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Caplan, Jeremy B., Joseph R. Madsen, Sridhar Raghavachari,
and Michael J. Kahana. Distinct patterns of brain oscillations un-
derlie two basic parameters of human maze learning.J Neurophysiol
86: 368–380, 2001. We examine how oscillations in the intracranial
electroencephalogram (iEEG) relate to human maze learning. Theta-
band activity (4–12 Hz in rodents; 4–8 Hz in humans) plays a
significant role in memory function in rodents and in humans. Re-
cording intracranially in humans, we have reported task-related, theta-
band rhythmic activity in the raw trace during virtual maze learning
and during a nonspatial working memory task. Here we analyze
oscillations during virtual maze learning across a much broader range
of frequencies and analyze their relationship to two task variables
relevant to learning. We describe a new algorithm for detecting
oscillatory episodes that takes advantage of the high signal-to-noise
ratio and high temporal resolution of the iEEG. Accounting for the
background power spectrum of the iEEG, the algorithm allows us to
directly compare levels of oscillatory activity across frequencies
within the 2- to 45-Hz band. We report that while episodes of
oscillatory activity are found at various frequencies, most of the
rhythmic activity during virtual maze learning occurs within the theta
band. Theta oscillations are more prevalent when the task is made
more difficult (manipulation of maze length). However, these oscil-
lations do not tend to covary significantly with decision time, a good
index of encoding and retrieval operations. In contrast, lower- and
higher-frequency oscillations do covary with this variable. These
results suggest that while human cortically recorded theta might play
a role in encoding, the overall levels of theta oscillations tell us little
about the immediate demands on encoding or retrieval. Finally, dif-
ferent patterns of oscillations may reflect distinct underlying aspects
of memory function.

I N T R O D U C T I O N

Oscillatory activity is found in the electroencephalogram
(EEG) of many mammals while they perform numerous cog-
nitive tasks. Rhythmic activity at a variety of frequencies has
been studied extensively, and certain oscillations may be im-
portant for memory function. For example, oscillations in the
theta band appear in the raw, unfiltered signal from field
potential recordings (Bland 1986; Jung and Kornmu¨ller 1938;
Vanderwolf 1969). Researchers have linked theta oscillations
in rodents and properties of theta to moving within an envi-
ronment (Vanderwolf 1969), orienting (Gavrilov et al. 1995),
conditioning (Adey et al. 1960, 1962; Elazar and Adey

1967a,b; Grastya´n et al. 1959, 1966), memory performance
(Givens and Olton 1990; Kinney et al. 1999; Landfield 1977;
Landfield et al. 1972; Mizumori et al. 1990; Winson 1978),
speed of learning (Berry and Thompson 1978), and degree of
learning of an environment (Pan and McNaughton 1997). The
phase within the theta cycle may also be important for memory
function; in addition to findings showing motor behavior
phase-locked to the theta rhythm (Bun˜o and Velluti 1977;
Forbes and Macrides 1984; Komisaruk 1970; Macrides 1975),
O’Keefe and Recce (1993) showed that hippocampal place
cells fired in a consistent phase relationship to the theta rhythm
and that this phase varies systematically with the animal’s path
through the environment. Givens (1996) demonstrated reset of
the phase of the theta rhythm with stimulus presentation during
a rodent working memory task. These findings suggest that
both the presence and properties of the theta rhythm are inti-
mately involved in both spatial and nonspatial memory in
rodents.

While most extensively studied in the hippocampus, theta
oscillations have also been observed in the cingulate gyrus
(Leung and Borst 1987), hypothalamus (Slawinska and Kasicki
1995), superior colliculus (Routtenberg and Taub 1973), ento-
rhinal cortex (Blaszcyk et al. 1996), and neocortex (Bieden-
bach 1966; Nakamura et al. 1992; Silva et al. 1991). Thus
theta-band oscillatory activity is a phenomenon that has rele-
vance beyond hippocampal function.

Theta oscillations also influence long-term potentiation
(LTP) induction, a proposed mechanism of synaptic plasticity,
both in vitro and in vivo (Ho¨lscher et al. 1997; Huerta and
Lisman 1993; Larson and Lynch 1986, 1989; Larson et al.
1986; Pavlides et al. 1988), suggesting that theta acts as a
windowing mechanism for synaptic plasticity. Taken with the
behavioral results discussed in the preceding text, these find-
ings support the notion that theta could be involved in specific
modes of synaptic plasticity that have important implications
for learning and memory at the behavioral level.

Theta oscillations have been far less extensively investigated
in primates than they have been in other mammals. Stewart and
Fox (1991) recorded rhythmic theta-band activity from anes-
thetized monkeys. This finding suggested that theta oscillations
might also be observable in invasive recordings from the
human brain; however, invasive recording from the human
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brain is only possible in certain special cases. Human EEG is
normally recorded from the scalp; this signal is noisier and of
lower spatial and temporal resolution than intracranially re-
corded signal. Consequently, robust, task-related theta activity
in raw, unfiltered scalp EEG traces has not been reported.
Instead, frequency-domain analyses of human scalp EEG have
focused on measures like theta-band power averaged across
trials and have successfully related these measures to memory
function in humans (Burgess and Gruzelier 1997; Klimesch
1999; Klimesch et al. 1994). It should be noted that these
analyses can proceed even when oscillations cannot be seen in
the raw signal and when the average power spectrum does not
show a peak in the theta band. These results suggest that, while
task-related rhythmic activity may not be apparent in unfiltered
human scalp EEG signal, analyses of average EEG power in
the theta band may reflectunderlyingrhythmic oscillations that
are related to memory function.

In addition to quantitatively analyzing average task-related
spectral power, researchers recording human scalp EEG have
extensively characterizedevoked potentialsand their correla-
tion with memory function (Rugg 1995; Rugg and Allan 2000).
During a task, if rhythmic oscillations vary in phase across the
cortex, phases might only align for brief periods of time
relative to a measurable task variable (e.g., presentation time of
a stimulus). Coupled with the spatial averaging of the skull and
scalp, this could appear as a single (nonrhythmic) EEG deflec-
tion. Certain evoked potentials might even result from momen-
tary phase resetting of underlying rhythmic activity (Basar-
Eroglu et al. 1992; Brankack et al. 1996; Demiralp and Basar
1992; Intrilligator and Polich 1994; Spencer and Polich 1999;
Yordanova and Kolev 1998). Direct findings of momentary
stimulus-evoked phase resetting (Givens 1996; Tesche and
Karhu 2000), like those mentioned in the preceding text lend
further credence to this possibility. This kind of argument
further highlights the utility of obtaining invasive recordings
from human participants while they perform memory tasks.

