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Caplan, Jeremy B., Joseph R. Madsen, Sridhar Raghavachari, 1967a,b; Grastya et al. 1959, 1966), memory performance
and Michael J. Kahana. Distinct patterns of brain oscillations un- (Givens and Olton 1990; Kinney et al. 1999; Landfield 1977;
derlie two basic parameters of human maze learniigeurophysiol | gndfield et al. 1972; Mizumori et al. 1990; Winson 1978),
86: 368-380, 2001. We examine how oscillations in the intracrani eed of learning (Berry and Thompson 1978), and degree of
electroencephalogram (iEEG) relate to human maze learning. Thei iming of an environment (Pan and McNaugh’ton 1997). The
band activity (4-12 Hz in rodents; 4-8 Hz in humans) plays efhase within the theta cycle may also be important for memory

significant role in memory function in rodents and in humans. R s . C o . .
cording intracranially in humans, we have reported task-related, thetdction; in addition to findings showing motor behavior

band rhythmic activity in the raw trace during virtual maze learninghase-locked to the theta rhythm (Rumnd Velluti 1977;
and during a nonspatial working memory task. Here we analyk®rbes and Macrides 1984; Komisaruk 1970; Macrides 1975),
oscillations during virtual maze learning across a much broader rafgtKeefe and Recce (1993) showed that hippocampal place
of frequencies and analyze their relationship to two task variableells fired in a consistent phase relationship to the theta rhythm
relevant to learning. We describe a new algorithm for detectingnd that this phase varies systematically with the animal’s path
oscillatory episodes that takes advantage of the high signal-to-nojggough the environment. Givens (1996) demonstrated reset of
La“(l’( and high temporal resolution of the iEEG. Accounting for thgye phase of the theta rhythm with stimulus presentation during
ackground power spectrum of the iEEG, the algorithm allows us O odent working memory task. These findings suggest that

directly compare levels of oscillatory activity across frequenci . L
within the 2- to 45-Hz band. We report that while episodes oth the presence and properties of the theta rhythm are inti-

oscillatory activity are found at various frequencies, most of tH&ately involved in both spatial and nonspatial memory in

rhythmic activity during virtual maze learning occurs within the thetsodents.

band. Theta oscillations are more prevalent when the task is maddVhile most extensively studied in the hippocampus, theta
more difficult (manipulation of maze length). However, these oscibscillations have also been observed in the cingulate gyrus
lations do not tend to covary significantly with decision time, a goofl eung and Borst 1987), hypothalamus (Slawinska and Kasicki
index of encoding and retrieval operations. In contrast, lower- an®95), superior colliculus (Routtenberg and Taub 1973), ento-
higher-frequency oscillations do covary with this variable. Thes§inal cortex (Blaszcyk et al. 1996), and neocortex (Bieden-
results suggest that while human cortically recorded theta might plgy -, 1966; Nakamura et al. 1992; Silva et al. 1991). Thus

a role in encoding, the overall levels of theta oscillations tell us littl . Lo
about the immediate demands on encoding or retrieval. Finally, dI 1eta-band oscillatory activity is a phenomenon that has rele

ferent patterns of oscillations may reflect distinct underlying aspe ance beyonq hl_ppocampallfunctlon. L
of memory function. Theta oscillations also influence long-term potentiation

