
Journal of Neural Engineering

PAPER

Comparison of logistic regression, support vector
machines, and deep learning classifiers for
predicting memory encoding success using human
intracranial EEG recordings
To cite this article: Akshay Arora et al 2018 J. Neural Eng. 15 066028

 

View the article online for updates and enhancements.

Recent citations
Spike detection and sorting with deep
learning
Melinda Rácz et al

-

This content was downloaded from IP address 130.91.28.162 on 04/10/2021 at 04:40

https://doi.org/10.1088/1741-2552/aae131
http://iopscience.iop.org/1741-2552/17/1/016038
http://iopscience.iop.org/1741-2552/17/1/016038
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuWA4leWC2sdXVyCAQY477_lWMX8m0F19Arl4MVYO-Yj20aFdsWVFx2gfg5BbQRPJvvciRG5KtzlVFiYCDLZItzi7dUs70WtjVPAW4cggEpXCFU6nx89sJ28bMSXI3OvmBcwDgira_7O6pRj4dFhhxkcklTSzLreEx7VHCuiiWM-0d5AuHluDgPmsUbTvl8qtyfx3-UAqJ_uuJBwwAbrI2-qFIa-P9Wj44yl5swg99Thdtfc6o57-TYSpNn7KG8jo0ILg07KwRJPfzyy2UaZlCKgkfbHVBKL2A&sig=Cg0ArKJSzLNTm1TAa-DJ&fbs_aeid=[gw_fbsaeid]&adurl=https://www.gtec.at/shop%3Futm_source%3DJournalNeuralEng%26utm_medium%3Dbanner


1 © 2018 IOP Publishing Ltd  Printed in the UK

Journal of Neural Engineering

Comparison of logistic regression, support 
vector machines, and deep learning 
classifiers for predicting memory encoding 
success using human intracranial EEG 
recordings

Akshay Arora1, Jui-Jui Lin1, Alec Gasperian1, Joseph Maldjian2, 
Joel Stein3, Michael Kahana4 and Bradley Lega1,5,6

1  Department of Neurological Surgery, University of Texas—Southwestern Medical Center,  
Dallas, TX 75390, United States of America
2  Department of Radiology, University of Texas—Southwestern Medical Center, Dallas, TX 75390, 
United States of America
3  Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104,  
United States of America
4  Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104,  
United States of America

E-mail: bradlega@gmail.com

Received 17 May 2018, revised 28 August 2018
Accepted for publication 13 September 2018
Published 23 October 2018

Abstract
Objective. We sought to test the performance of three strategies for binary classification 
(logistic regression, support vector machines, and deep learning) for the problem of predicting 
successful episodic memory encoding using direct brain recordings obtained from human 
stereo EEG subjects. We also sought to test the impact of applying t-distributed stochastic 
neighbor embedding (tSNE) for unsupervised dimensionality reduction, as well as testing 
the effect of reducing input features to a core set of memory relevant brain areas. This work 
builds upon published efforts to develop a closed-loop stimulation device to improve memory 
performance. Approach. We used a unique data set consisting of 30 stereo EEG patients with 
electrodes implanted into a core set of five common brain regions (along with other areas) 
who performed the free recall episodic memory task as brain activity was recorded. Using 
three different machine learning strategies, we trained classifiers to predict successful versus 
unsuccessful memory encoding and compared the difference in classifier performance  
(as measured by the AUC) at the subject level and in aggregate across modalities. We report 
the impact of feature reduction on the classifiers, including reducing the number of input 
brain regions, frequency bands, and the impact of tSNE. Results. Deep learning classifiers 
outperformed both support vector machines (SVM) and logistic regression (LR). A priori 
selection of core brain regions also improved classifier performance for LR and SVM models, 
especially when combined with tSNE. Significance. We report for the first time a direct 
comparison among traditional and deep learning methods of binary classification to the 
problem of predicting successful memory encoding using human brain electrophysiological 
data. Our findings will inform the design of brain machine interface devices to affect memory 
processing.
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Introduction

Machine learning classifiers have seen broad application in 
the field of cognitive neuroscience. Prominent examples 
include multivoxel pattern analysis in fMRI (Stelzer et  al 
2013), and for control of EEG-based brain–machine inter-
face devices (Hortal et al 2015). Most recently, our group has 
published data that utilizes binary classification of intracranial 
EEG (iEEG) signal to control a brain machine interface device 
designed to improve memory performance in humans (Ezzyat 
et al 2017, 2018). This responsive neuromodulation strategy 
is predicated on the ability to decode whether the brain is in 
a state that is favorable or unfavorable for successful memory 
encoding, as stimulation must only be delivered when an 
individual is unlikely to remember a given item. These pub-
lished analyses utilize logistic regression for classification. 
While preliminary results are promising, the effectiveness of 
closed-loop stimulation strategies to modify memory perfor-
mance depends on the effectiveness of the classifier used to 
control stimulation. As such, even minor improvements in 
performance of a classifier can potentially lead to clinically 
meaningful improvements in device performance. Further, 
as the design of a brain machine interface device to affect 
memory performance matures, important questions will need 
to be resolved regarding the optimal number of brain regions 
(and which regions) will need to be sampled from for effec-
tive behavioral improvement. This is a critical question, as 
presumably a clinical device will not have available the same 
density of brain electrode coverage employed in (short term) 
clinical seizure mapping investigations. Ultimately, a core 
set of critical locations will have to be selected (perhaps on a 
case by case basis). In support of these important questions, 
we examined two alternative binary classification strategies 
for predicting successful memory encoding using intracranial 
EEG signal, namely support vector machines and recurrent 
neural networks, comparing performance to that achieved 
using a logistic regression classifier. We also wanted to com-
pare the results achieved using a classifier built with all avail-
able brain data versus performance for which a subset of 
brain regions were included, with the goal of addressing the 
problem of the optimal BCI design given practical limitations 
on which brain areas can be sampled from.