In previous work, we analyzed invasive recordings from
epileptic patients undergoing long-term monitoring for plan-
ning of subsequent resection surgery. In the unfiltered intra-
cranial electroencephalographic (iEEG) signal, striking rhyth-
mic activity in the theta band was seen both during a virtual
maze learning task (Caplan et al. 2000; Kahana et al. 1999) and
during a verbal working memory task (Raghavachari et al.
1999). Further, these episodes of oscillatory activity covaried
with task variables, suggesting that, like similar rodent theta,
they may be related to cognitive function. This ability to
record, in humans, rhythmic slow-wave activity that is visually
similar to oscillatory activity recorded in rodents during similar
tasks provides a crucial link between studies of human and
nonhuman theta-band activity. These new iEEG findings pro-
vided evidence that theta-band oscillations are involved in
human memory function.

Oscillations outside the theta band are also of interest. For
instance, high-frequency oscillations in the gamma range
(above 30 Hz) have been implicated in perception both in
animals (Eckhorn et al. 1988; Gray and Singer 1989; Gray and
Viana Di Prisco 1997; Neuenschwander and Singer 1996) and
in humans (Demiralp and Basar 1992; Gruber et al. 1999; Keil
et al. 1999; Ko¨nig et al. 1995; Miltner et al. 1999; Tallon-
Baudry et al. 1996–1998) and in motor behavior in rodents
(Hamada et al. 1998). Researchers have also proposed that

high- and low-frequency activity may work together during
certain forms of cognition (Buzsa´ki 1996; Csicsvari et al. 1999;
Jensen and Lisman 1998; Lisman and Idiart 1995). We were
therefore interested in examining the relationship of oscilla-
tions at many different frequencies with task variables. We also
sought to determine how theta-band oscillations compare with
oscillations at other frequencies during virtual maze learning. It
is of interest to know whether task-related oscillatory episodes
are a uniquely theta-band phenomenon or an EEG signature
that is also present at other frequencies.

As elaborated in the preceding text, theta bears a relationship
to tasks involving movement within an environment as well as
to tasks involving a memory component. Recently, interest in
spatial memory and way-finding has been revived with numer-
ous behavioral and functional neuroimaging studies in humans
(Aguirre et al. 1996; Berthoz 1997; Kahana et al. 1999; Ma-
guire et al. 1996–1998). We were specifically interested in
multiple T-junction mazes. Extensively studied in animals
(Stone and Nyswander 1927) and in some cases in humans
(Miles 1928), T-junction mazes are useful for their simplicity
and uniformity. Additionally, a path through a T-junction maze
is a sequence of left and right turns; hence, it could be treated
purely as a symbolic list-learning task. However, the maze
paradigm additionally includes visual cues. The task, then, can
be thought of as a serial learning task embedded within a
spatial navigation task. Given these properties, it is of interest
to study the learning of multiple T-junction mazes in humans.
Recent innovations have made it possible to design virtual
reality experiments in which participants navigate and learn a
virtual environment (Gillner and Mallot 1998; Tlauka and
Wilson 1994) and to detect changes in human cortical activity
during virtual navigation (Maguire et al. 1998). As in previous
work (Kahana et al. 1999; Kirschen et al. 2000), our partici-
pants learned to navigate three-dimensional rendered, virtual,
multiple T-junction mazes (Fig. 2). This task has been shown
to involve the processing of spatial cues and has a significant
memory component. It was shown that the presence of optic
flow, a visual cue, helps participants learn T-junction mazes,
even though optic flow in itself contains no information about
the maze path (Kirschen et al. 2000). This suggested that the
spatial cues interact with memory function in a complex way.
We sought to determine how oscillations at various frequencies
relate to virtual maze learning.

In this paper, we present a new method for detecting epi-
sodes of EEG oscillations. This method enables us to ask how
bouts of rhythmic activity at a given frequency are related to
cognitively relevant variables. This oscillatory episode detec-
tion algorithm takes advantage of the high signal-to-noise ratio
and good spatial and temporal resolution of intracranially re-
corded signal. It is designed to pick out rhythmic features in the
raw signal. One advantage of the algorithm is that it is appli-
cable across a broad range of frequencies. Combined with the
fact that intracranial recordings bypass the low-pass filtering of
the skull and scalp, this allows us to apply the same analyses
over the 2- to 45-Hz range. We first take advantage of the
method by comparing the incidence of oscillatory episodes at
different frequencies. We show that electrodes tend to have a
specific “characteristic” frequency (sometimes more than one;
sometimes none), but most of the oscillations during a virtual
maze learning task occur within the theta band. We improve on
the maze-length analysis reported in earlier work (Kahana et al.
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1999). In these studies, we confined ourselves to the 4- to 8-Hz
theta band, and our analyses could not be used to compare
across frequency. With the new oscillatory episode detection
algorithm, we are able to apply the maze-length analysis sim-
ilarly across a broad range of frequencies and show that the
maze-length effect occurs primarily within the theta band.

A limitation of the maze-length analysis is that maze length
was an experimentalmanipulation of task difficulty. It is
desirable to examine the electrophysiological correlates of
behavioral measures that relate to learning. Therefore we ex-
amined participants’ response times as they navigated through
the mazes. This measure of response time, mean decision time
per trial, has already been shown to correlate with learning
(Kirschen et al. 2000). Mean decision time has also been
shown to be a better correlate of learning than the number of
errors committed (Kirschen et al. 2000) (also seeRESULTS). We
show that the patterns of oscillations that correlate with deci-
sion time are different from those that correlate with maze
length.

M E T H O D S

Participants and recording

We recorded from five patients with drug-resistant epilepsy. When
the location of the seizure focus is unclear, patients undergo invasive
monitoring to localize the focus. Intracranial platinum electrodes
(3-mm diam) are placed subdurally in many brain regions to test
hypotheses about the localization of the seizure focus as well as
mapping functional regions to be avoided in surgery. By participating
in our studies, these patients incurred no additional medical or surgical
risk and informed consent was obtained from the patients and their
guardians. The protocol was approved by the Institutional Review

Board at Children’s Hospital, Boston. We sampled a total of 345
electrodes across five participants. iEEG signal was sampled at 200
Hz (Telefactor apparatus, band-pass filter: 0.5–100 Hz) forpartici-
pants 1–4and at 256 Hz (BioLogic apparatus, band-pass filter: 0.3–70
Hz) for participant 5.The locations of the electrodes were determined
from co-registered computed tomograms and magnetic resonance
images by an indirect stereotactic technique (Talairach and Tournoux
1988). Electrodes overlying regions of known lesions or seizure onset
zones were excluded from analysis (a total of 91 such electrodes were
excluded).