(LTP) induction, a proposed mechanism of synaptic plasticity,
both in vitro and in vivo (Ht¢scher et al. 1997; Huerta and
Lisman 1993; Larson and Lynch 1986, 1989; Larson et al.
1986; Pavlides et al. 1988), suggesting that theta acts as a
Oscillatory activity is found in the electroencephalograrwindowing mechanism for synaptic plasticity. Taken with the
(EEG) of many mammals while they perform numerous codpehavioral results discussed in the preceding text, these find-
nitive tasks. Rhythmic activity at a variety of frequencies hangs support the notion that theta could be involved in specific
been studied extensively, and certain oscillations may be imodes of synaptic plasticity that have important implications
portant for memory function. For example, oscillations in th#or learning and memory at the behavioral level.
theta band appear in the raw, unfiltered signal from field Theta oscillations have been far less extensively investigated
potential recordings (Bland 1986; Jung and Koiitierul938; in primates than they have been in other mammals. Stewart and
Vanderwolf 1969). Researchers have linked theta oscillatioRex (1991) recorded rhythmic theta-band activity from anes-
in rodents and properties of theta to moving within an envihetized monkeys. This finding suggested that theta oscillations
ronment (Vanderwolf 1969), orienting (Gavrilov et al. 1995)might also be observable in invasive recordings from the
conditioning (Adey et al. 1960, 1962; Elazar and Adeljiuman brain; however, invasive recording from the human
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brain is only possible in certain special cases. Human EEGhigh- and low-frequency activity may work together during
normally recorded from the scalp; this signal is noisier and oertain forms of cognition (Buz&al1996; Csicsvari et al. 1999;
lower spatial and temporal resolution than intracranially rédensen and Lisman 1998; Lisman and Idiart 1995). We were
corded signal. Consequently, robust, task-related theta activigrefore interested in examining the relationship of oscilla-
in raw, unfiltered scalp EEG traces has not been reportéidns at many different frequencies with task variables. We also
Instead, frequency-domain analyses of human scalp EEG haweight to determine how theta-band oscillations compare with
focused on measures like theta-band power averaged acwssllations at other frequencies during virtual maze learning. It
trials and have successfully related these measures to memsnyf interest to know whether task-related oscillatory episodes
function in humans (Burgess and Gruzelier 1997; Klimesdre a uniquely theta-band phenomenon or an EEG signature
1999; Klimesch et al. 1994). It should be noted that theskat is also present at other frequencies.
analyses can proceed even when oscillations cannot be seen s elaborated in the preceding text, theta bears a relationship
the raw signal and when the average power spectrum does toaasks involving movement within an environment as well as
show a peak in the theta band. These results suggest that, wialeasks involving a memory component. Recently, interest in
task-related rhythmic activity may not be apparent in unfilterespatial memory and way-finding has been revived with numer-
human scalp EEG signal, analyses of average EEG poweroims behavioral and functional neuroimaging studies in humans
the theta band may refleghderlyingrhythmic oscillations that (Aguirre et al. 1996; Berthoz 1997; Kahana et al. 1999; Ma-
are related to memory function. guire et al. 1996-1998). We were specifically interested in
In addition to quantitatively analyzing average task-relatadultiple T-junction mazes. Extensively studied in animals
spectral power, researchers recording human scalp EEG hés®ne and Nyswander 1927) and in some cases in humans
extensively characterizeelvoked potentialand their correla- (Miles 1928), T-junction mazes are useful for their simplicity
tion with memory function (Rugg 1995; Rugg and Allan 2000)and uniformity. Additionally, a path through a T-junction maze
During a task, if rhythmic oscillations vary in phase across the a sequence of left and right turns; hence, it could be treated
cortex, phases might only align for brief periods of tim@urely as a symbolic list-learning task. However, the maze
relative to a measurable task variable (e.g., presentation timgafadigm additionally includes visual cues. The task, then, can
a stimulus). Coupled with the spatial averaging of the skull afet thought of as a serial learning task embedded within a
scalp, this could appear as a single (nonrhythmic) EEG deflespatial navigation task. Given these properties, it is of interest
tion. Certain evoked potentials might even result from momete study the learning of multiple T-junction mazes in humans.
tary phase resetting of underlying rhythmic activity (BasaRecent innovations have made it possible to design virtual
Eroglu et al. 1992; Brankack et al. 1996; Demiralp and Basegality experiments in which participants navigate and learn a
1992; Intrilligator and Polich 1994; Spencer and Polich 1999jrtual environment (Gillner and Mallot 1998; Tlauka and
Yordanova and Kolev 1998). Direct findings of momentarWilson 1994) and to detect changes in human cortical activity
stimulus-evoked phase resetting (Givens 1996; Tesche ahding virtual navigation (Maguire et al. 1998). As in previous
Karhu 2000), like those mentioned in the preceding text lewdbrk (Kahana et al. 1999; Kirschen et al. 2000), our partici-
further credence to this possibility. This kind of argumemants learned to navigate three-dimensional rendered, virtual,
further highlights the utility of obtaining invasive recordingsnultiple T-junction mazes (Fig. 2). This task has been shown
from human participants while they perform memory tasks.to involve the processing of spatial cues and has a significant
In previous work, we analyzed invasive recordings froomemory component. It was shown that the presence of optic
epileptic patients undergoing long-term monitoring for plarflow, a visual cue, helps participants learn T-junction mazes,
ning of subsequent resection surgery. In the unfiltered intraven though optic flow in itself contains no information about
cranial electroencephalographic (IEEG) signal, striking rhytithe maze path (Kirschen et al. 2000). This suggested that the
mic activity in the theta band was seen both during a virtuapatial cues interact with memory function in a complex way.
maze learning task (Caplan et al. 2000; Kahana et al. 1999) aiid sought to determine how oscillations at various frequencies
during a verbal working memory task (Raghavachari et aklate to virtual maze learning.
1999). Further, these episodes of oscillatory activity covariedIn this paper, we present a new method for detecting epi-
with task variables, suggesting that, like similar rodent thetsgdes of EEG oscillations. This method enables us to ask how
they may be related to cognitive function. This ability tdouts of rhythmic activity at a given frequency are related to
record, in humans, rhythmic slow-wave activity that is visuallgognitively relevant variables. This oscillatory episode detec-
similar to oscillatory activity recorded in rodents during similation algorithm takes advantage of the high signal-to-noise ratio
tasks provides a crucial link between studies of human aadd good spatial and temporal resolution of intracranially re-
nonhuman theta-band activity. These new iEEG findings proerded signal. It is designed to pick out rhythmic features in the
vided evidence that theta-band oscillations are involved iaw signal. One advantage of the algorithm is that it is appli-
human memory function. cable across a broad range of frequencies. Combined with the
Oscillations outside the theta band are also of interest. Hact that intracranial recordings bypass the low-pass filtering of
instance, high-frequency oscillations in the gamma rangfee skull and scalp, this allows us to apply the same analyses
(above 30 Hz) have been implicated in perception both over the 2- to 45-Hz range. We first take advantage of the
animals (Eckhorn et al. 1988; Gray and Singer 1989; Gray amethod by comparing the incidence of oscillatory episodes at
Viana Di Prisco 1997; Neuenschwander and Singer 1996) adiifferent frequencies. We show that electrodes tend to have a
in humans (Demiralp and Basar 1992; Gruber et al. 1999; Ksjpecific “characteristic” frequency (sometimes more than one;
et al. 1999; Kaig et al. 1995; Miltner et al. 1999; Tallon- sometimes none), but most of the oscillations during a virtual
Baudry et al. 1996-1998) and in motor behavior in rodentsaze learning task occur within the theta band. We improve on
(Hamada et al. 1998). Researchers have also proposed thatmaze-length analysis reported in earlier work (Kahana et al.



370 CAPLAN, MADSEN, RAGHAVACHARI, AND KAHANA

Fic. 1. All sites recorded from in all 5 participants. These topographic maps show electrode locations on 3 views of a standard
brain. Left right lateral view.Middle: inferior view. Right left lateral view. Each shape denotes an electrode location. Different
shapes denote different participants. Red-filled shapes were excluded from our analyses; green-filled sites were included.

1999). In these studies, we confined ourselves to the 4- to 8-Bizard at Children’s Hospital, Boston. We sampled a total of 345
theta band, and our analyses could not be used to Comp@[p@trodes across five participants. iEE_G signal was sampled_ at 200
across frequency. With the new oscillatory episode detectib (Telefactor apparatus, band-pass filter: 0.5-100 Hz)péutici-
algorithm, we are able to apply the maze-length analysis sifE"ts 1-4and at 256 Hz (BioLogic apparatus, band-pass filter: 0.3-70
ilarly acrc;ss a broad range of frequencies and show that Qfor participant 5.The locations of the electrodes were determined

I th effect ; ilv within the theta band rom co-registered computed tomograms and magnetic resonance
maze-length eflect occurs primarily within the theta band. ages by an indirect stereotactic technique (Talairach and Tournoux