We wanted to test the utility of support vector machines 
because these have been used for pattern classification for 
EEG signal in several studies (Kaper et  al 2004, Chandaka 
et al 2009, Kumar et al 2014, Li et al 2014), showing good 
performance and robustness across many subjects at the 
expense of greater computational intensity during classifier 
training compared to logistic regression. They offer a non-
linear method. Previous applications of polynomial SVM to 

BCi-related binary classification have shown performance 
improvement between five and 15% relative to linear classifi-
cation methods (Kaper et al 2004, Xu et al 2004, Schlögl et al 
2005, Lotte et al 2007). EEG-based BCI devices typically offer 
high data dimensionality (multiple channels, frequencies, and 
time series samples, interactions among these variables) rela-
tive to the number of observations. In this environment, SVMs 
are an appealing method because of relative insensitivity to 
overtraining due to embedded regularization. They are (theor
etically) less sensitive to the ‘peaking phenomenon’ by which 
increasing dimensionality reduces classifier performance. We 
also wanted to test the performance of recurrent neural net-
works (RNNs) to this problem. RNNs offer theoretical advan-
tages over traditional machine learning approaches for the 
modeling of timeseries data (Hermans and Schrauwen 2013), 
as they are able to learn complexities in the time domain 
without susceptibility to over classification. RNNs include an 
additional synapse or weight matrix to connect a synapse to 
its own inputs from a previous time step. The ability to incor-
porate previous information discovery allows the network to 
learn complex sequences as in speech for example Graves 
et al (2013), although limitations in capabilities of traditional 
RNNs necessitated the development of LSTM cell strate-
gies (long short term memory cell) (Pascanu et al 2013). The 
LSTM cell is essentially a memory block which has an input 
gate, a forget gate and an output gate (Sutskever et al 2014). 
RNNs without LSTM cells suffer from a vanishing gradient 
problem which inhibits them from learning long-term depend-
encies of data (Sutskever et al 2014).

In iEEG data, implantation arrays used for intracranial 
EEG are custom tailored to the hypothesized epileptic brain 
region, so the resulting data sets can be quite heterogenous 
from subject to subject in terms of electrode coverage. This is 
a problem for generalizing results when comparing different 
machine learning strategies. Stereo EEG investigations for 
suspected temporal lobe epilepsy however often rely on a core 
set of common brain regions to localize seizure patterns; as 
such it provides a common set of brain regions across sub-
jects that permit valid comparison of model performance at 
the subject level (Serletis et al 2014). We used a unique data 
set consisting of 30 stereo EEG patients in whom electrodes 
had been inserted into a common set of brain regions associ-
ated with mnemonic processing as part of the standard seizure 
mapping protocol at our institution. This data set consisted of 
15 subjects with electrodes in the dominant and 15 subjects 
with electrodes in the non-dominant hemisphere. A priori, we 
also planned to generate models using all data from each indi-
vidual as well as more restrictive training data focused only on 
the five brain regions common to all subjects in our dataset. 
The latter models would be the most generalizable across 
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subjects, since all subjects would contribute equivalent data. 
Along with the main goal of comparing different machine 
learning strategies, we also wanted to examine the effects 
of applying t-stochastic neighbor embedding (tSNE) dimen-
sionality reduction to our data (Maaten and Hinton 2008, 
Gisbrecht et al 2015). T-SNE has previously been employed 
for dimensionality reduction purposes in EEG timeseries data, 
with the goal of improving classifier performance by reducing 
the co-linearity problem that can affect logistic regression and 
other machine learning methods (Birjandtalab et  al 2016). 
We hypothesized that the addition of tSNE would have the 
greatest impact on the highest dimensionality data and would 
most improve classifier performance for logistic regression, 
although this was not what we found. Finally, we wanted to use 
this unique dataset to explore the impact of connectivity infor-
mation (coherence) on model performance. This necessitates 
the use of a trial-by-trial estimate of connectivity calculated 
across a consistent time window, so we focused on coherence 
in lower frequencies for which significant connectivity does 
not vary as much across the time series (compared to gamma 
range connectivity). Theta frequency connectivity modula-
tion has been observed during the encoding and retrieval of 
episodic memories throughout the brain (Burke et al 2013).

Methods

Electrode locations

Thirty patients at UT Southwestern Medical Center under-
going iEEG monitoring as part of clinical treatment for intrac-
table epilepsy were recruited to participate in this study. A 
subset of these individuals contributed data to the previous 
responsive stimulation publications (Ezzyat et  al 2018). 
Data from these subjects (as well as the full data set from the 
Restoring Active Memory program) is available by request at 
the following URL: http://memory.psych.upenn.edu/Request_
RAM_Public_Data_access. Localization of electrodes was 
determined by expert neuroradiology review following robot-
ically-assisted insertion. Electrodes in seizure onset zones 
were eliminated as part of standard processing pipeline based 
on epileptology review. Electrodes were either AdTech (19 
participants, model RD10R) or PMT (13 participants, model 
2102) stereo EEG depth electrodes with cylindrical contacts 
spaced between 3 and 8 mm apart, depending upon the depth 
of the brain target. No grid or strip electrodes were used. A 
typical implantation array for a given patient included between 
13 and 17 electrodes, each of which included from eight to 
14 contacts arrayed linearly along the shaft of the electrode. 
All electrodes not observed to be within brain parenchyma 
were removed. Across these 30 subjects, electrodes were 
implanted in regions including the orbitofrontal cortex, fusi-
form gyrus, anterior cingulate, insula, amygdala, supramar-
ginal and angular gyrus, superior parietal lobule, mesial and 
lateral pre-frontal cortex, and ventro-lateral pre frontal cortex, 
along with five core areas common to all subjects: hippo-
campus, superior parietal lobule (SPL), posterior cingulate 
gyrus, lateral temporal cortex (at coronal plane just posterior 
to amygdalo-hippocampal sulcus), and inferior parietal lobule 

(angular or supramarginal gyrus). This core set of five brain 
regions were conserved across subjects because they include 
temporal and extra-temporal areas routinely sampled from to 
characterize temporal lobe epilepsy. These core regions are 
also well-characterized participants in memory encoding and 
retrieval networks, so it provided a well-suited dataset with 
implicit a priori focus on memory-relevant brain regions to 
test the idea that supervised dimensionality reduction could 
improve classifier performance.