All recording sites are plotted in Fig. 1, and further information
about our patients is given in Table 1.

Task and procedure

Participants learned to navigate multiple T-junction mazes consist-
ing of T junctions linked by corridors (Fig. 2). All corridors were of
equal length. The sequences of successive turns were constrained to
prevent the path from crossing itself (this happens with 3 successive
left turns or right turns). We also eliminated paths that contained the
subsequence right-left-right-left-right-left (or its complement) to
avoid especially easy paths. Invisible walls prevented participants
from moving down incorrect corridors.

Participants navigated the maze in a highly constrained fashion—
one keystroke (up arrow) moved the participant’s view down a cor-
ridor (the participant’s virtual position was always on the midline of
the corridor) and one keystroke (left or right arrow, respectively)
turned the view 90° to the left or right. The keyboard buffer was
cleared following each movement so that holding down a key had the
same effect as pressing it once briefly. Turns immediately followed
the keystroke, while forward movements occurred over 280 ms. In
some cases, this delay was filled with optic flow (the view was
redrawn multiple times as the participant’s view moved along the
corridor, simulating virtual movement); in others, there was no illu-

FIG. 1. All sites recorded from in all 5 participants. These topographic maps show electrode locations on 3 views of a standard
brain.Left: right lateral view.Middle: inferior view. Right: left lateral view. Each shape denotes an electrode location. Different
shapes denote different participants. Red-filled shapes were excluded from our analyses; green-filled sites were included.

TABLE 1. Participant demographics

Participant Age Gender Resection No. of Electrodes No. of Excluded Sites

1 16 F R frontal 31 1
2 14 M R inferior occipital 32 17
3 19 M Anterior L temporal 108 27
4 23 M L lateral frontal 78 23
5 22 F L lateral frontal 96 23

Total 345 91
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sion of motion and the participant’s view moved to the T junction
following the delay.

Participants traversed a maze in two distinctcueing modes:ini-
tially, four consecutive trials were presented instudymode, in which
arrows were placed on the walls to indicate the correct path. Partici-
pants then traversed the same maze intestmode, with the arrow cues
removed, forcing them to rely on a learned representation of the maze.
Participants navigated a maze repeatedly until they reached a perfor-
mance criterion: namely, three consecutive errorless traversals. Task
difficulty was manipulated by varying path length, which we term
maze length.After a practice block of four eight-junction mazes (we
excluded these mazes from our analyses), maze length was either
short(sequences of 6 left and right turns) or long (sequences of 12 left
and right turns) mazes.

Detecting oscillatory episodes

We designed the oscillatory episode detection algorithm to identify
times within the signal that exhibited high-power rhythmic activity at
a particular frequency, lasting a few cycles. We therefore defined an
oscillatory episodeat a particular frequency,f *, as a duration longer
than a time threshold,DT, during which power at frequencyf *
exceeded a power threshold,PT. We selected the two parameters,PT

andDT, as follows.
We moved to the frequency domain by wavelet transforming the

raw traces [Morlet wavelet, window5 6 cycles (Grossmann and
Morlet 1985)]. Frequency was sampled logarithmically because with
wavelets, the relative bandwidth is preserved; 24 frequency steps were
used in the range 1–54 Hz. The wavelet transform gave us wavelet
power as a function of time at each frequency of interest.

To select the threshold,PT, separately for each frequency at each
recording site, we first assumed that the background spectrum was
“colored noise,” with the formAf2a, a general property of natural,
autocorrelated signals (Schlesinger and West 1988). We wanted to set
PT in such a way as to exclude this background signal. We therefore
fit the theoretical Power(f ) 5 Af2a function to the actual power
spectrum over the 1- to 54-Hz range at each electrode. The curve
fitting was done by log-transforming the average wavelet spectrum
and then computing a linear regression on these values. The intercept
is then equal to log (A) and the slope is equal to the exponent,2a. The
fit value at frequencyf * was taken to be the mean of thex2(2)
distribution of wavelet power at that frequency (Percival and Walden
1993). The parameter,PT, at a given frequency, was set to the 95th

percentile of the cumulative distribution of this fitx2(2) function to
exclude 95% of the background signal.

The duration threshold,DT, at frequencyf * was set to three cycles
[i.e., 3(1/f* )] to eliminate artifacts and physiological signatures that
were nonrhythmic.

Finally, we introduce the measure:Pepisode( f ), percent trial time in
episodes.Pepisode( f ) was defined as the total amount of time during
which episodes occurred at frequencyf divided by the total time in
trial. Pu was defined as the union of allPepisode( f ) time in the 4- to
8-Hz band (5 logarithmically spaced frequency values).

In subsequent analyses, we excluded frequencies at the ends of the
1- to 54-Hz range; our range of interest was 2–45 Hz. This was done
to keep clear of the band-pass filtering of the amplifiers at the
low-frequency end and to avoid contamination by the 60-Hz line noise
artifact at the high end.

R E S U L T S

In all analyses, significance thresholds were chosen to obtain
a low estimatedType I error (false positive) rate. Between-
subject variability in electrode placement and possible reorga-
nization of function due to the pathology of the subject pool
make it meaningless to average over anatomical regions with
only five participants. Therefore it is not possible to generalize
the localization of the task dependencies; however, at this
stage, we are primarily interested in the overall pattern of
results; hence, we ensured that the hit rate exceeded by far a
conservative estimate of false positive rate.

Behavioral data

Participants learned to navigate virtual, multiple T-junction
mazes. Participants were first presented with fourstudy-mode
trials, where an arrow (a visual cue) appeared at each junction,
denoting the correct path. Then participants were required to
navigate the maze intest modewithout the aid of the arrow
cues. They continued until they reached a criterion of three
perfectly navigated consecutive test trials. We manipulated the
number of junctions in the maze, a variable that has a profound
effect on task difficulty (Kirschen et al. 2000). Across partic-
ipants, mean number of test trials required to reach the learning

FIG. 2. The virtual maze learning task.Left: blueprint of a sample multiple T-junction maze. The red plus sign marks the start
position and the blue diamond marks the end point. Arrows denote the correct path. Dotted lines represent invisible walls that
prevented participants from going down incorrect corridors.Right: snapshots of the participants’ perspective within the virtual
maze,studymode, at the final junction of a sample maze.
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criterion (not including the three criterion trials) was 8.666
3.31 (mean6 SE) for long (12 junction) mazes and 0.586
0.10 for short (6 junction) mazes.