A limitation of the maze-length analysis is that maze lengtfygg). Electrodes overlying regions of known lesions or seizure onset
was an experimentaianipulation of task difficulty. It is zones were excluded from analysis (a total of 91 such electrodes were
desirable to examine the electrophysiological correlates @fcluded).
behavioral measures that relate to learning. Therefore we exAll recording sites are plotted in Fig. 1, and further information
amined participants’ response times as they navigated throwdaut our patients is given in Table 1.
the mazes. This measure of response time, mean decision time
per trial, has already been shown to correlate with learni
(Kirschen et al. 2000). Mean decision time has also beZ%Sk and procedure
shown to be a better correlate of learning than the number ofarticipants learned to navigate multiple T-junction mazes consist-
errors committed (Kirschen et al. 2000) (also sesuLtg. We ing of T junctions linked by corridors (Fig. 2). All corridors were of
show that the patterns of oscillations that correlate with degiqual length. The sequences of successive turns were constrained to
sion time are different from those that correlate with maz&event the path from crossing itself (this happens with 3 successive
length. left turns or right turns). We also eliminated paths that contained the

subsequence right-left-right-left-right-left (or its complement) to
avoid especially easy paths. Invisible walls prevented participants
METHODS from moving down incorrect corridors.
Participants and recording Participants navigated the maze in a hi_ghly cons’grained fashion—
one keystroke (up arrow) moved the participant’s view down a cor-

We recorded from five patients with drug-resistant epilepsy. Wheitor (the participant’s virtual position was always on the midline of
the location of the seizure focus is unclear, patients undergo invastie corridor) and one keystroke (left or right arrow, respectively)
monitoring to localize the focus. Intracranial platinum electroddasirned the view 90° to the left or right. The keyboard buffer was
(3-mm diam) are placed subdurally in many brain regions to tesleared following each movement so that holding down a key had the
hypotheses about the localization of the seizure focus as well sssne effect as pressing it once briefly. Turns immediately followed
mapping functional regions to be avoided in surgery. By participatirthe keystroke, while forward movements occurred over 280 ms. In
in our studies, these patients incurred no additional medical or surgisame cases, this delay was filled with optic flow (the view was
risk and informed consent was obtained from the patients and thetdrawn multiple times as the participant’s view moved along the
guardians. The protocol was approved by the Institutional Revieserridor, simulating virtual movement); in others, there was no illu-

TABLE 1. Participant demographics

Participant Age Gender Resection No. of Electrodes No. of Excluded Sites
1 16 F R frontal 31 1
2 14 M R inferior occipital 32 17
3 19 M Anterior L temporal 108 27
4 23 M L lateral frontal 78 23
5 22 F L lateral frontal 96 23

Total 345 91
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FIG. 2. The virtual maze learning taskeft blueprint of a sample multiple T-junction maze. The red plus sign marks the start
position and the blue diamond marks the end point. Arrows denote the correct path. Dotted lines represent invisible walls that
prevented participants from going down incorrect corrid®ight snapshots of the participants’ perspective within the virtual
maze,studymode, at the final junction of a sample maze.

sion of motion and the participant’'s view moved to the T junctiopercentile of the cumulative distribution of this §f(2) function to
following the delay. exclude 95% of the background signal.

Participants traversed a maze in two disticoeing modesini- The duration threshold)+, at frequency * was set to three cycles
tially, four consecutive trials were presentedsimdymode, in which [i.e., 3(1f*)] to eliminate artifacts and physiological signatures that
arrows were placed on the walls to indicate the correct path. Partigiere nonrhythmic.
pants then traversed the same maztegtmode, with the arrow cues  Finally, we introduce the measur@; ;.4 f), percent trial time in
removed, forcing them to rely on a learned representation of the magpisodesP,,sqé ) was defined as the total amount of time during
Participants navigated a maze repeatedly until they reached a perfanich episodes occurred at frequerfcglivided by the total time in
mance criterion: namely, three consecutive errorless traversals. Tag. P, was defined as the union of &l.,s,qf f) time in the 4- to
difficulty was manipulated by varying path length, which we tern8-Hz band (5 logarithmically spaced frequency values).
maze lengthAfter a practice block of four eight-junction mazes (we In subsequent analyses, we excluded frequencies at the ends of the
excluded these mazes from our analyses), maze length was eitheto 54-Hz range; our range of interest was 2—45 Hz. This was done
short(sequences of 6 left and right turns) or long (sequences of 12 |&ft keep clear of the band-pass filtering of the amplifiers at the
and right turns) mazes. low-frequency end and to avoid contamination by the 60-Hz line noise

artifact at the high end.

Detecting oscillatory episodes
RESULTS

We designed the oscillatory episode detection algorithm to identify L .
times within the signal that exhibited high-power rhythmic activity at |n all analyses, significance thresholds were chosen to obtain
a particular frequency, lasting a few cycles. We therefore defined anlow estimatedType | error (false positive) rate. Between-
oscillatory episodet a particular frequency}, as a duration longer Subject variability in electrode placement and possible reorga-
than a time thresholdD-, during which power at frequency* nization of function due to the pathology of the subject pool
exceeded a power thresholl,. We selected the two parametePs, make it meaningless to average over anatomical regions with
andDr, as follows. only five participants. Therefore it is not possible to generalize

We moved to the frequency domain by wavelet transforming thge™ |ocalization of the task dependencies; however, at this

raw traces [Morlet wavelet, window= 6 cycles (Grossmann anj?gage, we are primarily interested in the overall pattern of

Morlet 1985)]. Frequency was sampled logarithmically because wi . .
wavelets, the relative bandwidth is preserved; 24 frequency steps gults, hence, we ensured that the hit rate exceeded by far a

used in the range 1-54 Hz. The wavelet transform gave us wavéi@'Servative estimate of false positive rate.
power as a function of time at each frequency of interest.
To select the threshold®y, separately for each frequency at eaclBenhavioral data
recording site, we first assumed that the background spectrum was
“colored noise,” with the formAf~“, a general property of natural, Participants learned to navigate virtual, multiple T-junction
autocorrelated signals (Schlesinger and West 1988). We wanted torfg{zes. Participants were first presented with fstudy-mode
Pr in such a way as to exclude this background signal. We therefggy|s, where an arrow (a visual cue) appeared at each junction,
fit the theoretical Powef() = Af * function to the actual power genoting the correct path. Then participants were required to

spectrum over the 1- to 54-Hz range at each electrode. The cupe . . - .
s ) . igate the maze itest modewithout the aid of the arrow
fitting was done by log-transforming the average wavelet spectru s. They continued until they reached a criterion of three

and then computing a linear regression on these values. The inter - . ; ;
is then equal to log4) and the slope is equal to the exponent. The  Perfectly navigated consecutive test trials. We manipulated the
fit value at frequencyf* was taken to be the mean of thgg(2) Number of junctions in the maze, a variable that has a profound
distribution of wavelet power at that frequency (Percival and Waldeffect on task difficulty (Kirschen et al. 2000). Across partic-

1993). The parameteP, at a given frequency, was set to the 95ttipants, mean number of test trials required to reach the learning
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3f ' ' ' disoriented in the maze and makes many more errors. Thus,
after the first error it is hard to evaluate the quality of memory
for the subsequent choice points (Kirschen et al. 2000). For
"Pre-criterion” Perfect Trials two-alternative forced choice tasks, measures of inter-response
times (IRTs) are especially useful for tapping performance
levels even when response accuracy is perfect, and have been
$ applied extensively in the literature (Kahana and Loftus 1999).