Behavioral task

All participants performed sessions of a verbal free recall task 
wherein they were visually presented words on a computer 
screen from a predetermined pool of common nouns. Details 
of this task are described in numerous previous publications, 
but are included here for clarity (Sederberg et al 2003, Lega 
et al 2011). The memory task consisted of a series of lists of 
12 memory items; each testing session included either 12 or 
25 such lists. Each word was presented for 1.6 s, separated 
by a blank screen of 300–500 ms with (100 ms of random 
jitter around 400 ms). The period analyzed for each item was 
1800 ms, consisting of the 1600 ms period during which items 
were on the screen and 200 ms afterward. Each list was fol-
lowed by a 30 s period of simple arithmetic distractors in the 
form of ‘A  +  B  +  C  =  ??’ in effort to deter working memory 
rehearsal. Subjects were instructed to answer as many of 
these as possible. Finally, participants were given a 30 s recall 
period and instructed to recite as many words as possible, in 
any order, from the previously presented list. Successfully 
encoded items were those that were recalled during this 
retrieval period, only from the list immediately preceding 
(from other lists were considered intrusions and not scored as 
correctly encoded). For this analysis we did not include signal 
from the retrieval period (when individuals are recalling the 
items) in the prediction models. Recorded iEEG from par-
ticipants’ sessions were time-locked with word presentations. 
Participants contributed from three of these sessions, where a 
session consisted of 25 presentations of unique lists. Subjects 
contributed an average of 864 words each with an average of 
23% correctly recalled per subject (some items thrown out 
due to task interruptions, etc). Figure 1 shows a schematic of 
the recall task.

iEEG processing

We used a standard subsequent memory effect paradigm as 
the substrate for pattern classification. Encoding events were 
divided into successful and unsuccessful groups. Each event 
window consisted of time series data of 1800 ms duration, 
with 500 ms buffer to avoid edge effects, averaged into six 
time windows using a bipolar re-referencing scheme. Power 
was obtained by downsampling the raw EEG recorded on a 
clinical Nihon–Koden system from 1 kHz to 250 Hz, then uti-
lizing morlet wavelets (wave number of 6) to extract power 
from 2 to 100 Hz that was averaged into six log-spaced fre-
quency bands (delta: 2.5–5 Hz, theta: 4–9 Hz, alpha: 9–16 Hz, 
beta: 16–25 Hz, gamma: 40–65 Hz, and high gamma: 65–100 
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Hz). We used a 2.5 Hz lower boundary for the delta band based 
upon our own observations that oscillations in this frequency 
range exhibit memory-related properties in the core encoding 
network (Lega et al 2011). A kurtosis algorithm was applied 
(threshold of 4) to exclude encoding events with signal arti-
fact (Sederberg et  al 2003). Finally, intracranial power was 
averaged for all the electrode channels in a region for each 
event and Z-transformed to normalize across subjects relative 
to pre-stimulus baseline. We sought to assess the impact of 
connectivity data on the performance of our classifiers. With 
the hippocampus as a seed region, we quantified connectivity 
with each of the other four regions in our ‘core area’ dataset. 
Coherence was calculated using the Chronux package (Bokil 
et al 2010), focused on a broad low frequency range (3–10 
Hz) based upon previous publications for memory-relevant 
theta frequency connectivity (Watrous et al 2013, Burke et al 
2014b). Results were compared with classifiers trained using 
only power data.

Dimensionality reduction

Input matrices were events (∼800 word items)  ×  time  
(nine bins)  ×  frequency (six bins)  ×  regions (up to 22). We 
wanted to test the effects of new dimensionality reduction 
techniques in our work. We used t-distributed stochastic 
neighbor embedding (tSNE). tSNE provides a way to reduce 
high-dimensionality data and aid in visualization of embedded 
features. This is particularly suitable for high-dimensional 

EEG data that lie on several different, but related, low-dimen-
sional time series manifolds of several trials. The algorithm 
positions the data points optimally in the projection map by 
defining the similarity between N data points in the high-
dimensional space X and the low dimensional space Y by 
measuring the the pairwise similarity between data points as 
shown below.

pij =
pj|i + pi|j

2N
� (1)

where pj|i =
exp(−‖xi − xj‖2

/2σ2
i )∑

k �=i exp(−‖xi − xj‖2
/2σ2

i )
� (2)

for space X and we calculate a similar conditional prob-
ability in the low dimensional space Y, where yi and yj are the 
counterparts of xi and xj from the higher dimension. Thus we 
model the similarity of map point yj to yi using the following 
equation:

qij = ((1 + ‖yi − yj‖2
)Z)−1� (3)

where Z =

N∑
k=1

N∑
k �=l

(1 + ‖yk − yl‖2
)−1.� (4)

If similarity for these points yi and yj in the lower dimen-
sion perfectly macth the similarity for the high dimensional 
datapoints xi and xj, then the ratio of the conditional prob-
abilities would be 1. The overall goal of t-SNE is to obtain a 

Figure 1.  Schematic of free recall task. Goal of classifier is to use brain activity recorded at the time of item presentation to classify which 
words would be successfully remembered during the free recall period. Local field potential examples for the encoding epoch divided into 
six time bins and six frequency bands after normalization using baseline period.
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low-dimensional representation that minimizes the difference 
between pi|j and qi|j. The σi parameter is computed for each 
point xi in the dataset so that the effective number of its neigh-
bors corresponds to the fixed parameter called μ (perplexity) 
shown as below:

µ = 2−
∑N

j pj|ilog2pj|i .�
(5)

The joint probability Q is computed using a Student’s 
t-distribution kernel with one degree of freedom. P is the 
joint probability. The heavy tails of this t-distribution gen-
erate a larger separation of dissimilar points than a Gaussian 
distribution. t-SNE aims to continuously position these data 
points in space Y by minimizing the cost function C that is 
measure of (Kullback–Leibler) divergence between prob-
ability distributions:

C(P, Q) = KL(P||Q) =
∑

i

∑
j

pijlog
pij

qij
.� (6)

In this respect, t-SNE gradient has the advantage of 
strongly repelling data points which have small pairwise dis-
tances in space Y and tries to solve the crowding problem. In 
this work, we are dealing with over 2000 dimensions in the 
time series data. The high computational complexity intro-
duced by employing t-SNE on our dataset requires that we 
make use of the Barnes–Hut t-SNE (Van Der Maaten 2013) 
an evolution of the t-SNE algorithm that introduces different 
approximations to reduce the computational cost. When com-
puting the t-SNE embedding, we projected our dataset into 
three-dimensional space to visualize it (shown in figure  2), 
however specific dimensionality reduction was set to 100 for 
the high-dimensional (all brain location) data and 30 dimen-
sions for the reduced dataset (selected brain regions). We set 
the Barnes–Hut parameter σ to 0.5 for all analyses. We used 
a perplexity value of 30 and empirically examined separation 
achieved with values from 5 to 50. We initialized the gradient 
descent algorithm with 1000 iterations and observed the error 
during separation.