To test the hypothesis that oscillations are related to learn-
ing, we wanted a sensitive measure of degree of learning. The
first candidate is the number of erroneous turns committed.
However, in a T-junction maze-learning task, or any binary
sequence-learning task, the guess rate for each element of the
list/path is 50%. Furthermore, once a wrong turn is made, the
participant either corrects the error by making two successive
turns in the opposite direction or turns around and becomes

disoriented in the maze and makes many more errors. Thus,
after the first error it is hard to evaluate the quality of memory
for the subsequent choice points (Kirschen et al. 2000). For
two-alternative forced choice tasks, measures of inter-response
times (IRTs) are especially useful for tapping performance
levels even when response accuracy is perfect, and have been
applied extensively in the literature (Kahana and Loftus 1999).
We therefore chose to use the mean response time at choice
points, decision time, as a measure of performance (Fig. 3).
Consistent with the foregoing reasoning, earlier work demon-
strated decision time to be a more sensitive measure of learning
than the number of errors committed; learning curves that were
significant in decision time were nonsignificant in number of
error turns (Kirschen et al. 2000). Finally, the decision time
measure allows us to compare perfect traversals of mazes,
which, while they vary in demands on encoding, are matched
for number of keystrokes.

Oscillatory episodes

As reported previously (Kahana et al. 1999), theta oscilla-
tions appear in the raw, unfiltered human iEEG signal. Figure
4 shows sample traces that show theta-band oscillations in
selected electrodes from each of the five participants. We
developed an algorithm to detect such episodes of oscillatory
activity with two significant objectives in mind. First, we
wanted the algorithm to tag signals that looked like rhythmic
activity in the raw trace (as does theta activity in rodents).
Second, we developed our method to be unbiased across fre-
quency to be able to compare oscillatory activity at different
frequencies. Previous analyses of oscillatory activity in hu-
mans and in rodents have tended to focus on measures of

FIG. 3. The decision time measure. Plotted is the dependence of decision
time on test trial number, for long (—) and short (- - -) mazes. Error bars
denote SE across participants.

FIG. 4. Detecting theta-band oscillatory episodes. Theta is seen in raw signal (blue traces) recorded in electrodes in all 5
participants. Vertical gray lines mark 1-s intervals. The yellow-shaded regions denote theta-band oscillatory episodes identified by
the algorithm (see text). The gray-shaded regions denote out-of-trial periods; these were utilized in the detection of episodes but
excluded from the calculation ofPu. F, R, and L, participants’ keystrokes (forward, right, and left, respectively). Rows 1–5 represent
traces fromparticipants 1–5,respectively. Talairach coordinates (L-R, A-P, I-S) mm:participant 1, (231.6, 19.1,215.5);
participant 2,(52.6,249.5, 10.3);participant 3,(252.1,267.6, 12.6);participant 4,(239.0,24.4,216.3);participant 5,(256.1,
224.3, 23.4). Vertical scalebars (to theleft of the traces) denote 100mV.

372 CAPLAN, MADSEN, RAGHAVACHARI, AND KAHANA



average power (Benington et al. 1994; Mendelson et al. 1980;
Pradhan et al. 1993; Roncagliolo and Vivaldi 1991; Smith et al.
1979). These methods have been applied without controlling
for the levels of oscillatory activity that one would expect by
chance. We present an oscillatory-episode detection algorithm
that exploits the fact that theta episodes, runs of several cycles
of theta-band activity, appear visibly in the unfiltered signal
(seeMETHODS). By taking advantage of the known properties of
background EEG and using these to tailor the method in the
same way at each frequency, the method allowed us to fairly
compare oscillatory episodes across frequencies. First, this
allowed us to demonstrate that oscillatory episodes within the
theta band are a prominent feature of our signal at many
electrode locations. Second, we were able to compare inci-
dences of the identified oscillatory episodes with task vari-
ables.

We designed our oscillatory episode detection algorithm to
be able to identify times within the iEEG record that exhibited
high-power rhythmic activity lasting a few cycles. We wanted
the algorithm to be relatively insensitive to sharp transients as
found in epileptic EEG. The method requires two parameters.
An oscillatory episodeat a particular frequency,f *, was de-
fined as a duration longer thanDT cycles during which power
at frequencyf * exceededPT (seeMETHODS).

We selected the threshold,PT, separately for each frequency
at each recording site to make the method comparable across
frequency, brain region, and subject. This selection ofPT relied
on the ubiquitous property of background EEG—that the back-
ground power spectrum is colored noise, with the formAf2a,
where f is frequency andA and a vary. The exponenta
generally takes on values between 1 and 2; in our case, mean
value, compiled across participants, was 1.696 0.31 (mean6
s). Colored noise is a common property of a wide range of
natural (including biological) signals (Schlesinger and West
1988). Power spectra indeed show this kind of background
(Fig. 5A, —), and sometimes have superimposed peaks (Fig.
5B, —). These peaks likely occur because oscillations are
present in the signal. Therefore we fit the functionAf2a to the
wavelet power spectrum (e.g., Fig. 5, - - -). The duration
threshold,DT, at frequencyf * was set to three cycles [i.e.,
3(1/f *)]. This biased the algorithm to tag oscillations consist-
ing of sustained runs of rhythmic activity.

By choosing the thresholds in this manner, we could esti-
mate the effect of the episode detection algorithm on “back-
ground EEG.” A power thresholdPT 5 95th percentile should,
on average, eliminate 95% of the background signal. This
would set an upper limit (on average) on the value that

Pepisode(f *) could take—namely, 5%. However, by adding the
duration threshold,DT 5 3 cycles, this 5% high power not only
has to be present, but it has tocluster in time to be able to
surpass theDT. Therefore a good benchmark for identifying a
significantly high amount of oscillatory episodes at a given
frequency isPepisode(f *) . 5%.

The oscillatory episode detection algorithm agreed well with
visual inspection. Figure 4 also illustrates the performance of
the algorithm. Note that the algorithm picked out oscillatory
episodes with the parameters used in this example (PT 5 95th
percentile,DT 5 3 cycles).

Frequency tuning of oscillatory episodes

If oscillations are present at particular “characteristic” fre-
quencies, this should be evident as a local peak in the incidence
of oscillatory episodes relative to nearby frequencies. In the
episode-detection method we used, the parameters are selected
for each wavelet frequency and electrode location individually,
in a manner that is minimally biased with respect to the actual
(experimental signal) distribution of wavelet coefficients. This
makes it possible to compare the amount of oscillatory activity
at one frequency to nearby frequencies.