{ We therefore chose to use the mean response time at choice

1 points, decision time as a measure of performance (Fig. 3).
Consistent with the foregoing reasoning, earlier work demon-
strated decision time to be a more sensitive measure of learning
than the number of errors committed; learning curves that were
significant in decision time were nonsignificant in number of
error turns (Kirschen et al. 2000). Finally, the decision time
measure allows us to compare perfect traversals of mazes,
0 . . which, while they vary in demands on encoding, are matched
1 2 3 for number of keystrokes.
Criterion Trial #

Fic. 3. The decision time measure. Plotted is the dependence of deC|S@gC|"atory eplsodes

time on test trial number, for long (—) and short (- - -) mazes. Error bar
denote SE across participants.

Decision Time [s]
N

-
T
L

As reported previously (Kahana et al. 1999), theta oscilla-
criterion (not including the three criterion trials) was 8.66 tions appear in the raw, unfiltered human iEEG signal. Figure
3.31 (mean* SE) for long (12 junction) mazes and 0.38 4 shows sample traces that show theta-band oscillations in
0.10 for short (6 junction) mazes. selected electrodes from each of the five participants. We
To test the hypothesis that oscillations are related to leaeveloped an algorithm to detect such episodes of oscillatory
ing, we wanted a sensitive measure of degree of learning. Taaivity with two significant objectives in mind. First, we
first candidate is the number of erroneous turns committesdlanted the algorithm to tag signals that looked like rhythmic
However, in a T-junction maze-learning task, or any binagctivity in the raw trace (as does theta activity in rodents).
sequence-learning task, the guess rate for each element ofS8eeond, we developed our method to be unbiased across fre-
list/path is 50%. Furthermore, once a wrong turn is made, thigency to be able to compare oscillatory activity at different
participant either corrects the error by making two successifrequencies. Previous analyses of oscillatory activity in hu-
turns in the opposite direction or turns around and becom@sns and in rodents have tended to focus on measures of

ﬁ‘MW RF LthM LF RM MI;WW#RM*M

RF LF RF WWWWWWW RFMMMW
TEREN .
ci' W\MWWR FL FW%WMW%FR

Fic. 4. Detecting theta-band oscillatory episodes. Theta is seen in raw signal (blue traces) recorded in electrodes in all 5
participants. Vertical gray lines mark 1-s intervals. The yellow-shaded regions denote theta-band oscillatory episodes identified by
the algorithm (see text). The gray-shaded regions denote out-of-trial periods; these were utilized in the detection of episodes but
excluded from the calculation &,. F, R, and L, participants’ keystrokes (forward, right, and left, respectively). Rows 1-5 represent
traces fromparticipants 1-5,respectively. Talairach coordinates (L-R, A-P, I-S) mparticipant 1, (—31.6, 19.1,—15.5);
participant 2,(52.6,—49.5, 10.3)participant 3,(—52.1,—67.6, 12.6)participant 4,(—39.0,—4.4, —16.3);participant 5,(—56.1,

—24.3, 23.4). Vertical scalebars (to thedt of the traces) denote 1QV.

=0.7 P=0.6 P
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A  Colored Noise Background B Colored Noise + Peak Pepisode(f*) could take—namely, 5%. However, by adding the
duration threshold)+ = 3 cycles, this 5% high power not only

Y has to be present, but it has ¢tusterin time to be able to
surpass th®+. Therefore a good benchmark for identifying a
N significantly high amount of oscillatory episodes at a given
N frequency iSPepisoadl*) > 5%.

o The oscillatory episode detection algorithm agreed well with
4 N visual inspection. Figure 4 also illustrates the performance of
2 4 8 16 3245 1.2 4 8 16 3285  the glgorithm. Note that the algorithm picked out oscillatory

Frequency [Hz] episodes with the parameters used in this exanfpje=( 95th
FIc. 5. Wavelet power spectrum for 2 example recording siesartic- percentile Dy = 3 cycles).
ipant 5, Talairach coordinates (L-R, A-P, I-S)=@1.4, 24.5, 38.0) mmB:
participant § (—60.1, —19.1, 15.4) mm. Error bars denote SE of the mean.
---, theA X (1/f %) (colored noise) spectrum fit. Frequency tuning of oscillatory episodes

Power [dB]
N
-
’

)

-

average power (Benington et al. 1994; Mendelson et al. 1980]f oscillations are present at particular “characteristic” fre-
Pradhan et al. 1993; Roncagliolo and Vivaldi 1991; Smith et ajuencies, this should be evident as a local peak in the incidence
1979). These methods have been applied without controlling oscillatory episodes relative to nearby frequencies. In the
for the levels of oscillatory activity that one would expect bgpisode-detection method we used, the parameters are selected
chance. We present an oscillatory-episode detection algoritfon each wavelet frequency and electrode location individually,
that exploits the fact that theta episodes, runs of several cydie® manner that is minimally biased with respect to the actual
of theta-band activity, appear visibly in the unfiltered signgexperimental signal) distribution of wavelet coefficients. This
(seemeTHODS). By taking advantage of the known properties ofnakes it possible to compare the amount of oscillatory activity
background EEG and using these to tailor the method in theone frequency to nearby frequencies.
same way at each frequency, the method allowed us to fairlyBy plotting the functionP;s.qf f) (Figs. 6and 7), one can
compare oscillatory episodes across frequencies. First, thée that there is indeed a significant peak at certain electrode
allowed us to demonstrate that oscillatory episodes within tkexations, in the theta band (Figs. 6 andA%C) as well as
theta band are a prominent feature of our signal at maoutside the theta band (Fig. D—F). In some cases, multiple
electrode locations. Second, we were able to compare ingeaks can be seen (Fig. @,andH). While it is possible that
dences of the identified oscillatory episodes with task vatiaultiple peaks are evidence of the fine spectral structure of a
ables. complex waveform, this is not always the case. For instance,
We designed our oscillatory episode detection algorithm B,;s,qcat the two peak frequencies at the site in Fig.shows
be able to identify times within the iEEG record that exhibitedtatistical independence over maze trialél]{4) + —0.022,
high-power rhythmic activity lasting a few cycles. We wantedlIS]. In still other sites, there is no pronounced peak (Fiy. 7
the algorithm to be relatively insensitive to sharp transients Bgure 6 also illustrates the robustness of the frequency depen-
found in epileptic EEG. The method requires two parametedence to the choice of the two analysis paramefsa0dD-).
An oscillatory episodeat a particular frequency*, was de-