We applied the t-SNE algorithm separately to the input data 
matrix of each subject across all dimensions (electrode loca-
tion, frequency band, time domain). Therefore the resulting 
(reduced) matrix that resulted from t-SNE was bespoke for 
each individual, permitting differences in relevant information 
across regions from individuals with slightly different implant 
arrays. The utility of essentially unsupervised dimesionality 
reduction (t-SNE applied across all available input data) could 
then be compared to the utility of reduction in the number of 
input brain regions inherent in the models generated using the 
core set of five brain regions described above.

Synthetic minority oversampling technique (SMOTE)

We used synthetic minority oversampling technique to handle 
a class imbalance problem between recalled and non-recalled 
events (Chawla et al 2002). In the free recall task (and similar 
strategies to test episodic memory), individuals will always 
remember fewer items than they will recall. SMOTE is an 
established a strategy for addressing this issue, which can 
impact model performance (Xue and Hall 2015). This algo-
rithm is used to generate synthetic samples of data by using 
the feature space of the dataset. The minority class (successful 
encoding) is over-sampled by taking each minority class 
sample and augmenting the synthetic samples in the direction 
of the k minority class of their nearest neighbors. We choose k 
on the basis of the amount of the desired over-sampling. Our 
implementation used three nearest neighbors (k  =  3). As an 
important note, we performed SMOTE only on the training 
set and not on the testing set in order to maintain complete 
isolation for the testing set.

Pattern classifiers

We used three different methods of pattern classification for 
this analysis. Inputs to all classifiers in the core models were 

Figure 2.  Examples of tSNE data visualization. Examples in which the application of tSNE appeared to improve classification success for 
a subject (A) and one for which tSNE did not seem to aid classification (B).
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oscillatory power averaged into six time bins. A logistic regres-
sion model was designed using parameters drawn from those 
in previously published work by our group, using N  −  1 cross 
validation. Holdout data was an entire testing session (third 
session) with the classifier trained on two sessions (leave one 
session out cross validation), consistent with previously pub-
lished methods (Ezzyat et al 2017). We believe this validation 
method is critical for testing classifier performance. Trained 
classifiers were fed the held out session data and classification 
accuracy was assessed using area under the receiver operating 
characteristic curve (AUC), a standard measure of a classi-
fier’s ability to generate true positives while avoiding false 
positives. The entire confusion matrix was also calculated. 
Following our published methods, for the logistic regression 
model we employed a binomial distribution (with link:logit) 
with C parameters optimized through grid search (Ezzyat et al 
2017). Differences compared to this publication were in the 
number of time bins used and a standard set of lambda values 
for regularization (0.1, 0.01, 0.001).

SVM computes a hyperplane which finds the largest gap 
between the successful and failed recall classes. Points may 
lie on the edges of this ‘gap’, but not inside. The distance 
between these outside hyperplanes can be maximized by 
finding the greatest distance between edge cases with respect 
to the normal vector �w (defined as the distance between the 
two edge hyperplanes). This works perfectly for linearly sepa-
rable data, but fails when data is not necessarily so, such as in 
the case of many dimensions. As our data is highly complex, 
we utilized several kernel based SVM combinations (e.g. 
quadratic, Gaussian) in order to transform data into space that 
can more easily be separated with a hyperplane. The C and 
gamma parameters of the SVM were tuned. Incorporating a 
cost function allows for adjustment of alpha and beta error 
levels; applying kernels like quadratic or gaussian alters the 
shape of the hyperplane for more optimal fitting. These ker-
nels are represented by these following equations:

K(�xi,�xj) = exp(−γ ‖�xi −�xj‖)
K(�xi,�xj) = ( p +�xi ·�xj)

q.
�

(7)

The parameters of the SVM classifier such as the scale of the 
Gaussian kernel and the degree of the polynomial kernel can 
be changed to improve model fit. These were optimized using a 

grid search method. The C and gamma parameters in SVM are 
modeled by the RBF (radial basis function) kernel itself. The 
C parameter trades off misclassification of training examples 
against simplicity of the decision surface: a low C makes the 
decision surface smooth. The gamma parameter defines the 
influence of training examples on the model. The C-gamma 
grid is shown in table 1; parameters were selected using only 
the training and not testing data set to avoid overfitting.

For the RNN analysis we vectorized the samples for input 
into the neural network and dispersed them into many batches 
during training. The one-hot encoding technique (binary rep-
resentation of categorical data) was adopted for labels, con-
sistent with previous methods for EEG analysis (Palaniappan 
and Mandic 2007). Weights and biases of the neural network 
were initialized by randomly choosing values from a truncated 
normal distribution. We selected hyperparameters (hidden 
layers, training iterations, learning rate, batch size, and dropout 
probability). As described above, we used a long-short term 
cell (LSTM) framework with cells enveloped in a dropout 
wrapper. This aids in regularization of the model by testing 
the output against random loss of hidden layer neurons (pre-
venting overfitting). Finally, the addition of L2-regularization 
improved our model’s resistance to overfitting, and, in concert 
with the dropout algorithm (Hinton et al 2012, Srivastava et al 
2014), resulted in exceptional robustness and reliability of 
the classifier. We tested the classifier with session-wise cross-
validation (as for SVM and LR models) and logged the meas-
ured AUC and accuracy over the defined epochs. Grid search 
parameters are shown in table 2.

Our deep learning model was implemented and trained 
using Google’s Tensorflow2 Deep Learning Framework and 
monitored continuously using Tensorboard (www.tensorflow.
org). The entire model was trained with the help of an NVIDIA 
GPU running on a Google Cloud GPU instance. We credit this 
platform with improving the learning rate and capacity of our 
model (NVIDIA Tesla K80). We plotted the time required to 
train an optimized model for each type of classifier. LR and 
SVM models were trained on a single 384 GB (quad-core) 
node running RedHat Enterprise Linux 6, and the SLURM job 
scheduling software, while RNN models were trained on the 
GPU nodes described above. This difference in the computing 
platform for each is the reason training times were shorter 

Table 1.  Grid search parameters for SVM model.

