the environment.]] || [[File:path_regions.png|center|frame|''Fig. 9:'' '''Regional distribution of path cells.''' Bars depict percentage of neurons observed in each brain area that were path cells. Dark shading indicates clockwise or counterclockwise path cells; light shading indicates complex path cells. Region key: A, amygdala; Cx, parietal and temporal cortices; EC, entorhinal cortex; Fr, Frontal cortices; H, hippocampus; PHG, parahippocampal gyrus.]]<br /> |-<br /> |colspan=&quot;2&quot;| [[File:pathcell.png|center|frame|''Fig. 10:'' '''Clockwise and counterclockwise path cell activity.''' Firing rate of a clockwise path cell from a single patient's right entorhinal cortex during one testing session. Panel 1: Mean firing rate during clockwise movement at each location in the virtual environment. Color indicates the mean firing rate (in Hz), and gray lines indicate the path of the patient. Panel 2: Neuronal activity during counterclockwise movements. Panel 3: Indication of whether firing rate at each location was statistically greater (rank-sum test) during clockwise movements (red) or during counterclockwise movements (blue). Panel 4: Firing rate of this neuron combined across all regions of the environment for clockwise (&quot;CW&quot;) and counterclockwise (&quot;CCW&quot;) movements during straight movements and turns (&quot;Turn&quot;). Panel 4 inset: Activity of a neuron recorded from this same microelectrode in a different testing session; the two cells have very different firing rates and thus are likely distinct, nearby neurons. (Figure from Jacobs et al., 2010b.)]]<br /> |}<br /> <br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Research&diff=2727 Research 2012-10-12T19:35:34Z <p>Memory: Redirected page to Main Page</p> <hr /> <div>#REDIRECT[[Main_Page]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Research&diff=2726 Research 2012-10-12T19:35:08Z <p>Memory: Redirected page to Main page</p> <hr /> <div>#REDIRECT[[Main_page]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Main_Page&diff=2725 Main Page 2012-10-12T19:34:19Z <p>Memory: </p> <hr /> <div><br /> __NOTOC__<br /> [[File:CML_logo.gif|center]]<br /> <br /> [[File:fhm_cover.png|frame|&lt;big&gt;Foundations of Human Memory&lt;/big&gt;&lt;br /&gt;by Michael J. Kahana&lt;br /&gt;&lt;br /&gt;Please [[FHM|click here]] for more information and errata.]]<br /> <br /> &lt;big&gt;The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes. &lt;br&gt;&lt;br&gt;Our research is focused on neurocomputational mechanisms of human episodic and spatial memory. Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. Using conditional probability and latency analyses ([[Publications#Kaha96|Kahana, M. J., 1996]]) one can quantify the way in which people transition from one recalled word to the next (see Fig. 1).&lt;br&gt;&lt;br&gt;Furthermore, by studying the electrophysiology of the brain while engaged in memory tasks (as in [[Publications#SedeEtal07a|Sederberg et al., 2007]]), we can find, for example, regions that show increased or decreased activity when a word is successfully encoded (i.e., later recalled) versus when it is not successfully encoded, known as the ''subsequent memory effect'' (see Fig. 2).&lt;/big&gt;<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> |[[File:crp2a_square.jpg|none|thumb|400px|''Fig. 1:'' '''The contiguity effect in free recall.''' This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.]] || [[File:gamma_enc_ret.jpg|400px|none|thumb|''Fig. 2:'' '''Brain oscillations associated with successful encoding are reinstated during correct retrieval.''' The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.]]<br /> |}<br /> <br /> == Computational models of human memory ==<br /> To explain the processes underlying encoding, organization and retrieval of episodic memories, Kahana and colleagues (notably Marc Howard, Sean Polyn, Per Sederberg, and Lynn Lohnas) have developed a class of retrieved-context models. These models assume that the input to the memory system itself produces contextual drift, and that the current state of context is used to retrieve items from memory. The temporal context model (TCM; [[Publications#HowaKaha02|Howard and Kahana, 2002]]) was introduced to explain recency and contiguity effects in free recall. Specifically, recency effects appear because the context at the time of the memory test is most similar to the context associated with recent items. When an item is retrieved at test, it reinstates the context active when that item was studied. Because this context overlaps with the encoding context of the items' neighbors, a contiguity effect results. Consistent with experimental data, TCM and its variants also predict that recency and contiguity effects are approximately time-scale invariant ([[Publications#SedeEtal08|Sederberg, Howard, and Kahana, 2008]]). Most recently, the [[CMR|Context Maintenance and Retrieval model]] (CMR; [[Publications#PolyEtal09|Polyn, Norman, and Kahana, 2009]]) is a generalized version of TCM that accounts for non-temporal influences on recall dynamics.<br /> <br /> [[File:cmr.png|center|frame|''Fig. 3:'' '''The context-maintenance and retrieval model.''' A. Schematic of CMR. When an item is studied its feature representation (fi) is activated on F. The feature representation contains both item and source features (e.g., size / animacy judgment). An associative weight matrix (MFC) allows each item to update a context representation that contains the item and source features of recently studied items. During study, the features of each item are associated with coactive context elements. During recall, the context representation reactivates (through MCF) the features of recently studied items. B. Hypothesized interactions between prefrontal cortex, temporal cortex, and medial temporal lobe during memory encoding and retrieval predicted by CMR. C. IRTs as a function of output position and total number of recalled items (4, 5, 6 or 7). D. Serial position curves for list lengths (LL) of 20, 30 and 40 items.]]<br /> <br /> <br /> == Neural oscillatory correlates of episodic memory ==<br /> In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with electrocorticographic (ECoG) and single neuron recordings from neurosurgical patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation and retrieval. Analyses of such recordings have shown that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall ([[Publications#SedeEtal06|Sederberg et al., 2006]]). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied ([[Publications#SedeEtal07a|Sederberg et al., 2007]]; see Fig. 2 above).<br /> <br /> [[File:theta_gamma_2.png|500px|center|thumb|''Fig. 4:'' '''A dynamic view of the subsequent memory effect.''' Significant changes in spectral power during successful memory formation are shown for both high (62-95 Hz; top row) and low frequencies (2-8 Hz; middle row). Regions that exhibited an increase and decrease in power are colored in red and blue, respectively. Spectral power was calculated on a 500 ms time window incremented every 10 ms throughout item presentation (green bar above topographic plots). Dashed lines indicate item presentation. Bottom row, left to right: The number of regions showing (1) an increase in low-frequency power, (2) a decrease in low-frequency power, (3) an increase in high-frequency power, and (4) a decrease in high-frequency power.]]