fined as a duration longer thdy. cycles during which power Duration threshold [#cycles]
at frequencyf* exceededP; (SEEMETHODS). D6 D=3 D=1
We selected the threshold, separately for each frequency 10 20 30

at each recording site to make the method comparable acros 20 -
frequency, brain region, and subject. This selectioB;ofelied 5 L 10 8 >
on the ubiquitous property of background EEG—that the back- ¢ 2o 0=t 2L 5
ground power spectrum is colored noise, with the faxf®, gm1 Rt ImEaIn AT RS e
where f is frequency andA and « vary. The exponentx o 0 - 3
generally takes on values between 1 and 2; in our case, mea"%o 20 W 3
value, compiled across participants, was 1#69.31 (meant % : 10 | %
o). Color_ed noise is a common property of a wide range of o et YN iinE Thdieno §
natural (including biological) signals (Schlesinger and West o]
1988). Power spectra indeed show this kind of background 2o 30 0 v 3
(Fig. BA, —), and sometimes have superimposed peaks (Fig. 20 s

X o 10 20 @
5B, —). These peaks likely occur because oscillations are L\ 10 " P V]

in the signal. Theref fit the functisin @ to th 0

present in the signal. Therefore we fit the func o the T2 A8 45 12 6018 45 124 816 45

wavelet power spectrum (e.g., Fig. 5, ---). The duration Frequency [Hz]

threshold,D", at frequencyf* was set to three cycles [i.e., . . -

- . . . I . FIG. 6. Frequency dependence of oscillatory episode activity. Each plot
3(1ﬁ )] Th'S. biased the algor'th_m to .ta..g oscillations Cons'Sts'howsPepisodeas a function of frequency for an example location that shows
ing of sustained runs of rhythmic activity. both significant amounts of oscillatory theta-band activity and task dependence

By choosing the thresholds in this manner, we could estparticipant 1 right inferior frontal cortex, Talairach coordinates (L-R, A-P,
mate the effect of the episode detection algorithm on “hackS): (9.8, 15.2,—18.9) mm]. The different plots illustrate the robustness of

» _ : this pattern to the episode detection parameters, with the duration threshold
ground EEG.” A power threShOIET 95th percentlle should, varying by column and the wavelet coefficient threshold varying by row. The

on average, e|iminate_95% of the background signal. Thigntral thick plot indicates the standard parameter set used throughout the
would set an upper limit (on average) on the value thahper. Error bars denote SE.
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We next addressed the question of whether oscillatory epi- 40
sodes occur predominantly within the theta band or compara-
bly across the broad band examined. We simply evaluated the 20
meanP,.,q{f*) against the value 5% (the estimated maxi 1 I..IIl -
mum Pg,is0qe Value for background signal). Figure shows 0
how many electrodes show significantly hifQ,isoqelf*) at 20 |

each frequency (2-tailetitest,P < 0.001). It is evident that 10 .
oscillatory episodes are most prevalent within the theta band.
The nonuniformity of the distribution dP,isqebY frequency 0

is significant for all participantsyf(22) = 223, 103, 588, 162, 3
and 520 forparticipants 1-5respectively;P < 10 4. 'g 100
Because we controlled for the background colored noise S 50
spectrum, the predominance of oscillatory activity in the theta 8 IIlI
band cannot be explained by the general tendency for lower i 0—
frequencies to exhibit larger amplitudes. The episode-detection # 40

N
(=]

algorithm successfully identifies episodes of oscillatory activ-
ity at different frequencies and is robust to the choice of
parameters. Different brain regions show different dominant

frequencies, and in some cases show multiple “active” frequen-
cies. Still, at this stage, the theta band is the most well repre- 100
sented band at the electrode locations sampled. 50

Dependence of theta episodes on task parameters 0

o

2 4 8 16 32
We have found significantly elevated levels of both theta and Frequency [HZz]
non-theta oscillations during this task (Figs. 4—8). If it can be

shown that these oscillations are correlated with variable<'c: 8. Significant levels of oscillations. Histograms reveal the number of
ctrodes showing significantly higP,,s.qe@S @ function of frequencyf,

known to have a strong _inﬂuence on beha\/ior* this Wouﬁf)mtop to bottom the histograms represepéarticipants 1-5respectively.
suggest that theta oscillations reflect an important feature of

human cognition. We therefore examined the dependencey@be.  EngTH EFFECT. We examined hOWP,pisoaevaried with
Pepisode ON WO important task variablespaze lengthand  maze length (number of junctions) during perfect traversals of
decision time(see behavioral results in the preceding text). mazes, in both the training phase and test phase. Trials con-
taining errors were excluded from this analysis because these
?0 I?o ?ﬂ tr_ials were virtually absent in the short mazes, and thus, any
difference observed between the short and long mazes could be
20 20 20 . : o
}‘j carried by these error trials. Furthermore, on a significant
- H - 7N 10 number of error trials, participants became lost in the maze,
12461 45 1 24 816 45 _1 2 4 8 16 45 and rather than trying recall or learn the sequence spent their
E P time trying re-orient themselves.
L 0 e As shown in Fig. 9, many sites showed significantly greater
20

<
= 20 Pepisode during long mazes than during short mazés <
=2 10 10 10 _tai _ i i _

g i‘ E . e = {E 0.0005 by a 2-tailed Mann-Whitndy test). This maze-length
ﬂ.ﬁ

o

T YN TV effect is seen for study trials as well as test tfiaisd at a broad

o

range of frequencies; however, the effect is predominantly

|
30 30 30 found in the theta and alpha bands. It is striking that only one
20 electrode exhibited more theta-band oscillatory activity in short
]l\ 10

20 20
10 AL 10 mazes than in long mazes.
o S i 0 P —— The locations of all electrodes showing these effects within
12481 4 124816 45 12481 45  the theta band are plotted in Fig. 10. Due to the electrode
Frequency [Hz] sampling bias (a result of clinical considerations) and possible