By plotting the functionPepisode( f ) (Figs. 6and 7), one can
see that there is indeed a significant peak at certain electrode
locations, in the theta band (Figs. 6 and 7,A–C) as well as
outside the theta band (Fig. 7,D–F). In some cases, multiple
peaks can be seen (Fig. 7,G andH). While it is possible that
multiple peaks are evidence of the fine spectral structure of a
complex waveform, this is not always the case. For instance,
Pepisodeat the two peak frequencies at the site in Fig. 7G shows
statistical independence over maze trials [r(114) 6 20.022,
NS]. In still other sites, there is no pronounced peak (Fig. 7I).
Figure 6 also illustrates the robustness of the frequency depen-
dence to the choice of the two analysis parameters (PT andDT).

FIG. 6. Frequency dependence of oscillatory episode activity. Each plot
showsPepisodeas a function of frequency for an example location that shows
both significant amounts of oscillatory theta-band activity and task dependence
[participant 1, right inferior frontal cortex, Talairach coordinates (L-R, A-P,
I-S): (9.8, 15.2,218.9) mm]. The different plots illustrate the robustness of
this pattern to the episode detection parameters, with the duration threshold
varying by column and the wavelet coefficient threshold varying by row. The
central thick plot indicates the standard parameter set used throughout the
paper. Error bars denote SE.

FIG. 5. Wavelet power spectrum for 2 example recording sites.A: partic-
ipant 5, Talairach coordinates (L-R, A-P, I-S): (241.4, 24.5, 38.0) mm.B:
participant 5, (260.1,219.1, 15.4) mm. Error bars denote SE of the mean.
- - -, theA 3 (1/f 2a) (colored noise) spectrum fit.
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We next addressed the question of whether oscillatory epi-
sodes occur predominantly within the theta band or compara-
bly across the broad band examined. We simply evaluated the
meanPepisode(f *) against the value 5% (the estimated maxi-
mum Pepisodevalue for background signal). Figure 8shows
how many electrodes show significantly highPepisodes(f *) at
each frequency (2-tailedt-test,P , 0.001). It is evident that
oscillatory episodes are most prevalent within the theta band.
The nonuniformity of the distribution ofPepisodeby frequency
is significant for all participants [x2(22) 5 223, 103, 588, 162,
and 520 forparticipants 1–5,respectively;P , 10214].

Because we controlled for the background colored noise
spectrum, the predominance of oscillatory activity in the theta
band cannot be explained by the general tendency for lower
frequencies to exhibit larger amplitudes. The episode-detection
algorithm successfully identifies episodes of oscillatory activ-
ity at different frequencies and is robust to the choice of
parameters. Different brain regions show different dominant
frequencies, and in some cases show multiple “active” frequen-
cies. Still, at this stage, the theta band is the most well repre-
sented band at the electrode locations sampled.

Dependence of theta episodes on task parameters

We have found significantly elevated levels of both theta and
non-theta oscillations during this task (Figs. 4–8). If it can be
shown that these oscillations are correlated with variables
known to have a strong influence on behavior, this would
suggest that theta oscillations reflect an important feature of
human cognition. We therefore examined the dependence of
Pepisode on two important task variables,maze lengthand
decision time(see behavioral results in the preceding text).

MAZE-LENGTH EFFECT. We examined howPepisodevaried with
maze length (number of junctions) during perfect traversals of
mazes, in both the training phase and test phase. Trials con-
taining errors were excluded from this analysis because these
trials were virtually absent in the short mazes, and thus, any
difference observed between the short and long mazes could be
carried by these error trials. Furthermore, on a significant
number of error trials, participants became lost in the maze,
and rather than trying recall or learn the sequence spent their
time trying re-orient themselves.

As shown in Fig. 9, many sites showed significantly greater
Pepisode during long mazes than during short mazes (P ,
0.0005 by a 2-tailed Mann-WhitneyU test). This maze-length
effect is seen for study trials as well as test trials1 and at a broad
range of frequencies; however, the effect is predominantly
found in the theta and alpha bands. It is striking that only one
electrode exhibited more theta-band oscillatory activity in short
mazes than in long mazes.

The locations of all electrodes showing these effects within
the theta band are plotted in Fig. 10. Due to the electrode
sampling bias (a result of clinical considerations) and possible
reorganization of function in epileptic brains (Fried et al. 1994;
Margerison and Corsellis 1966; Sass et al. 1990), one should be
cautious in generalizing the localization of these task effects.

1 Because the task is self-paced and participants are directed through the
maze during the first four trials, the task blurs the distinction between study and
test. On each maze traversal after the very first, participants are engaged in
both learning the maze sequence and attempting to retrieve the information
learned on previous traversals from memory. We nonetheless analyzed these
trials separately and found no systematic differences. Therefore, we do not plot
analyses of study and test trials separately in the figures.

FIG. 7. Examples of different ways oscillatory episodes vary with fre-
quency. Each plot showsPepisodeas a function of frequency (error bars denote
SE). Shown are electrodes with preferred frequency in the theta (A–C), alpha
(D), beta (E), and delta (F) bands as well as an electrode with 2 (G) and 3 (H)
preferred frequencies and 1 with no significant levels of oscillatory episodes
(I). Dashed gray lines mark the 5% level, a benchmark for assessing signifi-
cance (see text). Talairach coordinates (L-R, A-P, I-S) are:A (participant 2),
(55.8, 232.1, 15.1) mm;B (participant 4), (223.8, 15.1, 10.0) mm;C
(participant 5), (212.5, 15.7, 58.1) mm;D (participant 3), (224.9, 8.0, 55.2)
mm; E (participant 4), (245.5,215.1, 38.7) mm;F (participant 3), (253.3,
218.9, 1.8) mm;G (participant 3), (253.9,242.6, 9.0) mm;H (participant 5),
(242.8,221.1,234.3) mm;I (participant 4), (231.6,213.2, 60.6) mm.

FIG. 8. Significant levels of oscillations. Histograms reveal the number of
electrodes showing significantly highPepisodeas a function of frequency,f.
From top to bottom, the histograms representparticipants 1–5,respectively.
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Nonetheless, it is of interest that the theta-band maze-length
effect is observed in many brain regions. The widespread
distribution of the maze-length effect might be a result of the
fact that maze length in turn covaries with many task param-
eters The presence of maze-length dependent theta in different
regions may reflect different underlying functions for theta.