<br /> <br /> The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. In [[Publications#MannEtal11a|Manning et al., 2011]], we sought to determine whether contextual reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. We examined ECoG activity from 69 neurosurgical patients as they studied and recalled lists of words in a delayed free recall paradigm (Fig. 5A), and computed similarity between the ECoG patterns recorded just prior to each recall with those recorded after the patient had studied each word. We found that, upon recalling a studied word, the recorded patterns of brain activity were not only similar to the patterns observed when the word was studied, but were also similar to the patterns observed during study of neighboring list words, with similarity decreasing reliably with positional distance (Fig. 5C), just as predicted by context reinstatement models of free recall. The degree to which individual patients exhibited this neural signature of contextual reinstatement was correlated with the contiguity effect as seen in Fig. 5D. In this way, the study provides neural evidence for contextual reinstatement in humans.<br /> <br /> [[File:neuralContext.png|center|frame|''Fig. 5:'' '''Neural evidence for contextual reinstatement in humans.''' A. After studying a list of 20 words and performing a brief distraction task, a participant recalls as many words as he can remember, in any order. ECoG activity is recorded during each study and recall event. The similarity between the recorded patterns is computed as a function of lag. B. Each dot marks the location of a single electrode [temporal lobe (1,815 electrodes), frontal lobe (1,737 electrodes), parietal lobe (512 electrodes), and occipital lobe (138 electrodes)]. C. Similarity between the activity recorded during recall of aword from serial position i and study of a word from serial position i + lag. (Black dot denotes study and recall of the same word, i.e., lag = 0.) D. Participants exhibiting stronger neural signatures of context reinstatement also exhibited more pronounced contiguity effects (as measured by a percentile-based temporal clustering score). (Figure after Manning et al., 2011.)]]<br /> <br /> == Neural mechanisms underlying human reward learning and decision making ==<br /> Recent studies in our lab have shown, for the first time, that the activity of individual neurons in the human basal ganglia are related to learning and decision making ([[Publications#ZaghEtal09|Zaghloul et al. 2009]], [[Publications#ZaghEtal12|Zaghloul et al., in press]]). Through clinical collaborations, we directly recorded neural activity from single-neurons in the human basal-ganglia as participants performed a probabilistic learning and and selection task. We found that dopaminergic neurons in the substantia nigra were more active when participants received unexpected rewards compared to when they received expected rewards ([[Publications#ZaghEtal09|Zaghloul et al. 2009]]). This is consistent with current theories of human reinforcement learning that implicate dopaminergic neurons in encoding prediction error, a value that increases as rewards become more surprising (Niv et al 2009). Additionally, we found that neurons in the subthalamic nucleus were more active when participants had to choose between similarly attractive options ([[Publications#ZaghEtal12|Zaghloul et al., in press]]). This also is consistent with current theories of human decision making which suggest that the subthalamic nucleus plays a critical role in making difficult &quot;high-conflict&quot; decisions (Frank et al 2006). By studying the neural mechanisms underlying human learning and decision making, we hope lay the neurophysiological groundwork for understanding the hypothesized role of the basal ganglia in addiction and pathological reward-seeking and impulsive behavior (Hyman et al., 2006).<br /> <br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:ZaghEtal09.png|300px|center|frame|''Fig. 6:'' '''Normalized SN firing rates for unexpected gains and losses.''' Red line indicates feedback onset. The gray region marks the 225 ms interval between 150 and 375 ms after feedback onset. Traces represent activity from 15 SN cells recorded from ten participants. (Figure from Zaghloul et al. 2009.)]] || [[File:ZaghEtal12.png|300px|center|frame|''Fig. 7:'' '''Normalized STN firing rates during high (solid) and low (dashed) conflict decision trials.''' Red line indicates presentation of stimulus pairs. Grey shaded region represents the interval between 100 and 400 ms after stimulus onset. Traces represent activity from 27 STN cells recorded from 14 participants. (Figure from Zaghloul et al., 2012.)]]<br /> |}<br /> <br /> == Human spatial memory and cognition ==<br /> Our lab is also interested in the neural mechanisms underlying human spatial cognition. In this work, we use virtual reality computer games (Fig. 7) in which participants learn the locations of landmarks in virtual environments. To download a sample of a YellowCab session, click &lt;&lt;[[ExtLink]](/files/misc/yc2_movie.mov,here)&gt;&gt;. Using this approach, we have documented the existence and character of the 4-8 Hz theta rhythm in the human brain as participants learned to navigate through complex virtual environments ([[Publications#KahaEtal99b|Kahana et al., 1999]]; [[Publications#CaplEtal01|Caplan et al., 2001]]; [[Publications#CaplEtal03|Caplan et al., 2003]]; [[Publications#EkstEtal05|Ekstrom et al., 2005]]; [[Publications#JacoEtal09|Jacobs et al., 2010a]]). Recording individual neurons during virtual navigation, we have discovered &quot;place cells&quot; in the human brain. These cells, which are found primarily in the human hippocampus, become active when a given spatial location is being traversed [[Publications#EkstEtal03|Ekstrom et al. (2003)]]. We also identified several other cellular responses during navigation: cells that become active in response to viewing a salient landmark (from any location), cells that become active when searching for a particular goal location (irrespective of location or view), and cells that respond when traveling in a given direction (bearing/heading).<br /> <br /> [[Publications#JacoEtal10|Jacobs et al. (2010b)]] examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, entorhinal cortex (EC) path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:path_task.png|center|frame|''Fig. 8:'' '''The Yellow Cab virtual-navigation video game.''' (A) A patient’s on- screen view of the environment during the game. (B) Overhead map of the environment. Possible destination stores are brightly colored and outlined in red. Pale-colored buildings form the remainder of the outer and inner walls of the environment.]] || [[File:path_regions.png|center|frame|''Fig. 9:'' '''Regional distribution of path cells.''' Bars depict percentage of neurons observed in each brain area that were path cells. Dark shading indicates clockwise or counterclockwise path cells; light shading indicates complex path cells. Region key: A, amygdala; Cx, parietal and temporal cortices; EC, entorhinal cortex; Fr, Frontal cortices; H, hippocampus; PHG, parahippocampal gyrus.]]