C 0.1 1 2 3 5 10

Gamma 1.0 × 10−08 1.0 × 10−06 1.0 × 10−05 1.0 × 10−04 1.0 × 10−03 1.0 × 10−02

kernel Gaussian (RBF) Linear Quadratic Cubic

Table 2.  RNN grid search parameters.

Batch size 10 15 30 40 45 50 60

Epochs 100 200 400 800 1000 1500 2000
Optimizer adam rmsprop dadelta adagrad momentum nag sgd
Learning rate 0 0.01 0.03 0.001 0.003 0.0001 0.0003
Dropout fraction 0.1 0.15 0.2 0.25 0.3 0.35 0.40
Hidden layers 1 2 3 4

J. Neural Eng. 15 (2018) 066028
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for RNN models in spite of greater computational intensity, 
shown in figure 3.

Statistical comparisons

We focused our analysis on a comparison of AUC values at 
the subject level and across subjects. Because a unique model 
was generated for each individual subject, we calculated an 
AUC value per subject and are able to compare the fraction 
of subjects exhibiting greater or smaller AUC for one model 
or the other (for example SVM versus LR). We also report the 
results of a Wilcoxon signed-rank test for comparison of dis-
tributions of AUC values across subjects between modalities. 
For the recurrent feature elimination analysis (across brain 
regions) we used the Kruskal–Wallis test. P values were sub-
jected to FDR correction using the Benjamini and Hochberg 
method (Benjamini and Hochberg 1995)

Results

SVM versus LR with and without tSNE dimensionality  
reduction

Results of the SVM and LR comparison is presented in table 3. 
In the dominant hemisphere, SVM significantly outperformed 
LR both in magnitude of mean AUC (p value for comparison 
presented in table) and in number of subjects in whom the 
SVM model provided better classification. This held true 
with and without the application of tSNE and whether all 
regions or only select regions were included in the classifi-
cation model. We directly tested the impact of including all 
regions in a given patient implantation in the SVM and LR 
models. The classifiers performed significantly worse com-
pared to models developed using only select regions (cor-
rected p  =  0.012 for SVM and corrected p  =  0.011 for LR, 

signed rank test comparing AUC distributions for select versus 
all regions). Full subject data, including F1 plots, are shown 
for the best-performing model (select regions with tSNE) 
in figure 4. When we removed t-SNE dimensionality reduc-
tion across all regions, classification was slightly worse for 
LR (AUC  =  0.56), although tSNE had the largest benefit for 
prediction in the SVM model with selected regions. We dis-
cuss ways to optimize the benefits of tSNE in the Discussion. 
This finding regarding the benefit of regional selectivity has 
important implications for the construction of classifiers for 
predicting stimulation as well as the design of clinical devices 
building upon our previous findings.

SVM versus LR in data from the non-dominant hemisphere

We applied the identical methods to a separate cohort of 15 
subjects who had stereo EEG implantation in the language 
non-dominant hemisphere. In all subjects, this was the right 
hemisphere as proven by preoperative fMRI or Wada testing. 
This was a separate patient cohort, providing evidence of 
robustness for our methods. For the a priori planned compar-
ison of LR versus SVM using signal obtained from selected 
brain regions with dimensionality reduction (the best per-
forming model), the mean AUC was 0.67 for SVM versus 
0.59 for logistic regression (corrected p  =  0.020). Results for 
all subjects are summarized in figure 5.

SVM classifier performance with and without connectivity 
information

We wanted to examine the effect of adding connectivity infor-
mation to the prediction model to determine if this information 
would improve performance of the classifier. We employed 
spectral coherence because this offers a trial by trial estimate 
of connectivity during memory encoding that is not avail-
able with the phase locking statistic or other measurements 
of phase–phase synchrony (Lachaux et al 1999, Bokil et al 
2010). Compared to an SVM model that did not include con-
nectivity information, across 15 subjects, the addition of spec-
tral coherence information among five brain regions did not 
improve classifier performance significantly, either with our 
without the addition of tSNE to the data (corrected p  =  0.331). 
The classification performance with and without connectivity 
information is summarized for all subjects in figure 6.

Figure 3.  Time needed to train optimized model across classifier 
type. * denotes training on single quad-core node, while ** indicates 
training on GPU nodes employing Nvidia Tesla K80 cards.

Table 3.  SVM versus logistic regression.

SVM LR
Corrected 
p value

Subject 
number

Select regions with 
tSNE

0.68 0.60 0.005 15/15

All regions with tSNE 0.64 0.58 0.024 13/15
Select regions without 
tSNE

0.63 0.59 0.013 14/15

All regions, without 
tSNE

0.64 0.56 0.009 14/15

Non-dominant, select 
regions, with tSNE

0.67 0.59 0.020 15/15

J. Neural Eng. 15 (2018) 066028



A Arora et al

8

SVM classifier performance with reduced frequency band 
information

We tested the effect of reducing the number of input frequen-
cies on the performance of the SVM-based classifier (analo-
gous to reduction in the number of input regions). We selected 
the theta and high gamma bands for this model based upon 
existing human data suggesting that power changes in con-
nectivity information in these frequencies predict successful 
encoding (Burke et al 2014b). Results are shown in figure 7.

SVM versus LSTM RNN model

We next sought to compare the results of the best-performing 
SVM based classifier (reduced brain regions, with tSNE) with 
a recurrent neural network model based upon LSTM cells. 
We designed and implemented a recurrent neural network 
prediction model via TensorFlow software and investigated 
its performance (Abadi et al 2016). Across 15 subjects, the 

RNN classifier achieved a mean AUC of 0.722 as compared to 
mean AUC of 0.68 in SVM, which was significantly different 
(corrected p  =  0.013). RNN based classification was superior 
in 12 of 15 subjects. Results of the comparison are shown in 
figure 8.

