Synchronous and asynchronous theta activity mark human episodic memory encoding

John Burke¹, Kareem Zaghloul⁴, Joshua Jacobs³, Michael J. Kahana²

University of Pennsylvania School of Medicine¹ and Department of Psychology², School of Biomedical Engineering, Science & Health Systems, Drexel University³ Surgical Neurology Branch, NINDS, National Institutes of Health⁴

Motivation

Theta activity during memory encoding has been hypothesized to represent oscillations that synchronize to mediate memory formation¹.

Do the data support this hypothesis?

A confounding and unexplained empirical observation is that theta power has been shown to overwhelmingly decrease during memory encoding².

Methods: ECoG and Free Recall

We collected electrocorticographic (ECoG) data from 68 leftlanguage dominant neurosurgical patients during a free recall task.

Theta Power Decreases During Encoding

Calculating Theta Synchrony

Theta Synchrony during Encoding

Localizing Synchrony: Graph Theory

To more precisely localize changes in synchrony, we used a graph theoretic approach.

Theta Synchrony Localizes to L. PFC

Two Patterns of Theta Explain Results

Successful memory encoding causes two changes in the theta band. (1) asynchronous, broadband decreases in low-frequency (LF) power (2) synchronous, narrowband theta (θ) oscillations

Theta Activity During Memory Encoding

However, asynchronous theta activity also robustly co-varies with memory formation. Together, synchronous and asynchronous theta occur in a coordinated spatio-temporal pattern during encoding.

References

J. Fell and N. Axmacher. *Nat Rev Neurosci*. (2011) **12**(2):105-118.
P. Sederberg et al. *Cerebral Cortex*. (2007) **17**(5):1190-1196.
J. P. Lachaux et al. *Hum. Brain Mapping* (1999) **8**(4):194-208.

Correspondence:

John F. Burke (john.fred.burke@gmail.com)