<br /> |-<br /> |colspan=&quot;2&quot;| [[File:pathcell.png|center|frame|''Fig. 10:'' '''Clockwise and counterclockwise path cell activity.''' Firing rate of a clockwise path cell from a single patient's right entorhinal cortex during one testing session. Panel 1: Mean firing rate during clockwise movement at each location in the virtual environment. Color indicates the mean firing rate (in Hz), and gray lines indicate the path of the patient. Panel 2: Neuronal activity during counterclockwise movements. Panel 3: Indication of whether firing rate at each location was statistically greater (rank-sum test) during clockwise movements (red) or during counterclockwise movements (blue). Panel 4: Firing rate of this neuron combined across all regions of the environment for clockwise (&quot;CW&quot;) and counterclockwise (&quot;CCW&quot;) movements during straight movements and turns (&quot;Turn&quot;). Panel 4 inset: Activity of a neuron recorded from this same microelectrode in a different testing session; the two cells have very different firing rates and thus are likely distinct, nearby neurons. (Figure from Jacobs et al., 2010b.)]]<br /> |}<br /> <br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=CEMS_2013&diff=2707 CEMS 2013 2012-10-11T19:51:07Z <p>Memory: Created page with &quot;_&quot;</p> <hr /> <div>_</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Category:Public&diff=2704 Category:Public 2012-10-11T18:41:27Z <p>Memory: </p> <hr /> <div>_</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Category:Public&diff=2703 Category:Public 2012-10-11T18:41:20Z <p>Memory: Created page with &quot; v&quot;</p> <hr /> <div> v</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Research&diff=2702 Research 2012-10-05T20:59:10Z <p>Memory: Changed protection level for &quot;Research&quot; (‎[edit=autoconfirmed] (indefinite) ‎[move=autoconfirmed] (indefinite))</p> <hr /> <div><br /> __NOTOC__<br /> [[File:CML_logo.gif|center]]<br /> <br /> [[File:fhm_cover.png|frame|&lt;big&gt;Foundations of Human Memory&lt;/big&gt;&lt;br /&gt;by Michael J. Kahana&lt;br /&gt;&lt;br /&gt;Please [[FHM|click here]] for more information and errata.]]<br /> <br /> &lt;big&gt;The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes. &lt;br&gt;&lt;br&gt;Our research is focused on neurocomputational mechanisms of human episodic and spatial memory. Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. Using conditional probability and latency analyses ([[Publications#Kaha96|Kahana, M. J., 1996]]) one can quantify the way in which people transition from one recalled word to the next (see Fig. 1).&lt;br&gt;&lt;br&gt;Furthermore, by studying the electrophysiology of the brain while engaged in memory tasks (as in [[Publications#SedeEtal07a|Sederberg et al., 2007]]), we can find, for example, regions that show increased or decreased activity when a word is successfully encoded (i.e., later recalled) versus when it is not successfully encoded, known as the ''subsequent memory effect'' (see Fig. 2).&lt;/big&gt;<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> |[[File:crp2a_square.jpg|none|frame|''Fig. 1:'' '''The contiguity effect in free recall.''' This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.]] || [[File:gamma_enc_ret.jpg|none|frame|''Fig. 2:'' '''Brain oscillations associated with successful encoding are reinstated during correct retrieval.''' The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.]]<br /> |}<br /> <br /> == Computational models of human memory ==<br /> To explain the processes underlying encoding, organization and retrieval of episodic memories, Kahana and colleagues (notably Marc Howard, Sean Polyn, Per Sederberg, and Lynn Lohnas) have developed a class of retrieved-context models. These models assume that the input to the memory system itself produces contextual drift, and that the current state of context is used to retrieve items from memory. The temporal context model (TCM; [[Publications#HowaKaha02|Howard and Kahana, 2002]]) was introduced to explain recency and contiguity effects in free recall. Specifically, recency effects appear because the context at the time of the memory test is most similar to the context associated with recent items. When an item is retrieved at test, it reinstates the context active when that item was studied. Because this context overlaps with the encoding context of the items' neighbors, a contiguity effect results. Consistent with experimental data, TCM and its variants also predict that recency and contiguity effects are approximately time-scale invariant ([[Publications#SedeEtal08|Sederberg, Howard, and Kahana, 2008]]). Most recently, the [[CMR|Context Maintenance and Retrieval model]] (CMR; [[Publications#PolyEtal09|Polyn, Norman, and Kahana, 2009]]) is a generalized version of TCM that accounts for non-temporal influences on recall dynamics.<br /> <br /> [[File:cmr.png|center|frame|''Fig. 3:'' '''The context-maintenance and retrieval model.''' A. Schematic of CMR. When an item is studied its feature representation (fi) is activated on F. The feature representation contains both item and source features (e.g., size / animacy judgment). An associative weight matrix (MFC) allows each item to update a context representation that contains the item and source features of recently studied items. During study, the features of each item are associated with coactive context elements. During recall, the context representation reactivates (through MCF) the features of recently studied items. B. Hypothesized interactions between prefrontal cortex, temporal cortex, and medial temporal lobe during memory encoding and retrieval predicted by CMR. C. IRTs as a function of output position and total number of recalled items (4, 5, 6 or 7). D. Serial position curves for list lengths (LL) of 20, 30 and 40 items.]]<br /> <br /> <br /> == Neural oscillatory correlates of episodic memory ==<br /> In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with electrocorticographic (ECoG) and single neuron recordings from neurosurgical patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation and retrieval. Analyses of such recordings have shown that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall ([[Publications#SedeEtal06|Sederberg et al., 2006]]). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied ([[Publications#SedeEtal07a|Sederberg et al., 2007]]; see Fig. 2 above).<br /> <br /> [[File:theta_gamma_2.png|center|frame|''Fig. 4:'' '''A dynamic view of the subsequent memory effect.''' Significant changes in spectral power during successful memory formation are shown for both high (62-95 Hz; top row) and low frequencies (2-8 Hz; middle row). Regions that exhibited an increase and decrease in power are colored in red and blue, respectively. Spectral power was calculated on a 500 ms time window incremented every 10 ms throughout item presentation (green bar above topographic plots). Dashed lines indicate item presentation. Bottom row, left to right: The number of regions showing (1) an increase in low-frequency power, (2) a decrease in low-frequency power, (3) an increase in high-frequency power, and (4) a decrease in high-frequency power.]]