We observed that RNNs did not improve classification 
accuracy for three of the subjects. We examined the correla-
tion between AUC and memory recall performance (fraction 
of successfully recalled events), looking to assess the impact 
of class imbalance on recall performance. We observed that 
for all three methods (LR, SVM, and RNNs), the models per-
formed better as subjects recalled a larger fraction of items, 
with a significant correlation between recall fraction and clas-
sifier performance (ρ = 0.52, 0.51, 0.62 for RNN, LR and 
SVM respectively). Interestingly, SVM models were the most 
sensitive to recall fraction but also achieved the best magni-
tude of classification for those subjects who were better per-
formers. We observed that RNN models were less sensitive 
to poor memory performance in subjects (and the associated 

Figure 4.  SVM versus LR classifier performance (with tSNE, selected regions). (A) AUC difference for each subject (SVM-LR).  
(B) Notched boxplots showing distribution of AUC values for SVM versus LR using select brain regions. FDR corrected p values shown. 
(C) F1 score for the recall and (D) non-recall classes for both SVM and LR models. LR results in red, SVM in green.
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greater class imbalance). Results are shown in figure 9; we use 
the best-performing SVM and LR models for this comparison.

Using machine learning to model memory loss after seizure 
surgery

Our unique data set, including subjects that had electrodes in 
matched brain regions, allowed us to use the machine learning 
classifier in a new way. Because a core set of five brain 
regions was shared across all subjects we could examine the 
effect on overall classifier performance by leaving one brain 
region out of the predictive model and examining the effect 
on the AUC to demonstrate the feasibility of this method. We 
believe this is a novel way of quantifying how much a given 
brain region is contributing to the overall process of episodic 
memory that we believe in future can be applied to individual 

subjects. It is based on recurrent feature elimination (RFE) 
described in the genetics literature (Guyon et al 2002). To test 
this idea, we trained the SVM classifier using input data from 
five common regions for each subject and then on four of the 
five regions (leaving one region out of the training set for the 
model), comparing the effects on the overall predictive acc
uracy. By depriving the model of the information for a given 
brain region, the resulting deficit in classification accuracy we 
believe provides some estimate of the role of a given region 
within an memory network. Results are shown in figure 10, 
showing the mean AUC difference across regions. We tested 
this effect using a repeated measures non-parametric model 
with a primary factor of region, suggesting that leaving out the 
hippocampus had a relatively greater impact on classification 
than other regions (corrected p  =  0.008, Kruskal–Wallis test). 
This finding we believe validates this method conceptually, 

Figure 5.  Right hemisphere SVM versus LR. (A) AUC difference for each subject (SVM-LR). (B) Mean AUC difference.

Figure 6.  Effect of adding connectivity information (theta frequency coherence) on SVM classifier performance. (A) AUC difference for 
SVM classifier with and without connectivity information for each subject with tSNE applied to data. (B) Mean AUC difference; FDR 
corrected p value.
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Figure 7.  Effect of frequency band reduction (theta and gamma bands exclusively used) on classifier performance. (A) AUC difference for 
each subject for best performing SVM model (reduced regions, with tSNE) with only theta/gamma bands included (left) and all frequency 
bands (right). (B) Mean AUC difference with no significant difference across subjects in model performance; FDR corrected p value.

Figure 8.  Direct comparison of best-performing SVM model versus RNN. (A) AUC difference for each subject (RNN-SVM). (B) Mean 
AUC difference. (C) F1 score for the recall and (D) non-recall classes for both SVM and RNN models.
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as one would predict hippocampal information would be 
relatively more valuable to predicting memory performance 
across subjects. While these results are promising, we discuss 
the limitations of this approach in the discussion section.

Discussion

Support vector machines outperformed logistic regression 
classifiers in nearly all subjects

Logistic regression algorithms can be sensitive to noise and 
can lead to erroneous classifications, although penalized clas-
sifiers are less so. The noise in timeseries EEG data led us to 
believe that SVM would outperform logistic regression, as we 
observed. The relatively modest effect sizes for subsequent 
memory underlie this noise issue (Lega et al 2011). Logistic 
regression also suffers from a multi-collinearity problem; this 
occurs when predictor variables are highly correlated leading 
to instability in their associated coefficients due to inflation 
of the standard errors. This can affect classifier performance 
because logistic regression is based on the strong assumption 
that independent variables and their log odds have a linear rela-
tionship between them, the violation of which can lead to mis-
classifications. SVM does a better job of modeling nonlinear 
relationships by using nonlinear kernels that separate the data 
using a hyperplane (Lotte et  al 2007). With optimization of 

the kernel, SVM can handle large feature space more effec-
tively than logistic regression taking a geometric rather than 
probabilistic approach to classification. For all of these rea-
sons, our results are consistent with a priori expectations of 
superior performance for SVM for classification of EEG time-
series data, which shows improvement on the order of 6% in 
other EEG classification problems (Garrett et  al 2003). We 
may derive additional optimization benefit by using a multiple 
kernel approach rather than optimization of individual ker-
nels on a subject basis as in our method (Li et al 2014). An 
important point of emphasis is that for the select region-based 
models, input data is fairly uniform across subjects. The con-
sistent performance across subjects with uniform input array is 
a strong argument for the generalizability of our findings. One 
caveat for the LR comparison however is that our model here 
incorporated a greater number of time bins than in our previ-
ously published data, as we have observed temporal dynamics 
in memory effects that we wanted to use to improve model per-
formance (Burke et al 2014a, Lin et al 2017). This additional 
dimensionality may have adversely impact the LR method.

Using selected regions improves classification accuracy

A principal goal of our analysis is to inform future design of 
BCI devices for memory. A specific challenge for memory 

Figure 9.  Observed correlation between subject recall performance and classifier performance. (A) RNN-LSTM model. (B) LR model.  
(C) SVM model. Circles drawn around subjects in whom SVM outperformed the RNN model.