The maze-length effect extends previous findings (Kahana et
al. 1999) to a larger population and to non-theta frequency
bands. It indicates that oscillatory activity (primarily theta-
band) is not onlypresentduring virtual maze learning but can
be influenced by a manipulation of task difficulty, tying oscil-
latory episodes closely to cognition. The finding that in almost
all cases of the maze-length effect within the theta band,
oscillations are more prevalent in long than in short mazes,

suggests that theta is related to the increased cognitive de-
mands of longer mazes.

DECISION-TIME EFFECT. The average amount of time a partic-
ipant takes at a maze junction,decision time,is a good measure
of learning at a given maze length and is a more sensitive probe
of learning than the number of wrong turns a participant makes
(Kirschen et al. 2000) (also seeBehavioral results). We sought
to determine whether this variable was related to oscillatory
activity, independent of maze length. If the maze-length de-
pendent theta we observed were directly related to the amount
of encoding or retrieval difficulty during a trial, we should see
an increase in theta per unit time with increasing decision time.

We were specifically interested in looking at perfect test
trials during long mazes. Long mazes took participants numer-
ous test trials to learn. We included all perfect test trials so that
the trials would be controlled for the overall number of key-
strokes. By including both criterion and precriterion perfect
trials, we analyzed trials during which participants spanned a
range of demands on encoding and retrieval. We therefore
computed the Pearson correlation betweenPepisode( f ) and de-
cision time across trials and selected a significance cutoff
threshold ofP , 0.0005 to equate the estimated Type I error
rate with that for the maze-length effect [this corresponds to
r(75) $ 0.40, r(92) $ 0.36, r(57) $ 0.45, r(72) $ 0.40,
r(32) $ 0.59 forparticipants 1–5,respectively].

Figure 11A shows the number of electrodes at each fre-
quency showing this effect (P , 0.0005). In almost all cases
meeting the significance criterion, the correlation wasposi-
tive—oscillatory episodes occurred more of the time during
trials with greater mean decision time. Quite surprisingly,
however, in contrast to the maze-length effect, this task depen-
dency appears relativelyabsentin the theta band. Instead, the
decision-time effect is especially pronounced in the gamma
and delta frequencies. This directly contradicts the hypothesis
that the amount of theta in a given trial reflects either the
encoding or retrieval difficulty during that trial.

It could be that while theta oscillations do not occur a greater
percentage oftime with increased demands on encoding or

FIG. 9. Frequency characteristics of the maze-length effect. Histogram of
the number of electrodes showing the maze-length effect as a function of
frequency summarized across all 5 participants.■, frequency-electrode pairs
showing higherPepisodein long than short mazes (P , 0.0005);h, the opposite
effect. Conservative estimate ofType I error rate is 0.22 sites at each fre-
quency.

FIG. 10. Brain regions showing maze-length related theta episodes. These topographic maps show electrode locations on 3
views of a standard brain.Left: right lateral view.Middle: inferior view. Right: left lateral view. Each shape denotes an electrode
location. Different shapes denote different participants. Filled shapes denote electrodes that show the maze-length effect toP ,
0.0005 at any frequency within the theta band (4–8 Hz). Electrodes are filled black if they show morePepisodeduring long mazes
than short mazes. The 1 electrode filled light gray showed the opposite effect. Conservative estimate ofType Ierror rate is 1.3
electrodes.
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retrieval, theiramplitudemight be larger. Following this alter-
nate hypothesis, we predict that whilePepisode does not in
general covary with decision time,average wavelet powerfor
a given trial should. We therefore repeated the decision-time
analysis using average wavelet power as the measure. These
results showed a highly similar frequency dependence (Fig.
11B). This suggests that the decision-time effect is found in the
theta band neither in the predominance nor the amplitude of the
oscillations. We discuss how to resolve the apparent contra-
diction between the maze-length and decision-time effects in
DISCUSSION.

The decision-time effect is a finding of task dependence of
oscillatory activity that is distinct from the maze-length ef-
fect—it is present even when maze length is fixed. The fre-
quencies at which this effect occurs, however, are quite differ-
ent from those at which the maze-length effect occurs. The
decision-time effect appearsnot to be a theta-band phenome-
non but rather, is prominent in the gamma and delta bands. We
consider a specific example in Fig. 12. The first thing one
notices is that thePepisode( f ) plot for this electrode shows a
theta peak but no significant gamma peak (Fig. 12A). In con-
trast, the decision-time effect is nonsignificant at this peak
theta frequency but highly significant (P , ;1027) in the
gamma band at 38 Hz (Fig. 12,B and C). By inspecting the
vertical scales inB andC, one can see that the 38-Hz oscilla-
tions take up a small percentage of the overall task time.
Conversely, theta oscillations are found a much greater pro-
portion of the time. This explains why theta oscillations dom-
inate the overallPepisode( f ) plot. Nonetheless, the relatively
less frequent 38-Hz oscillations are found significantly more of
the time during trials with longer decision time.

D I S C U S S I O N

Distinct patterns of task-related oscillations

We have shown that oscillatory episodes occur in relation to
two task variables—maze length, a manipulation of task com-
plexity, and decision time, a measure of encoding/retrieval
demands. We found both effects at many different frequencies
and at a variety of brain regions. The maze-length effect was
found primarily within the theta and alpha bands, while the
decision-time effect was primarily found in the delta, beta, and
gamma bands, with relatively little effect found in the theta
band. The different frequency characteristics of the two effects
suggests that the two analyses are functionally distinct—that
they tap quite different cognitive operations.

Possible roles of theta oscillations

Our findings rule out a number of competing accounts of the
role of theta in our maze-learning task. According to one
hypothesis, increases in the rate of key presses produce in-
creased theta activity. Because the key-press rate and associ-
ated virtual movement is faster in short mazes than in long
mazes, this would produce the opposite maze-length effect—
namely, more theta in short mazes than in long mazes. Fur-
thermore this account would predict a negative correlation
between decision time and theta activity, and again, little
support was found for this effect.

A follow-up account is that theta is related not to key presses
or virtual movement but to time spent in encoding and re-
trieval, specifically when the participant is not moving through
the maze. This account would predict the strong positive maze-

FIG. 11. Frequency characteristics of the deci-
sion-time effect.A: histograms of the number of
electrodes showing the decision-time effect (P ,
0.001) in perfect test trials during long (12 junc-
tion) mazes.■, frequency-electrode pairs showing
more Pepisode as decision time increased;h, the
opposite effect.B: the same analyses using average
wavelet power as the measure. Conservative esti-
mate of Type I error rate is 0.22 sites at each
frequency.