<br /> <br /> The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. In [[Publications#MannEtal11a|Manning et al., 2011]], we sought to determine whether contextual reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. We examined ECoG activity from 69 neurosurgical patients as they studied and recalled lists of words in a delayed free recall paradigm (Fig. 5A), and computed similarity between the ECoG patterns recorded just prior to each recall with those recorded after the patient had studied each word. We found that, upon recalling a studied word, the recorded patterns of brain activity were not only similar to the patterns observed when the word was studied, but were also similar to the patterns observed during study of neighboring list words, with similarity decreasing reliably with positional distance (Fig. 5C), just as predicted by context reinstatement models of free recall. The degree to which individual patients exhibited this neural signature of contextual reinstatement was correlated with the contiguity effect as seen in Fig. 5D. In this way, the study provides neural evidence for contextual reinstatement in humans.<br /> <br /> [[File:neuralContext.png|center|frame|''Fig. 5:'' '''Neural evidence for contextual reinstatement in humans.''' A. After studying a list of 20 words and performing a brief distraction task, a participant recalls as many words as he can remember, in any order. ECoG activity is recorded during each study and recall event. The similarity between the recorded patterns is computed as a function of lag. B. Each dot marks the location of a single electrode [temporal lobe (1,815 electrodes), frontal lobe (1,737 electrodes), parietal lobe (512 electrodes), and occipital lobe (138 electrodes)]. C. Similarity between the activity recorded during recall of aword from serial position i and study of a word from serial position i + lag. (Black dot denotes study and recall of the same word, i.e., lag = 0.) D. Participants exhibiting stronger neural signatures of context reinstatement also exhibited more pronounced contiguity effects (as measured by a percentile-based temporal clustering score). (Figure after Manning et al., 2011.)]]<br /> <br /> == Neural mechanisms underlying human reward learning and decision making ==<br /> Recent studies in our lab have shown, for the first time, that the activity of individual neurons in the human basal ganglia are related to learning and decision making ([[Publications#ZaghEtal09|Zaghloul et al. 2009]], [[Publications#ZaghEtal12|Zaghloul et al., in press]]). Through clinical collaborations, we directly recorded neural activity from single-neurons in the human basal-ganglia as participants performed a probabilistic learning and and selection task. We found that dopaminergic neurons in the substantia nigra were more active when participants received unexpected rewards compared to when they received expected rewards ([[Publications#ZaghEtal09|Zaghloul et al. 2009]]). This is consistent with current theories of human reinforcement learning that implicate dopaminergic neurons in encoding prediction error, a value that increases as rewards become more surprising (Niv et al 2009). Additionally, we found that neurons in the subthalamic nucleus were more active when participants had to choose between similarly attractive options ([[Publications#ZaghEtal12|Zaghloul et al., in press]]). This also is consistent with current theories of human decision making which suggest that the subthalamic nucleus plays a critical role in making difficult &quot;high-conflict&quot; decisions (Frank et al 2006). By studying the neural mechanisms underlying human learning and decision making, we hope lay the neurophysiological groundwork for understanding the hypothesized role of the basal ganglia in addiction and pathological reward-seeking and impulsive behavior (Hyman et al., 2006).<br /> <br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:ZaghEtal09.png|center|frame|''Fig. 6:'' '''Normalized SN firing rates for unexpected gains and losses.''' Red line indicates feedback onset. The gray region marks the 225 ms interval between 150 and 375 ms after feedback onset. Traces represent activity from 15 SN cells recorded from ten participants. (Figure from Zaghloul et al. 2009.)]] || [[File:ZaghEtal12.png|center|frame|''Fig. 7:'' '''Normalized STN firing rates during high (solid) and low (dashed) conflict decision trials.''' Red line indicates presentation of stimulus pairs. Grey shaded region represents the interval between 100 and 400 ms after stimulus onset. Traces represent activity from 27 STN cells recorded from 14 participants. (Figure from Zaghloul et al., 2012.)]]<br /> |}<br /> <br /> == Human spatial memory and cognition ==<br /> Our lab is also interested in the neural mechanisms underlying human spatial cognition. In this work, we use virtual reality computer games (Fig. 7) in which participants learn the locations of landmarks in virtual environments. To download a sample of a YellowCab session, click &lt;&lt;[[ExtLink]](/files/misc/yc2_movie.mov,here)&gt;&gt;. Using this approach, we have documented the existence and character of the 4-8 Hz theta rhythm in the human brain as participants learned to navigate through complex virtual environments ([[Publications#KahaEtal99b|Kahana et al., 1999]]; [[Publications#CaplEtal01|Caplan et al., 2001]]; [[Publications#CaplEtal03|Caplan et al., 2003]]; [[Publications#EkstEtal05|Ekstrom et al., 2005]]; [[Publications#JacoEtal09|Jacobs et al., 2010a]]). Recording individual neurons during virtual navigation, we have discovered &quot;place cells&quot; in the human brain. These cells, which are found primarily in the human hippocampus, become active when a given spatial location is being traversed [[Publications#EkstEtal03|Ekstrom et al. (2003)]]. We also identified several other cellular responses during navigation: cells that become active in response to viewing a salient landmark (from any location), cells that become active when searching for a particular goal location (irrespective of location or view), and cells that respond when traveling in a given direction (bearing/heading).<br /> <br /> [[Publications#JacoEtal10|Jacobs et al. (2010b)]] examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, entorhinal cortex (EC) path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:path_task.png|center|frame|''Fig. 8:'' '''The Yellow Cab virtual-navigation video game.''' (A) A patient’s on- screen view of the environment during the game. (B) Overhead map of the environment. Possible destination stores are brightly colored and outlined in red. Pale-colored buildings form the remainder of the outer and inner walls of the environment.]] || [[File:path_regions.png|center|frame|''Fig. 9:'' '''Regional distribution of path cells.''' Bars depict percentage of neurons observed in each brain area that were path cells. Dark shading indicates clockwise or counterclockwise path cells; light shading indicates complex path cells. Region key: A, amygdala; Cx, parietal and temporal cortices; EC, entorhinal cortex; Fr, Frontal cortices; H, hippocampus; PHG, parahippocampal gyrus.]]