Figure 10.  Results of recurrent feature elimination. (A) AUC difference for each subject for hippocampal model (full model—
hippocampus excluded). (B) AUC distributions for full and hippocampal excluded SVM models. (C) Mean AUC difference for each of five 
select regions excluded from model (hippocampus, posterior cingulate, superior parietal lobule, inferior parietal lobule, lateral temporal 
cortex). Largest impact on AUC observed with leaving hippocampus out of model, least for SPL. Significant reduction in AUC observed for 
the hippocampus and IPL, corrected p values 0.02 and 0.05, respectively.
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devices is that the number of regions that can be sampled from 
in a given individual is necessarily limited, even more so as the 
technology moves beyond ‘opportunistic’ recordings in epi-
lepsy patients and towards the design of an implant explicitly 
for people with memory problems. The diminished benefit of 
adding additional input electrode contacts has been reported 
previously in EEG based BCI classification efforts (Kaper et al 
2004). From a practical standpoint, it may be possible to sample 
from a relatively limited number of well-chosen brain areas 
and achieve good classification and device performance. The 
selection of these regions may in the future be guided by non-
invasive information such as fMRI-based connectivity analysis 
or network control theory (Gu et al 2015). These regions could 
be selected based on known anatomical circuitry (such as the 
mesial temporal limbic network that characterized sampling in 
our study) or could be bespoke based upon individual patient 
factors. This remains an active area of investigation.

Connectivity information and frequency bands

The issue of optimizing data inputs to a classifier model based 
on a priori considerations is directly related to the question 
of adding connectivity information. Connectivity informa-
tion led to improved classifier performance in around half of 
individuals but was not significant overall. We have not tested 
the addition of multiple different connectivity parameters, and 
the most commonly used phase synchrony parameter (phase 
locking statistic) must be calculated across trials and therefore 
cannot be used for classifier training and the type of analysis we 
performed here (Lachaux et al 1999). Certainly, other trial by 
trial estimates of phase synchrony and other estimates of cou-
pling such as cross frequency relationships could be included 
in future models. We may observe that the reduction in highly 
correlated features offered by techniques such as tSNE has a 
greater impact on model performance with connectivity and 
power information included (if specifically tuned, see below). 
Or, more traditional machine learning approaches such as 
SVM may be incapable of handling this added information and 
the inclusion of connectivity data will require RNNs. Overall, 
this observation we believe informs BCI device design by 
helping identify critical features for a priori dimensionality 
reduction (focusing on within-site power memory effects). We 
also observed that reducing the frequency bands included in 
our (reduced dimension) SVM model did not strongly affect 
classifier performance overall, indicating that the critical 
information for classification occurs in the theta and gamma 
bands across subjects (although not in every subject). This is 
not surprising given previous observations in human subjects 
demonstrating the importance of activity in these frequency 
ranges for predicting successful memory encoding (Burke et al 
2014a). However this also represents something that can be 
optimized on a subject by subject basis.

t-SNE improved performance in the logistic regression  
algorithm by 1%–5%

We had initially anticipated that dimensionality reduction 
would provide the greatest benefit for logistic regression 

classifiers given the issues mentioned above with sensitivity to 
multicollinearity. However in practice, the greatest magnitude 
of impact of tSNE was for SVM classifiers operating with 
data from selected regions. The magnitude of performance 
improvement we observed was in line with our expectations 
derived from the literature (Garrett et  al 2003, Gisbrecht 
et al 2015). The importance of this finding is that it implies 
an optimized model requires both a priori rationally selected 
feature reduction and ‘hypothesis neutral’ feature reduction 
provided by algorithms such as tSNE. tSNE may ultimately 
prove more valuable for the higher dimensionality dataset 
when we specifically tune its input parameters for these data, 
although for the purposes of comparison for this analysis we 
kept them identical. tSNE may also be of use as a visualiza-
tion tool for rapidly determining which features should be 
included in a model (a priori reduction of input data) prior 
to model training, as our plots in figure 2 reflect. The dataset 
available to us for testing rational dimensionality reduction 
across subjects (the five core regions included in our selected 
regions model) was essentially based on convenience: these 
regions were those most highly conserved across subjects. 
The design of a commercial brain–machine interface device 
will require careful a priori selection of brain regions based 
upon the application of our RFE method to rank the impor-
tance of brain regions towards classification across a large 
dataset that includes significant representation (in terms of 
electrode coverage) in a broad number of brain areas. Further, 
the application of pre-implantation fMRI may be a means to 
identify relevant brain regions, but this requires an analysis 
in which the same individuals participate in both an fMRI 
memory paradigm as well as memory testing following elec-
trode implantation using a similar memory task. Both of these 
efforts are ongoing.

RNNs outperform SVM in 75% of subjects

Recurrent neural networks were designed for sequential 
learning, and effective classification using timeseries data is 
a core achievement of RNNs (Hinton et al 2012, Graves et al 
2013, Hermans and Schrauwen 2013). Our models required 
1000 iterations to reach convergence per subject employing 
four layers of LSTM cells. In the future, we intend to fur-
ther optimize classification using the RNN method by pro-
viding additional timeseries resolution (greater number of 
time bins used for this work). RNNs with LSTM should be 
able to accommodate the expanded dimensionality of the 
data without over fitting. They also open the possibility of 
modeling list behavior within the classification algorithm. 
Memory from stimuli that are sequences of items contains 
temporal architecture such as the primacy and recency effects. 
Including this temporal list information may improve pattern 
classification. This is because it has been reported that the 
underlying oscillatory patterns reflect the temporal architec-
ture observed in behavioral data (Serruya et al 2012). While 
our RNN model outperformed both SVM and LR methods, 
the magnitude of the benefit in terms of classification was rel-
atively modest compared to SVM models. Further refinement 
of the particular features of the RNN model may improve this 
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result in the future. Improvements in classification may be 
achievable using a different deep learning approach based on 
convolutional neural networks, as has been recently published 
(Bashivan et al 2015). The insight of this approach was to pre-
serve spatial information of the recording (surface EEG) elec-
trodes when constructing the neural network, drawing upon 
image recognition strategies. The high classification accuracy 
this publication reports suggest that such spatial informa-
tion preservation may be an effective strategy at improving 
overall performance, although stark differences in the nature 
of the memory task (working memory load) versus episodic 
memory encoding mean that the approach would have to be 
tested carefully in our data. Another factor that reduces our 
reported classification accuracy is the use of session wise 
cross-validation, by which classifier performance is always 
tested on data from an experimental session different from 
those used in the training set (typically a separate day of the 
experiment). For a brain machine interface device, session 
wise cross validation is critical since we have observed that 
EEG patterns associated with memory encoding success can 
change across sessions and the identification of features that 
do not vary across sessions is necessary. We believe that dem-
onstrating good performance across multiple data acquisition 
days is necessary to establish stable features to guide respon-
sive stimulation (Ezzyat et al 2018).