Fic. 7. Examples of different ways oscillatory episodes vary with frefeorganization of function in epileptic brains (Fried et al. 1994,
quency. Each plot show,.q.as a function of frequency (error bars denotdMargerison and Corsellis 1966; Sass et al. 1990), one should be
SE). Shown are electrodes with preferred frequency in the tet®)(alpha  cautious in generalizing the localization of these task effects.
(D), beta E), and delta) bands as well as an electrode with@ @nd 3 {)
preferred frequencies and 1 with no significant levels of oscillatory episodes
(). Dashed gray lines mark the 5% level, a benchmark for assessing signifi* Because the task is self-paced and participants are directed through the
cance (see text). Talairach coordinates (L-R, A-P, I-S) Argparticipant 2, maze during the first four trials, the task blurs the distinction between study and
(55.8, —32.1, 15.1) mm;B (participant 4, (—23.8, 15.1, 10.0) mmC test. On each maze traversal after the very first, participants are engaged in
(participant 5, (—12.5, 15.7, 58.1) mnD (participant 3, (—24.9, 8.0, 55.2) both learning the maze sequence and attempting to retrieve the information
mm; E (participant 4, (—45.5,—15.1, 38.7) mm§ (participant 3, (—53.3, learned on previous traversals from memory. We nonetheless analyzed these
—18.9, 1.8) mm@G (participant 3, (—53.9,—42.6, 9.0) mmH (participant 5, trials separately and found no systematic differences. Therefore, we do not plot
(—42.8,—21.1,—34.3) mm;l (participant 4, (—31.6,—13.2, 60.6) mm. analyses of study and test trials separately in the figures.
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; : ' T : : suggests that theta is related to the increased cognitive de-
12} i mands of longer mazes.

DECISION-TIME EFFECT. The average amount of time a partic-
4 ipant takes at a maze junctiahecision timejs a good measure
of learning at a given maze length and is a more sensitive probe
of learning than the number of wrong turns a participant makes
(Kirschen et al. 2000) (also s&ehavioral results We sought
to determine whether this variable was related to oscillatory
activity, independent of maze length. If the maze-length de-
pendent theta we observed were directly related to the amount
of encoding or retrieval difficulty during a trial, we should see
an increase in theta per unit time with increasing decision time.
We were specifically interested in looking at perfect test
trials during long mazes. Long mazes took participants numer-
ous test trials to learn. We included all perfect test trials so that
the trials would be controlled for the overall number of key-
strokes. By including both criterion and precriterion perfect
trials, we analyzed trials during which participants spanned a
e e o Sarores ha e ene e STon o e ge of demands on encoding and rereval. We therefore
frequency summarized across all % participaitsfre%uency-electrode pairs C(gr,“p“t‘?d the Pearson correlation betW@@HSQdU) and de
showing higheP,,s.q4n long than short maze®(< 0.0005);, the opposite  CISION time across trials and selected a significance cutoff
effect. Conservative estimate @fype | error rate is 0.22 sites at each fre-threshold ofP < 0.0005 to equate the estimated Type | error
quency. rate with that for the maze-length effect [this corresponds to
r(75) = 0.40, r(92) = 0.36, r(57) = 0.45, r(72) = 0.40,
Nonetheless, it is of interest that the theta-band maze-lengiB2) = 0.59 for participants 1-5respectively].
effect is observed in many brain regions. The widespreadFigure 1JA shows the number of electrodes at each fre-
distribution of the maze-length effect might be a result of thguency showing this effecP(< 0.0005). In almost all cases
fact that maze length in turn covaries with many task parameeting the significance criterion, the correlation vpesi-
eters The presence of maze-length dependent theta in differtire— oscillatory episodes occurred more of the time during
regions may reflect different underlying functions for theta. trials with greater mean decision time. Quite surprisingly,
The maze-length effect extends previous findings (Kahanahetwever, in contrast to the maze-length effect, this task depen-
al. 1999) to a larger population and to non-theta frequendgncy appears relativegbsentin the theta band. Instead, the
bands. It indicates that oscillatory activity (primarily thetaeecision-time effect is especially pronounced in the gamma
band) is not onlypresentduring virtual maze learning but canand delta frequencies. This directly contradicts the hypothesis
be influenced by a manipulation of task difficulty, tying oscilthat the amount of theta in a given trial reflects either the
latory episodes closely to cognition. The finding that in almoshcoding or retrieval difficulty during that trial.
all cases of the maze-length effect within the theta band,It could be that while theta oscillations do not occur a greater
oscillations are more prevalent in long than in short mazgsercentage otime with increased demands on encoding or
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Fic. 10. Brain regions showing maze-length related theta episodes. These topographic maps show electrode locations on 3
views of a standard braih.eft right lateral view.Middle: inferior view. Right left lateral view. Each shape denotes an electrode
location. Different shapes denote different participants. Filled shapes denote electrodes that show the maze-length effect to
0.0005 at any frequency within the theta band (4—8 Hz). Electrodes are filled black if they showngsgduring long mazes
than short mazes. The 1 electrode filled light gray showed the opposite effect. Conservative estifya lafrror rate is 1.3
electrodes.
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Fic. 11. Frequency characteristics of the deci-

sion-time effect.A: histograms of the number of

40 electrodes showing the decision-time effet <
0.001) in perfect test trials during long (12 junc-
tion) mazesa, frequency-electrode pairs showing
more Pg,is0qe @S decision time increased;, the