<br /> |-<br /> |colspan=&quot;2&quot;| [[File:pathcell.png|center|frame|''Fig. 10:'' '''Clockwise and counterclockwise path cell activity.''' Firing rate of a clockwise path cell from a single patient's right entorhinal cortex during one testing session. Panel 1: Mean firing rate during clockwise movement at each location in the virtual environment. Color indicates the mean firing rate (in Hz), and gray lines indicate the path of the patient. Panel 2: Neuronal activity during counterclockwise movements. Panel 3: Indication of whether firing rate at each location was statistically greater (rank-sum test) during clockwise movements (red) or during counterclockwise movements (blue). Panel 4: Firing rate of this neuron combined across all regions of the environment for clockwise (&quot;CW&quot;) and counterclockwise (&quot;CCW&quot;) movements during straight movements and turns (&quot;Turn&quot;). Panel 4 inset: Activity of a neuron recorded from this same microelectrode in a different testing session; the two cells have very different firing rates and thus are likely distinct, nearby neurons. (Figure from Jacobs et al., 2010b.)]]<br /> |}<br /> <br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Research&diff=2699 Research 2012-10-05T20:09:03Z <p>Memory: </p> <hr /> <div><br /> __NOTOC__<br /> [[File:CML_logo.gif|center]]<br /> <br /> [[File:fhm_cover.png|frame|Foundations of Human Memory&lt;br /&gt;by Michael J. Kahana&lt;br /&gt;&lt;br /&gt;Please [[FHM|click here]] for more information and errata.]]<br /> <br /> &lt;big&gt;The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes. &lt;br&gt;&lt;br&gt;Our research is focused on neurocomputational mechanisms of human episodic and spatial memory. Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. Using conditional probability and latency analyses ([[Publications#Kaha96|Kahana, M. J., 1996]]) one can quantify the way in which people transition from one recalled word to the next (see Fig. 1).&lt;br&gt;&lt;br&gt;Furthermore, by studying the electrophysiology of the brain while engaged in memory tasks (as in [[Publications#SedeEtal07a|Sederberg et al., 2007]]), we can find, for example, regions that show increased or decreased activity when a word is successfully encoded (i.e., later recalled) versus when it is not successfully encoded, known as the ''subsequent memory effect'' (see Fig. 2).&lt;/big&gt;<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> |[[File:crp2a_square.jpg|none|frame|Fig. 1: '''The contiguity effect in free recall.''' This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.]] || [[File:gamma_enc_ret.jpg|none|frame|Fig. 2: '''Brain oscillations associated with successful encoding are reinstated during correct retrieval.''' The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.]]<br /> |}<br /> <br /> == Computational models of human memory ==<br /> To explain the processes underlying encoding, organization and retrieval of episodic memories, Kahana and colleagues (notably Marc Howard, Sean Polyn, Per Sederberg, and Lynn Lohnas) have developed a class of retrieved-context models. These models assume that the input to the memory system itself produces contextual drift, and that the current state of context is used to retrieve items from memory. The temporal context model (TCM; [[Publications#HowaKaha02|Howard and Kahana, 2002]]) was introduced to explain recency and contiguity effects in free recall. Specifically, recency effects appear because the context at the time of the memory test is most similar to the context associated with recent items. When an item is retrieved at test, it reinstates the context active when that item was studied. Because this context overlaps with the encoding context of the items' neighbors, a contiguity effect results. Consistent with experimental data, TCM and its variants also predict that recency and contiguity effects are approximately time-scale invariant ([[Publications#SedeEtal08|Sederberg, Howard, and Kahana, 2008]]). Most recently, the [[CMR|Context Maintenance and Retrieval model]] (CMR; [[Publications#PolyEtal09|Polyn, Norman, and Kahana, 2009]]) is a generalized version of TCM that accounts for non-temporal influences on recall dynamics.<br /> <br /> [[File:cmr.png|center|frame|Fig. 3: The context-maintenance and retrieval model. A. Schematic of CMR. When an item is studied its feature representation (fi) is activated on F. The feature representation contains both item and source features (e.g., size / animacy judgment). An associative weight matrix (MFC) allows each item to update a context representation that contains the item and source features of recently studied items. During study, the features of each item are associated with coactive context elements. During recall, the context representation reactivates (through MCF) the features of recently studied items. B. Hypothesized interactions between prefrontal cortex, temporal cortex, and medial temporal lobe during memory encoding and retrieval predicted by CMR. C. IRTs as a function of output position and total number of recalled items (4, 5, 6 or 7). D. Serial position curves for list lengths (LL) of 20, 30 and 40 items.]]<br /> <br /> <br /> == Neural oscillatory correlates of episodic memory ==<br /> In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with electrocorticographic (ECoG) and single neuron recordings from neurosurgical patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation and retrieval. Analyses of such recordings have shown that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall ([[Publications#SedeEtal06|Sederberg et al., 2006]]). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied ([[Publications#SedeEtal07a|Sederberg et al., 2007]]; see Fig. 2 above).<br /> <br /> [[File:theta_gamma_2.png|center|frame|Fig. 4: A dynamic view of the subsequent memory effect. Significant changes in spectral power during successful memory formation are shown for both high (62-95 Hz; top row) and low frequencies (2-8 Hz; middle row). Regions that exhibited an increase and decrease in power are colored in red and blue, respectively. Spectral power was calculated on a 500 ms time window incremented every 10 ms throughout item presentation (green bar above topographic plots). Dashed lines indicate item presentation. Bottom row, left to right: The number of regions showing (1) an increase in low-frequency power, (2) a decrease in low-frequency power, (3) an increase in high-frequency power, and (4) a decrease in high-frequency power.]]