Class imbalance in memory classification

In episodic memory paradigms such as free recall, there is 
necessarily a class imbalance problem related to the fact that 
individuals forget more items than they remember. This cog-
nitively intensive task elicits strong memory-related effects 
however, making them well-suited to exploring and under-
standing how the brain processes memories. Importantly, this 
class imbalance situation actually approximates our daily 
experience in which a single presentation of a memory item 
is generally insufficient to elicit robust encoding. This in turn 
requires execution of a strategy to match classes; for this pur-
pose we employed SMOTE, having chosen to over-sample the 
minority class rather than the opposite (Chawla et al 2002). 
Updated strategies of class balancing may be a strategy for 
improvement of machine learning classifiers in memory para-
digms. We observed that RNN models were less sensitive to 
class imbalance than either SVN or LR models in our data, 
but that SVM models may perform slightly better for subjects 
who are high performers (with classes that are nearly matched 
already).

Subject versus population level classification

The properties of recurrent neural networks suggest that they 
are well-suited to employing a different strategy for predicting 
memory encoding success using EEG timeseries data (Graves 
et al 2013). Specifically, they may allow us to utilize multiple 
subject data to develop a cross subject classifier with good per-
formance on the individual subject level. Concatenating trials 
and time series across multiple subjects will greatly increase 
the dimensionality of the data but may also allow the classifier 

to learn relatively invariant features of memory performance 
across individuals. The data set we employed with relatively 
consistent sampling across brain regions via the stereo EEG 
method is well-suited to this strategy as subject data is more 
uniform. The appeal of a classifier trained across multiple 
subject data is that it would permit custom modulation strate-
gies that do not require individualized training via invasive 
intracranial electrodes. Such a model could be updated with 
noninvasive patient specific information from fMRI or DTI 
acquisitions. The application of a model trained on general 
features across many subjects would obviate the need for indi-
vidualized testing. This remains an ongoing area of invest
igation, utilizing a large subject pool with electrodes across 
multiple brain regions Ezzyat et  al (2018). This approach 
will likely need to be combined with systematic testing of 
optimum electrode locations as described above.

Other concerns for the design of a brain machine interface 
device for memory

Development of a brain machine interface device to alter 
memory performance will require optimization of several 
factors. The principal goal of this analysis was to examine 
the utility of alternative methods of binary classification for 
one of these factors (performance of the classifier of brain 
recording information), but we have also examined strategies 
for optimizing other factors including which brain regions 
are included in a classifier (related to dimensionality reduc-
tion). Another concern for such a putative device is whether 
stimulation will alter normal cognitive processing in other 
domains, such as working memory, mathematical processing, 
or spatial navigation. This will require that a classifier not only 
distinguishes between successful and unsuccessful encoding 
situations but also between memory encoding and these other 
cognitive states. Limiting the application of stimulation to 
epochs only when the brain is actively attempting to encode 
new memories should reduce its impact on other domains and 
allow normal homeostatic processes to occur. This will require 
a classifier to distinguish between brain states and limit stimu-
lation overall. Limiting the needed number of input channels 
also can reduce the side effect profile of a brain machine inter-
face device, because it would entail less risk of brain injury 
due to electrode implantation. For this reason, investigators 
must determine the minimum number of recording locations 
that produce effective classification. There is a related ques-
tion, as to whether a brain machine interface device would 
perform better if designed to enhance memory performance 
for specific memory items, taking advantage of distinct repre-
sentational maps and associated EEG features for reactivation 
(Edelman 1993, Belal et al 2018). We recently tested whether 
incorporating semantic information would alter classifier 
output using a version of the free recall task in which a portion 
of memory items come from semantic categories while most 
of the items do not (categorized free recall). We observed that, 
with data across whole brain, logistic regression classifiers 
performed equally well for both semantically-related and unre-
lated items (Weidemann et al 2018). However, it is possible 
that classification accuracy or BCI device performance can be 

J. Neural Eng. 15 (2018) 066028



A Arora et al

14

improved with preservation of semantic information; this may 
depend upon inclusion of brain regions (such as lateral tem-
poral cortex) that provide more specific semantic features of a 
memory representation. The role of item-specific information 
in device design remains an active area of investigation.

Predicting memory loss after temporal lobe surgery

We believe that our preliminary analysis can form the foun-
dation of a strategy to predict memory deficits after temporal 
lobe epilepsy. Using recurrent feature elimination, the dif-
ference in classifier performance between the model incor-
porating all available brain regions versus a model with a 
single region removed from the training set provide some 
estimation of the impact of surgery on memory behavior. 
Certainly this strategy will need prospective validation, 
but the use of EEG for this purpose offers advantages over 
cross-subject models based on language lateralization scores 
that currently offer the best results (Sidhu et  al 2015). As 
discussed above, our experimental protocol prioritizes brain 
signals associated with multiple different semantic represen-
tations (those that are invariant across individual memory 
items but are similar in that they were successfully recalled) 
at the expense of information tied to specific memory fea-
tures (the representation of ‘king’ versus ‘cat’ for example). 
With temporal lobectomy, there is undoubtedly an impact 
on memory ability for general episodic abilities and for spe-
cific representations (especially anomia following resection 
of the dominant temporal lobe). A comprehensive prediction 
of the effects of surgery will need to include both types of 
information to offer credible recommendations to a patient. 
While the addition of connectivity information did not sig-
nificantly improve classifier performance in our analysis 
across subjects, this information may still prove critical for 
estimation of memory decline after surgery by modeling the 
impact of removal of a single brain region that participates 
within an overall memory network.

Conclusion

We tested logistic regression, support vector machine, and deep 
learning approaches to predicting memory encoding success 
using iEEG recordings. In line with results from other BCI appli-
cations, we observed significant improvement using both SVM 
and RNN strategies, and further that a model based on select 
brain regions may outperform higher dimensionality models. We 
applied recurrent feature elimination to model the effects of hip-
pocampectomy on episodic memory and tested the application 
of a recently devised dimensionality reduction strategy (tSNE). 
These findings can inform new strategies of responsive stimula-
tion paradigms for episodic memory and other applications.
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