20 opposite effectB: the same analyses using average
wavelet power as the measure. Conservative esti-
mate of Type | error rate is 0.22 sites at each
frequency.
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retrieval, theiramplitudemight be larger. Following this alter- DISCUSSION
nate hypothesis, we predict that whik,¢,qe do€s not in
general covary with decision timayverage wavelet powéor
a given trial should. We therefore repeated the decision-timeWe have shown that oscillatory episodes occur in relation to
analysis using average wavelet power as the measure. Thegetask variables—maze length, a manipulation of task com-
results showed a highly similar frequency dependence (Figexity, and decision time, a measure of encoding/retrieval
11B). This suggests that the decision-time effect is found in tliemands. We found both effects at many different frequencies
theta band neither in the predominance nor the amplitude of ted at a variety of brain regions. The maze-length effect was
oscillations. We discuss how to resolve the apparent contfaund primarily within the theta and alpha bands, while the
diction between the maze-length and decision-time effects decision-time effect was primarily found in the delta, beta, and
DISCUSSION gamma bands, with relatively little effect found in the theta
The decision-time effect is a finding of task dependence band. The different frequency characteristics of the two effects
oscillatory activity that is distinct from the maze-length efsuggests that the two analyses are functionally distinct—that
fect—it is present even when maze length is fixed. The freney tap quite different cognitive operations.
guencies at which this effect occurs, however, are quite differ-
ent from those at which the maze-length effect occurs. Thg)ssiple roles of theta oscillations
decision-time effect appear®t to be a theta-band phenome-
non but rather, is prominent in the gamma and delta bands. WeDur findings rule out a number of competing accounts of the
consider a specific example in Fig. 12. The first thing omele of theta in our maze-learning task. According to one
notices is that théP.,isoqé f) plot for this electrode shows ahypothesis, increases in the rate of key presses produce in-
theta peak but no significant gamma peak (Figd)12n con- creased theta activity. Because the key-press rate and associ-
trast, the decision-time effect is nonsignificant at this peated virtual movement is faster in short mazes than in long
theta frequency but highly significanP (< ~10"7) in the mazes, this would produce the opposite maze-length effect—
gamma band at 38 Hz (Fig. 1B, and C). By inspecting the namely, more theta in short mazes than in long mazes. Fur-
vertical scales irB andC, one can see that the 38-Hz oscillathermore this account would predict a negative correlation
tions take up a small percentage of the overall task timeetween decision time and theta activity, and again, little
Conversely, theta oscillations are found a much greater psupport was found for this effect.
portion of the time. This explains why theta oscillations dom- A follow-up account is that theta is related not to key presses
inate the overallP.soqf f) plot. Nonetheless, the relativelyor virtual movement but to time spent in encoding and re-
less frequent 38-Hz oscillations are found significantly more tfieval, specifically when the participant is not moving through

Distinct patterns of task-related oscillations

the time during trials with longer decision time. the maze. This account would predict the strong positive maze-
P . (f)
A episode B40 SHz C 5 38 Hz Fic. 12. Frequency specificity of the deci-
8 sion-time effect. The decision-time analysis is
r=0.06 r=0.61 illustrated for a single sample recording sipaf-
7 30 °° o 1 o ticipant 5, Talairach coordinates<62.6, —14.5,
X 6 % —1.7) mm]. A: the Pgis0qf T) curve showing a
e S ° pry 3 theta peak but no gamma peak. ---, the 5%
° 20 o o o benchmark level (see text for details). Error bars
_z 4 80 2 o denote 95% confidence intervaB. scatter plot
2, o o d)% of Pgpisode(5 Hz) against decision time showing
o 2 100 (] ° o 9 no significant decision-time effect. Thevalue
1 @® denotes the Pearson correlation between these 2
1 Q@ o variables.C: same asB for 38 Hz at the same
o' G ol — - —— recording site, showing a highly significant deci-
1 2 4 8 16 3245 0 5 10 15 0 5 10 18 sion-time effect.

f[Hz] Decision Time [s] Decision Time [s]
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length effect which we observed. However, it would alsture to draw conclusions as to the general loci of human
predict an even stronger positive decision-time effect, whighsk-related oscillations.
was not found. It is also crucial to ask whether our results might be a direct

Further supporting evidence comes from analyses of osaisult of the pathology of the subject pool. This is especially
latory activity during a symbolic working memory task thapertinent given that epilepsy is a disorder of rhythmic activity,
failed to relate theta-band oscillatory activity to keystrokes @nd it is precisely rhythmic activity that we focus on in this
stimulus presentation alone (Raghavachari et al. 2001).  paper.

The finding of a robust theta-band maze-length effect led usThere are several arguments against the possibility that our
to hypothesize that the presence of theta oscillations wdiedings are related to epilepsy. First, we excluded sites in-
related to the encoding or retrieval demands on the participavlved in seizure onsets as well as electrodes placed over
However, the notablabsencef a decision-time effect (both in known lesions. Second, at a large number of sites, the inci-
Pepisoge @Nd in average power) contradicted this hypothesidence of oscillations covaried with the task, and these sites
While it is possible that properties of theta that we have nehowed a high degree of spatial localization, a pattern quite the
analyzed (e.g., frequency, phase-locking of behavior) migbpposite of what one would expect from an uncontrolled pro-
covary with demands on encoding or retrieval, the results stiéss like epilepsy. Third, participants performed the task at
present a problem. We propose the following resolution. Wevels similar to university undergraduates, indicating that the
suggest that theta oscillations @@nduciveto specific types of brain regions responsible for performing the maze learning task
encoding (Htscher et al. 1997; Huerta and Lisman 1993yere functioning well. Fourth, sleep spindles, a different kind
Larson and Lynch 1989; Larson et al. 1986; Pavlides et aif theta-band oscillatory activity, have been recorded intracra-
1988). However, theta oscillations are invoked not by thaally in epileptic patients and shown to be both similar to
immediatedemands of the task but by the overall demands epindles in normals and unrelated to epilepsy (Malow et al.
the task. It is plausible that the brain cannot anticipate tHi€999), demonstrating that it is possible to observe rhythmic
cognitive demands at the time scale of hundreds of milliseaetivity in epileptic participants that is not a result of their
onds. We suggest that instead, theta oscillations are invokeddathology. Finally, some evidence suggests that theta oscilla-
the general demands of the task at hand, on the time scaldiofs may in fact act tanhibit seizure onset in vivo (Miller et
learning a maze. This would account for the presence ofah 1994) and that theta in vitro is insensitive to osmolality, a
maze-length effect combined with the relative lack of a decrariable that affects patients’ susceptibility to seizures (Ose-
sion-time effect in theta. This account is also consistent wittobo and Andrew 1993). This kind of evidence dissociating
theta being present in rodents during diverse types of expltineta oscillations and seizure activity supports the notion that
atory behavior; the presence of theta tells us only that encodihg task-related rhythmic activity observed in our patients is
and retrieval are facilitated, but tells us little bdbw muchof not a consequence of their pathology.
these cognitive operations is achieved.