<br /> <br /> The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. In [[Publications#MannEtal11a|Manning et al., 2011]], we sought to determine whether contextual reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. We examined ECoG activity from 69 neurosurgical patients as they studied and recalled lists of words in a delayed free recall paradigm (Fig. 5A), and computed similarity between the ECoG patterns recorded just prior to each recall with those recorded after the patient had studied each word. We found that, upon recalling a studied word, the recorded patterns of brain activity were not only similar to the patterns observed when the word was studied, but were also similar to the patterns observed during study of neighboring list words, with similarity decreasing reliably with positional distance (Fig. 5C), just as predicted by context reinstatement models of free recall. The degree to which individual patients exhibited this neural signature of contextual reinstatement was correlated with the contiguity effect as seen in Fig. 5D. In this way, the study provides neural evidence for contextual reinstatement in humans.<br /> <br /> [[File:neuralContext.png|center|frame|Fig. 5: '''Neural evidence for contextual reinstatement in humans.''' A. After studying a list of 20 words and performing a brief distraction task, a participant recalls as many words as he can remember, in any order. ECoG activity is recorded during each study and recall event. The similarity between the recorded patterns is computed as a function of lag. B. Each dot marks the location of a single electrode [temporal lobe (1,815 electrodes), frontal lobe (1,737 electrodes), parietal lobe (512 electrodes), and occipital lobe (138 electrodes)]. C. Similarity between the activity recorded during recall of aword from serial position i and study of a word from serial position i + lag. (Black dot denotes study and recall of the same word, i.e., lag = 0.) D. Participants exhibiting stronger neural signatures of context reinstatement also exhibited more pronounced contiguity effects (as measured by a percentile-based temporal clustering score). (Figure after Manning et al., 2011.)]]<br /> <br /> == Neural mechanisms underlying human reward learning and decision making ==<br /> Recent studies in our lab have shown, for the first time, that the activity of individual neurons in the human basal ganglia are related to learning and decision making ([[Publications#ZaghEtal09|Zaghloul et al. 2009]], [[Publications#ZaghEtal12|Zaghloul et al., in press]]). Through clinical collaborations, we directly recorded neural activity from single-neurons in the human basal-ganglia as participants performed a probabilistic learning and and selection task. We found that dopaminergic neurons in the substantia nigra were more active when participants received unexpected rewards compared to when they received expected rewards ([[Publications#ZaghEtal09|Zaghloul et al. 2009]]). This is consistent with current theories of human reinforcement learning that implicate dopaminergic neurons in encoding prediction error, a value that increases as rewards become more surprising (Niv et al 2009). Additionally, we found that neurons in the subthalamic nucleus were more active when participants had to choose between similarly attractive options ([[Publications#ZaghEtal12|Zaghloul et al., in press]]). This also is consistent with current theories of human decision making which suggest that the subthalamic nucleus plays a critical role in making difficult &quot;high-conflict&quot; decisions (Frank et al 2006). By studying the neural mechanisms underlying human learning and decision making, we hope lay the neurophysiological groundwork for understanding the hypothesized role of the basal ganglia in addiction and pathological reward-seeking and impulsive behavior (Hyman et al., 2006).<br /> <br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:ZaghEtal09.png|center|frame|Fig. 6: Normalized SN firing rates for unexpected gains and losses. Red line indicates feedback onset. The gray region marks the 225 ms interval between 150 and 375 ms after feedback onset. Traces represent activity from 15 SN cells recorded from ten participants. (Figure from Zaghloul et al. 2009.)]] || [[File:ZaghEtal12.png|center|frame|Fig. 7: Normalized STN firing rates during high (solid) and low (dashed) conflict decision trials. Red line indicates presentation of stimulus pairs. Grey shaded region represents the interval between 100 and 400 ms after stimulus onset. Traces represent activity from 27 STN cells recorded from 14 participants. (Figure from Zaghloul et al., 2012.)]]<br /> |}<br /> <br /> == Human spatial memory and cognition ==<br /> Our lab is also interested in the neural mechanisms underlying human spatial cognition. In this work, we use virtual reality computer games (Fig. 7) in which participants learn the locations of landmarks in virtual environments. To download a sample of a YellowCab session, click &lt;&lt;[[ExtLink]](/files/misc/yc2_movie.mov,here)&gt;&gt;. Using this approach, we have documented the existence and character of the 4-8 Hz theta rhythm in the human brain as participants learned to navigate through complex virtual environments ([[Publications#KahaEtal99b|Kahana et al., 1999]]; [[Publications#CaplEtal01|Caplan et al., 2001]]; [[Publications#CaplEtal03|Caplan et al., 2003]]; [[Publications#EkstEtal05|Ekstrom et al., 2005]]; [[Publications#JacoEtal09|Jacobs et al., 2010a]]). Recording individual neurons during virtual navigation, we have discovered &quot;place cells&quot; in the human brain. These cells, which are found primarily in the human hippocampus, become active when a given spatial location is being traversed [[Publications#EkstEtal03|Ekstrom et al. (2003)]]. We also identified several other cellular responses during navigation: cells that become active in response to viewing a salient landmark (from any location), cells that become active when searching for a particular goal location (irrespective of location or view), and cells that respond when traveling in a given direction (bearing/heading).<br /> <br /> [[Publications#JacoEtal10|Jacobs et al. (2010b)]] examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, entorhinal cortex (EC) path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:path_task.png|center|frame|Fig. 8: The Yellow Cab virtual-navigation video game. (A) A patient’s on- screen view of the environment during the game. (B) Overhead map of the environment. Possible destination stores are brightly colored and outlined in red. Pale-colored buildings form the remainder of the outer and inner walls of the environment.]] || [[File:path_regions.png|center|frame|Fig. 9: Regional distribution of path cells. Bars depict percentage of neurons observed in each brain area that were path cells. Dark shading indicates clockwise or counterclockwise path cells; light shading indicates complex path cells. Region key: A, amygdala; Cx, parietal and temporal cortices; EC, entorhinal cortex; Fr, Frontal cortices; H, hippocampus; PHG, parahippocampal gyrus.]]