FIG. 12. Frequency specificity of the deci-
sion-time effect. The decision-time analysis is
illustrated for a single sample recording site [par-
ticipant 5,Talairach coordinates (262.6,214.5,
21.7) mm]. A: the Pepisode( f ) curve showing a
theta peak but no gamma peak. - - -, the 5%
benchmark level (see text for details). Error bars
denote 95% confidence intervals.B: scatter plot
of Pepisode(5 Hz) against decision time showing
no significant decision-time effect. Ther value
denotes the Pearson correlation between these 2
variables.C: same asB for 38 Hz at the same
recording site, showing a highly significant deci-
sion-time effect.
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length effect which we observed. However, it would also
predict an even stronger positive decision-time effect, which
was not found.

Further supporting evidence comes from analyses of oscil-
latory activity during a symbolic working memory task that
failed to relate theta-band oscillatory activity to keystrokes or
stimulus presentation alone (Raghavachari et al. 2001).

The finding of a robust theta-band maze-length effect led us
to hypothesize that the presence of theta oscillations were
related to the encoding or retrieval demands on the participant.
However, the notableabsenceof a decision-time effect (both in
Pepisode and in average power) contradicted this hypothesis.
While it is possible that properties of theta that we have not
analyzed (e.g., frequency, phase-locking of behavior) might
covary with demands on encoding or retrieval, the results still
present a problem. We propose the following resolution. We
suggest that theta oscillations areconduciveto specific types of
encoding (Ho¨lscher et al. 1997; Huerta and Lisman 1993;
Larson and Lynch 1989; Larson et al. 1986; Pavlides et al.
1988). However, theta oscillations are invoked not by the
immediatedemands of the task but by the overall demands of
the task. It is plausible that the brain cannot anticipate the
cognitive demands at the time scale of hundreds of millisec-
onds. We suggest that instead, theta oscillations are invoked by
the general demands of the task at hand, on the time scale of
learning a maze. This would account for the presence of a
maze-length effect combined with the relative lack of a deci-
sion-time effect in theta. This account is also consistent with
theta being present in rodents during diverse types of explor-
atory behavior; the presence of theta tells us only that encoding
and retrieval are facilitated, but tells us little ofhow muchof
these cognitive operations is achieved.

Interpreting task-related oscillations in patients with epilepsy

Recording intracranially from epileptic patients affords a
number of significant advantages over scalp-recorded EEG in
normal participants (Sperling 1997), including freedom from
eye-movement artifacts, improved spatial resolution, and ab-
sence of the filtering of the skull and scalp as well as access to
ventral brain regions. Other groups have successfully used
intracranial recordings from human participants to investigate
cognitive function including memory (Fernandez et al. 1999;
Guillem et al. 1996) and language (McCarthy et al. 1995) as
well as mapping the topography of the oddball (P300) potential
(Halgren et al. 1980; Smith et al. 1990). However, there are
some important caveats to iEEG research.

First, in addressing the issue of localization, it is important
to keep in mind that the placement of electrodes is determined
by the clinical team in order to identify the locus of seizure
onset. When the seizure focus is unclear, large numbers of
subdural electrodes, placed directly on the cortical surface, can
be especially informative. Because the focus is often in tem-
poral lobe, there is a sampling bias toward temporal regions.
The necessary clinical bias in electrode placement means that
the data obtained from any given patient give limited informa-
tion about the locations associated with a cognitive function.
To obtain a complete picture of the topography of brain activity
associated with cognitive function, one must assess patterns
across a large number of participants with varying electrode
coverage. For the results presented here, therefore, it is prema-

ture to draw conclusions as to the general loci of human
task-related oscillations.

It is also crucial to ask whether our results might be a direct
result of the pathology of the subject pool. This is especially
pertinent given that epilepsy is a disorder of rhythmic activity,
and it is precisely rhythmic activity that we focus on in this
paper.

There are several arguments against the possibility that our
findings are related to epilepsy. First, we excluded sites in-
volved in seizure onsets as well as electrodes placed over
known lesions. Second, at a large number of sites, the inci-
dence of oscillations covaried with the task, and these sites
showed a high degree of spatial localization, a pattern quite the
opposite of what one would expect from an uncontrolled pro-
cess like epilepsy. Third, participants performed the task at
levels similar to university undergraduates, indicating that the
brain regions responsible for performing the maze learning task
were functioning well. Fourth, sleep spindles, a different kind
of theta-band oscillatory activity, have been recorded intracra-
nially in epileptic patients and shown to be both similar to
spindles in normals and unrelated to epilepsy (Malow et al.
1999), demonstrating that it is possible to observe rhythmic
activity in epileptic participants that is not a result of their
pathology. Finally, some evidence suggests that theta oscilla-
tions may in fact act toinhibit seizure onset in vivo (Miller et
al. 1994) and that theta in vitro is insensitive to osmolality, a
variable that affects patients’ susceptibility to seizures (Ose-
hobo and Andrew 1993). This kind of evidence dissociating
theta oscillations and seizure activity supports the notion that
the task-related rhythmic activity observed in our patients is
not a consequence of their pathology.

Episode detection algorithm

Previous algorithms have been developed for analyzing os-
cillatory activity in rodents or theta-band power in humans as
well as for analyzing sleep (both human and nonhuman), where
rhythmic activity can be seen in raw scalp EEG signal. These
algorithms have focused on measures of average power (Basar-
Eroglu et al. 1992; Benington et al. 1994; Gavrilov et at. 1995;
Intrilligator and Polich 1994; Klimesch et al. 1994; Yordanova
and Kolev 1998) or zero-crossing algorithms (Berry and
Thompson 1978; Roncagliolo and Vivaldi 1991) or measures
not directly related to the rhythmic nature of the signal—or
else have assumed that an underlying oscillation is present and
proceeded to analyze its phase relative to task variables (Bur-
gess and Gruzelier 1997; Givens 1996; O’Keefe and Recce
1993; Tesche and Karhu 2000; Yordanova and Kolev 1998).
Instead, we developed an algorithm that would allow us to ask
whether a site expressed significant levels of oscillatory epi-
sodes at a given frequency, relative to a reference spectrum. In
this way, we could analyze oscillatory episodes in a manner
that was not biased across frequency, electrode location, or
subject.