Episode detection algorithm

Interpreting task-related oscillations in patients with epilepsy i , )
Previous algorithms have been developed for analyzing os-

Recording intracranially from epileptic patients affords aillatory activity in rodents or theta-band power in humans as
number of significant advantages over scalp-recorded EEGwmll as for analyzing sleep (both human and nonhuman), where
normal participants (Sperling 1997), including freedom fromhythmic activity can be seen in raw scalp EEG signal. These
eye-movement artifacts, improved spatial resolution, and adgorithms have focused on measures of average power (Basar-
sence of the filtering of the skull and scalp as well as accessEmglu et al. 1992; Benington et al. 1994; Gauvrilov et at. 1995;
ventral brain regions. Other groups have successfully uskedrilligator and Polich 1994; Klimesch et al. 1994; Yordanova
intracranial recordings from human participants to investigaéend Kolev 1998) or zero-crossing algorithms (Berry and
cognitive function including memory (Fernandez et al. 199Fhompson 1978; Roncagliolo and Vivaldi 1991) or measures
Guillem et al. 1996) and language (McCarthy et al. 1995) awt directly related to the rhythmic nature of the signal—or
well as mapping the topography of the oddball (P300) potentielse have assumed that an underlying oscillation is present and
(Halgren et al. 1980; Smith et al. 1990). However, there apeoceeded to analyze its phase relative to task variables (Bur-
some important caveats to iEEG research. gess and Gruzelier 1997; Givens 1996; O’'Keefe and Recce

First, in addressing the issue of localization, it is importarit993; Tesche and Karhu 2000; Yordanova and Kolev 1998).
to keep in mind that the placement of electrodes is determinktead, we developed an algorithm that would allow us to ask
by the clinical team in order to identify the locus of seizurevhether a site expressed significant levels of oscillatory epi-
onset. When the seizure focus is unclear, large numberssofles at a given frequency, relative to a reference spectrum. In
subdural electrodes, placed directly on the cortical surface, dais way, we could analyze oscillatory episodes in a manner
be especially informative. Because the focus is often in terirat was not biased across frequency, electrode location, or
poral lobe, there is a sampling bias toward temporal regiorsibject.

The necessary clinical bias in electrode placement means thathe algorithm presented here makes use of known properties
the data obtained from any given patient give limited informasf the background EEG to identify significantly elevated runs
tion about the locations associated with a cognitive functioof oscillatory activity. It has the desired properties and, impor-
To obtain a complete picture of the topography of brain activitantly, agrees with visual inspection (Fig. 4) and is robust to
associated with cognitive function, one must assess pattecheice of analysis parameters (Fig. 6). Our method takes ad-
across a large number of participants with varying electrodantage of the relative clarity of the signal obtained from
coverage. For the results presented here, therefore, it is premaasive recordings in humans and the fact that the rhythmic
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activity can be seen in the unfiltered trace. Additionally, th&ith decision time. These oscillations may reflect specific
algorithm is simple in that it is an extension of average powengnitive operations involved in integrating new information
analyses but overcomes some important biases of power spete memory.
trum analyses, including estimating background levels (PlettThe precise functions of patterns of oscillations during vir-
2000) and requiring a sustained run of elevated power. Theal maze learning remain unknown. Based on the rodent
algorithm allows us to compare oscillatory activity acroskiterature, one might expect that theta-band oscillations in
frequencies and favors frequencies that show spectral peaksarticular are related to movement within the virtual space. As
human theta oscillations have been observed in a symbolic
i ; i i working memory task using intracranial recordings (Raghava-
Oscillatory episodes at different frequencies chari et al. 1999) and theta has been shown to be related to a
When interpreting analyses of oscillatory episodes at diffesimilar task using MEG recordings (Tesche and Karhu 2000),
ent frequencies, it is important to consider the following. Thihis activity could not beexclusivelyrelated to the virtual
iEEG is dominated by a colored noise background spectrunavigation aspects of the task; however, it is still possible that
which means that activity at lower frequencies will tend to béneta plays an additional, unique role in tasks that rely on
of higher amplitude than activity at higher frequencies and wipatial cognition.
therefore dominate the unfiltered trace. We applied the analysisn the rat, theta has been shown to act as a dynamic window
methodology at each frequency using an estimate of the bafd- the induction of long-term potentiation and depression at
ground spectrum. This is similar to “prewhitening” the signahe synaptic level (Hischer et al. 1997; Huerta and Lisman
or weighting the analyses equally across frequency. Therefot®93, 1996; Larson and Lynch 1989; Pavlides et al. 1988).
results obtained at higher frequencies may be just as statitiis raises the possibility that oscillations, especially in the
cally significant as those obtained at lower frequencies; hotireta band, are related to encoding and/or retrieval operations.
ever, the higher-frequency oscillations will not tend to domHowever, in any memory task, including our maze-learning
nate the raw signal. Depending on the theoretical questiamsk, these operations are impossible to separate; learning
being addressed, one may wish to favor either oscillations sifategies may in facictivelyconfound encoding and retrieval
large amplitude or oscillatory activity that shows a highlas in the case of rehearsal. Therefore we cannot distinguish
significant relationship to the experimental paradigm. Adscillations related to encoding versus retrieval.
present we are more interested in how oscillatory activity Oscillations at high frequencies (beta and gamma bands) are
might be related to cognition, rather than the physiologic#iought to play a role in perception (Demiralp and Basar 1992;
mechanisms by which it might be generated; therefore vigzkhorn et al. 1988; Gray and Singer 1989; Gray and Viana Di
focused on oscillations that covary significantly with importar®risco 1997; Gruber et al. 1999; Keil et al. 1999:rkget al.
task variables. Nonetheless, we found that oscillations occure@d5; Miltner et al. 1999; Neuenschwander and Singer 1996;
more in the theta band than at other bands in general during Tedlon-Baudry et al. 1996-1998), motor behavior (Hamada et
task (Fig. 8). Further, the theta band appears to be the pred@i-1998), and memory (BuZzsial996; Csicsvari et al. 1999;
inant band at which oscillations covary with maze length (Figensen and Lisman 1998; Lisman and Idiart 1995). The high-
9) but not decision tune (Fig. 11). Hence, oscillations that do frequency oscillations we observed might be related to percep-
fact tend to be large in amplitude are also the most prevalginn or to memory operations or possibly to complex motor
and dominate one of the task dependencies analyzed hereprogramming (although we eliminated the hypothesis that
these oscillations are simply related to key pressing).
Summary and conclusions Finally, oscillations of varying frequencies may act together
to perform multiple complex cognitive functions.
We analyzed oscillatory episodes in human iEEG signal
recorded during a virtual maze-learning task. We askedrhanks are due to the members of the Computational Memory Lab, A.
whether the oscilatons recorded intracranially n humans bt ), LS, 1 bt oo e e
a consistent r‘?"'?‘“on.Sh'p to wo basic task Var.lables’ ma .?Ne ar% most grateful to theF;))atients and their families for their participa-
length and decision time. We presented an algorithm to detggt and support.
episodes of oscillatory activity. This algorithm and the clarity This research was funded by National Institute of Mental Health Grant
of the iIEEG recordings made it possible to demonstrate tHét-55687.
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