<br /> |-<br /> |colspan=&quot;2&quot;| [[File:pathcell.png|center|frame|Fig. 10: Clockwise and counterclockwise path cell activity. Firing rate of a clockwise path cell from a single patient's right entorhinal cortex during one testing session. Panel 1: Mean firing rate during clockwise movement at each location in the virtual environment. Color indicates the mean firing rate (in Hz), and gray lines indicate the path of the patient. Panel 2: Neuronal activity during counterclockwise movements. Panel 3: Indication of whether firing rate at each location was statistically greater (rank-sum test) during clockwise movements (red) or during counterclockwise movements (blue). Panel 4: Firing rate of this neuron combined across all regions of the environment for clockwise (&quot;CW&quot;) and counterclockwise (&quot;CCW&quot;) movements during straight movements and turns (&quot;Turn&quot;). Panel 4 inset: Activity of a neuron recorded from this same microelectrode in a different testing session; the two cells have very different firing rates and thus are likely distinct, nearby neurons. (Figure from Jacobs et al., 2010b.)]]<br /> |}<br /> <br /> [[Category:public]]</div> Memory https://memory.psych.upenn.edu/mediawiki/index.php?title=Research&diff=2698 Research 2012-10-05T19:57:56Z <p>Memory: </p> <hr /> <div><br /> __NOTOC__<br /> [[File:CML_logo.gif|center]]<br /> <br /> &lt;big&gt;The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes. &lt;br&gt;&lt;br&gt;Our research is focused on neurocomputational mechanisms of human episodic and spatial memory. Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. Using conditional probability and latency analyses ([[Publications#Kaha96|Kahana, M. J., 1996]]) one can quantify the way in which people transition from one recalled word to the next (see Fig. 1).&lt;br&gt;&lt;br&gt;Furthermore, by studying the electrophysiology of the brain while engaged in memory tasks (as in [[Publications#SedeEtal07a|Sederberg et al., 2007]]), we can find, for example, regions that show increased or decreased activity when a word is successfully encoded (i.e., later recalled) versus when it is not successfully encoded, known as the ''subsequent memory effect'' (see Fig. 2).&lt;/big&gt;<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> |[[File:crp2a_square.jpg|none|frame|Fig. 1: '''The contiguity effect in free recall.''' This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.]] || [[File:gamma_enc_ret.jpg|none|frame|Fig. 2: '''Brain oscillations associated with successful encoding are reinstated during correct retrieval.''' The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.]]<br /> |}<br /> <br /> == Computational models of human memory ==<br /> To explain the processes underlying encoding, organization and retrieval of episodic memories, Kahana and colleagues (notably Marc Howard, Sean Polyn, Per Sederberg, and Lynn Lohnas) have developed a class of retrieved-context models. These models assume that the input to the memory system itself produces contextual drift, and that the current state of context is used to retrieve items from memory. The temporal context model (TCM; [[Publications#HowaKaha02|Howard and Kahana, 2002]]) was introduced to explain recency and contiguity effects in free recall. Specifically, recency effects appear because the context at the time of the memory test is most similar to the context associated with recent items. When an item is retrieved at test, it reinstates the context active when that item was studied. Because this context overlaps with the encoding context of the items' neighbors, a contiguity effect results. Consistent with experimental data, TCM and its variants also predict that recency and contiguity effects are approximately time-scale invariant ([[Publications#SedeEtal08|Sederberg, Howard, and Kahana, 2008]]). Most recently, the [[CMR|Context Maintenance and Retrieval model]] (CMR; [[Publications#PolyEtal09|Polyn, Norman, and Kahana, 2009]]) is a generalized version of TCM that accounts for non-temporal influences on recall dynamics.<br /> <br /> [[File:cmr.png|center|frame|Fig. 3: The context-maintenance and retrieval model. A. Schematic of CMR. When an item is studied its feature representation (fi) is activated on F. The feature representation contains both item and source features (e.g., size / animacy judgment). An associative weight matrix (MFC) allows each item to update a context representation that contains the item and source features of recently studied items. During study, the features of each item are associated with coactive context elements. During recall, the context representation reactivates (through MCF) the features of recently studied items. B. Hypothesized interactions between prefrontal cortex, temporal cortex, and medial temporal lobe during memory encoding and retrieval predicted by CMR. C. IRTs as a function of output position and total number of recalled items (4, 5, 6 or 7). D. Serial position curves for list lengths (LL) of 20, 30 and 40 items.]]<br /> <br /> <br /> == Neural oscillatory correlates of episodic memory ==<br /> In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with electrocorticographic (ECoG) and single neuron recordings from neurosurgical patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation and retrieval. Analyses of such recordings have shown that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall ([[Publications#SedeEtal06|Sederberg et al., 2006]]). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied ([[Publications#SedeEtal07a|Sederberg et al., 2007]]; see Fig. 2 above).<br /> <br /> [[File:theta_gamma_2.png|center|frame|Fig. 4: A dynamic view of the subsequent memory effect. Significant changes in spectral power during successful memory formation are shown for both high (62-95 Hz; top row) and low frequencies (2-8 Hz; middle row). Regions that exhibited an increase and decrease in power are colored in red and blue, respectively. Spectral power was calculated on a 500 ms time window incremented every 10 ms throughout item presentation (green bar above topographic plots). Dashed lines indicate item presentation. Bottom row, left to right: The number of regions showing (1) an increase in low-frequency power, (2) a decrease in low-frequency power, (3) an increase in high-frequency power, and (4) a decrease in high-frequency power.]]<br /> <br /> The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. In [[Publications#MannEtal11a|Manning et al., 2011]], we sought to determine whether contextual reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. We examined ECoG activity from 69 neurosurgical patients as they studied and recalled lists of words in a delayed free recall paradigm (Fig. 5A), and computed similarity between the ECoG patterns recorded just prior to each recall with those recorded after the patient had studied each word. We found that, upon recalling a studied word, the recorded patterns of brain activity were not only similar to the patterns observed when the word was studied, but were also similar to the patterns observed during study of neighboring list words, with similarity decreasing reliably with positional distance (Fig. 5C), just as predicted by context reinstatement models of free recall. The degree to which individual patients exhibited this neural signature of contextual reinstatement was correlated with the contiguity effect as seen in Fig. 5D. In this way, the study provides neural evidence for contextual reinstatement in humans.