The algorithm presented here makes use of known properties
of the background EEG to identify significantly elevated runs
of oscillatory activity. It has the desired properties and, impor-
tantly, agrees with visual inspection (Fig. 4) and is robust to
choice of analysis parameters (Fig. 6). Our method takes ad-
vantage of the relative clarity of the signal obtained from
invasive recordings in humans and the fact that the rhythmic

377IEEG OSCILLATIONS AND MAZE LEARNING



activity can be seen in the unfiltered trace. Additionally, the
algorithm is simple in that it is an extension of average power
analyses but overcomes some important biases of power spec-
trum analyses, including estimating background levels (Plett
2000) and requiring a sustained run of elevated power. The
algorithm allows us to compare oscillatory activity across
frequencies and favors frequencies that show spectral peaks.

Oscillatory episodes at different frequencies

When interpreting analyses of oscillatory episodes at differ-
ent frequencies, it is important to consider the following. The
iEEG is dominated by a colored noise background spectrum,
which means that activity at lower frequencies will tend to be
of higher amplitude than activity at higher frequencies and will
therefore dominate the unfiltered trace. We applied the analysis
methodology at each frequency using an estimate of the back-
ground spectrum. This is similar to “prewhitening” the signal
or weighting the analyses equally across frequency. Therefore,
results obtained at higher frequencies may be just as statisti-
cally significant as those obtained at lower frequencies; how-
ever, the higher-frequency oscillations will not tend to domi-
nate the raw signal. Depending on the theoretical questions
being addressed, one may wish to favor either oscillations of
large amplitude or oscillatory activity that shows a highly
significant relationship to the experimental paradigm. At
present we are more interested in how oscillatory activity
might be related to cognition, rather than the physiological
mechanisms by which it might be generated; therefore we
focused on oscillations that covary significantly with important
task variables. Nonetheless, we found that oscillations occurred
more in the theta band than at other bands in general during the
task (Fig. 8). Further, the theta band appears to be the predom-
inant band at which oscillations covary with maze length (Fig.
9) but not decision tune (Fig. 11). Hence, oscillations that do in
fact tend to be large in amplitude are also the most prevalent
and dominate one of the task dependencies analyzed here.

Summary and conclusions

We analyzed oscillatory episodes in human iEEG signal
recorded during a virtual maze-learning task. We asked
whether the oscillations recorded intracranially in humans bore
a consistent relationship to two basic task variables, maze
length and decision time. We presented an algorithm to detect
episodes of oscillatory activity. This algorithm and the clarity
of the iEEG recordings made it possible to demonstrate that
oscillatory episodes in our experiment occurredpredominantly
in the theta band (Figs. 6 and 8), tying our observations more
closely to studies of both rodent and human theta-band results.

At a large subset of recording sites, the incidence of theta
episodes increased with maze length (Fig. 10). However, in-
consistent with the notion that these theta oscillations reflect
the amount of encoding or retrieval, theta oscillations did not
tend to covary with decision time, a measure of the immediate
demands on encoding and retrieval. This suggested to us that
theta oscillations might be a physiological state that iscondu-
cive to certain types of encoding but that theta is invoked to
differing degrees based on the general demands of the task
(e.g., how difficult the task is) but not by the immediate
cognitive demands. Gamma and delta oscillationsdid covary

with decision time. These oscillations may reflect specific
cognitive operations involved in integrating new information
into memory.

The precise functions of patterns of oscillations during vir-
tual maze learning remain unknown. Based on the rodent
literature, one might expect that theta-band oscillations in
particular are related to movement within the virtual space. As
human theta oscillations have been observed in a symbolic
working memory task using intracranial recordings (Raghava-
chari et al. 1999) and theta has been shown to be related to a
similar task using MEG recordings (Tesche and Karhu 2000),
this activity could not beexclusivelyrelated to the virtual
navigation aspects of the task; however, it is still possible that
theta plays an additional, unique role in tasks that rely on
spatial cognition.

In the rat, theta has been shown to act as a dynamic window
for the induction of long-term potentiation and depression at
the synaptic level (Ho¨lscher et al. 1997; Huerta and Lisman
1993, 1996; Larson and Lynch 1989; Pavlides et al. 1988).
This raises the possibility that oscillations, especially in the
theta band, are related to encoding and/or retrieval operations.
However, in any memory task, including our maze-learning
task, these operations are impossible to separate; learning
strategies may in factactivelyconfound encoding and retrieval
as in the case of rehearsal. Therefore we cannot distinguish
oscillations related to encoding versus retrieval.

Oscillations at high frequencies (beta and gamma bands) are
thought to play a role in perception (Demiralp and Basar 1992;
Eckhorn et al. 1988; Gray and Singer 1989; Gray and Viana Di
Prisco 1997; Gruber et al. 1999; Keil et al. 1999; Ko¨nig et al.
1995; Miltner et al. 1999; Neuenschwander and Singer 1996;
Tallon-Baudry et al. 1996–1998), motor behavior (Hamada et
al. 1998), and memory (Buzsa´ki 1996; Csicsvari et al. 1999;
Jensen and Lisman 1998; Lisman and Idiart 1995). The high-
frequency oscillations we observed might be related to percep-
tion or to memory operations or possibly to complex motor
programming (although we eliminated the hypothesis that
these oscillations are simply related to key pressing).

Finally, oscillations of varying frequencies may act together
to perform multiple complex cognitive functions.
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BUZSÁKI G. The hippocampo-neocortical dialogue.Cereb Cortex6: 81–92,
1996.

CAPLAN JB, KAHANA MJ, SEKULER R, KIRSCHEN M, AND MADSEN JR. Task
dependence of human theta: the case for multiple cognitive functions.
Neurocomputing32–33: 659–665, 2000.
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GRUBER T, MÜLLER MM, K EIL A, AND ALBERT T. Selective visual-spatial
attention alters induced gamma band responses in the human EEG.Clin
Neurophysiol110: 2074–2085, 1999.

GUILLEM F, N9KAOUA B, ROUGIER A, AND CLAVERIE B. Differential involve-
ment of the human temporal lobe structures in short- and long-term memory
processes assessed by intracranial Reps.Psychophysiology33: 720–730,
1996.

HALGREN E, SQUIRES NK, WILSON CL, ROHRBAUGH JW, BABB TL, AND

CRANDALL PH. Endogenous potentials generated in the human hippocampal
formation and amygdala by infrequent events.Science210: 803–805, 1980.

HAMADA Y, MIYASHITA E, AND TANAKA H. Gamma-band oscillations in the
“barrel cortex” precende rat’s exploratory whisking.Neuroscience88: 667–
671, 1998.
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