<br /> <br /> [[File:neuralContext.png|center|frame|Fig. 5: '''Neural evidence for contextual reinstatement in humans.''' A. After studying a list of 20 words and performing a brief distraction task, a participant recalls as many words as he can remember, in any order. ECoG activity is recorded during each study and recall event. The similarity between the recorded patterns is computed as a function of lag. B. Each dot marks the location of a single electrode [temporal lobe (1,815 electrodes), frontal lobe (1,737 electrodes), parietal lobe (512 electrodes), and occipital lobe (138 electrodes)]. C. Similarity between the activity recorded during recall of aword from serial position i and study of a word from serial position i + lag. (Black dot denotes study and recall of the same word, i.e., lag = 0.) D. Participants exhibiting stronger neural signatures of context reinstatement also exhibited more pronounced contiguity effects (as measured by a percentile-based temporal clustering score). (Figure after Manning et al., 2011.)]]<br /> <br /> == Neural mechanisms underlying human reward learning and decision making ==<br /> Recent studies in our lab have shown, for the first time, that the activity of individual neurons in the human basal ganglia are related to learning and decision making ([[Publications#ZaghEtal09|Zaghloul et al. 2009]], [[Publications#ZaghEtal12|Zaghloul et al., in press]]). Through clinical collaborations, we directly recorded neural activity from single-neurons in the human basal-ganglia as participants performed a probabilistic learning and and selection task. We found that dopaminergic neurons in the substantia nigra were more active when participants received unexpected rewards compared to when they received expected rewards ([[Publications#ZaghEtal09|Zaghloul et al. 2009]]). This is consistent with current theories of human reinforcement learning that implicate dopaminergic neurons in encoding prediction error, a value that increases as rewards become more surprising (Niv et al 2009). Additionally, we found that neurons in the subthalamic nucleus were more active when participants had to choose between similarly attractive options ([[Publications#ZaghEtal12|Zaghloul et al., in press]]). This also is consistent with current theories of human decision making which suggest that the subthalamic nucleus plays a critical role in making difficult &quot;high-conflict&quot; decisions (Frank et al 2006). By studying the neural mechanisms underlying human learning and decision making, we hope lay the neurophysiological groundwork for understanding the hypothesized role of the basal ganglia in addiction and pathological reward-seeking and impulsive behavior (Hyman et al., 2006).<br /> <br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:ZaghEtal09.png|center|frame|Fig. 6: Normalized SN firing rates for unexpected gains and losses. Red line indicates feedback onset. The gray region marks the 225 ms interval between 150 and 375 ms after feedback onset. Traces represent activity from 15 SN cells recorded from ten participants. (Figure from Zaghloul et al. 2009.)]] || [[File:ZaghEtal12.png|center|frame|Fig. 7: Normalized STN firing rates during high (solid) and low (dashed) conflict decision trials. Red line indicates presentation of stimulus pairs. Grey shaded region represents the interval between 100 and 400 ms after stimulus onset. Traces represent activity from 27 STN cells recorded from 14 participants. (Figure from Zaghloul et al., 2012.)]]<br /> |}<br /> <br /> == Human spatial memory and cognition ==<br /> Our lab is also interested in the neural mechanisms underlying human spatial cognition. In this work, we use virtual reality computer games (Fig. 7) in which participants learn the locations of landmarks in virtual environments. To download a sample of a YellowCab session, click &lt;&lt;[[ExtLink]](/files/misc/yc2_movie.mov,here)&gt;&gt;. Using this approach, we have documented the existence and character of the 4-8 Hz theta rhythm in the human brain as participants learned to navigate through complex virtual environments ([[Publications#KahaEtal99b|Kahana et al., 1999]]; [[Publications#CaplEtal01|Caplan et al., 2001]]; [[Publications#CaplEtal03|Caplan et al., 2003]]; [[Publications#EkstEtal05|Ekstrom et al., 2005]]; [[Publications#JacoEtal09|Jacobs et al., 2010a]]). Recording individual neurons during virtual navigation, we have discovered &quot;place cells&quot; in the human brain. These cells, which are found primarily in the human hippocampus, become active when a given spatial location is being traversed [[Publications#EkstEtal03|Ekstrom et al. (2003)]]. We also identified several other cellular responses during navigation: cells that become active in response to viewing a salient landmark (from any location), cells that become active when searching for a particular goal location (irrespective of location or view), and cells that respond when traveling in a given direction (bearing/heading).<br /> <br /> [[Publications#JacoEtal10|Jacobs et al. (2010b)]] examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, entorhinal cortex (EC) path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.<br /> <br /> {| style=&quot;margin: 0 auto;&quot;<br /> | [[File:path_task.png|center|frame|Fig. 8: The Yellow Cab virtual-navigation video game. (A) A patient’s on- screen view of the environment during the game. (B) Overhead map of the environment. Possible destination stores are brightly colored and outlined in red. Pale-colored buildings form the remainder of the outer and inner walls of the environment.]] || [[File:path_regions.png|center|frame|Fig. 9: Regional distribution of path cells. Bars depict percentage of neurons observed in each brain area that were path cells. Dark shading indicates clockwise or counterclockwise path cells; light shading indicates complex path cells. Region key: A, amygdala; Cx, parietal and temporal cortices; EC, entorhinal cortex; Fr, Frontal cortices; H, hippocampus; PHG, parahippocampal gyrus.]]<br /> |-<br /> |colspan=&quot;2&quot;| [[File:pathcell.png|center|frame|Fig. 10: Clockwise and counterclockwise path cell activity. Firing rate of a clockwise path cell from a single patient's right entorhinal cortex during one testing session. Panel 1: Mean firing rate during clockwise movement at each location in the virtual environment. Color indicates the mean firing rate (in Hz), and gray lines indicate the path of the patient. Panel 2: Neuronal activity during counterclockwise movements. Panel 3: Indication of whether firing rate at each location was statistically greater (rank-sum test) during clockwise movements (red) or during counterclockwise movements (blue). Panel 4: Firing rate of this neuron combined across all regions of the environment for clockwise (&quot;CW&quot;) and counterclockwise (&quot;CCW&quot;) movements during straight movements and turns (&quot;Turn&quot;). Panel 4 inset: Activity of a neuron recorded from this same microelectrode in a different testing session; the two cells have very different firing rates and thus are likely distinct, nearby neurons. (Figure from Jacobs et al., 2010b.)]]<br /> |}<br /> <br /> [[Category:public]]</div> Memory