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Abstract

Episodic memory depends upon activity distributed across the brain. However, the activity
underlying memory has largely been examined within single tasks in isolation. Thus it is
unclear to what extent prior findings reflect task-general rather than memory-specific cognitive
processes. Here we address this question using data from 371 patients recorded intracranially
who performed a free recall task with encoding and retrieval phases alongside an arithmetic
distractor phase. We ask whether neural decoders fit to predict behavior from one phase transfer
to the others. Encoding-retrieval transfer exceeds both arithmetic-encoding and arithmetic-
retrieval transfer and therefore cannot be explained solely by processes supporting arithmetic.
We further detect transfer between arithmetic and retrieval but not between arithmetic and
encoding. The brain-behavioral relations observed in these tasks thus do not merely reflect a
single task-general factor of activity. We propose cross-task decoding as a method for identifying

the neural factor structure underlying distinct cognitive processes.
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Introduction

Cognitive neuroscience aims to relate brain activity to cognitive processes. By predicting outcomes
during a behavioral task putatively invoking a cognitive process, neural decoders provide a
powerful tool for establishing brain-behavior relations. However, neuroscientists frequently use
decoders to contrast conditions within a single cognitive task, leaving open the possibility that the
observed brain-behavior relations correspond to task-general rather than task-specific processes.
Activity recorded during any individual task will be a mixture of activity related to the process
under study and other processes not of immediate interest, challenging interpretations of neural
effects.

This problem arises frequently within the field of human memory, in which univariate and
multivariate methods have established robust relations between widespread activity measured
during item study and subsequent recall success (Wagner et al., 1998; Ezzyat et al., 2017). Whereas
these subsequent memory effects have been observed in brain regions specific to memory function
such as the hippocampus, they have also been detected in sensory areas involved in vision and
frontal regions implicated in executive function (Kim, 2011; Long et al., 2014; Urgolites et al., 2020).
However, by comparing subsequently remembered and non-remembered items in the context of
a single memory task, the majority of prior studies cannot distinguish task-specific contributions
to memory encoding from task-general processes such as attention or arousal.

Recent work has investigated the neural relation between encoding and the related but distinct
process of memory retrieval, following long-standing questions in the field (Tulving, 1979). In line
with the idea that the same neural substrates engaged with processing memory contents at the
time of encoding also play a role in storing those memories, item-specific activity patterns present
at the time of encoding have been found to be reinstated at the time of retrieval (Polyn et al.,
2005; Manning et al., 2011; Gordon et al., 2014; Tompary et al., 2016). In addition to item-specific
patterns of neural similarity between encoding and retrieval, subsequent memory effects have also
been related to activity predicting successful retrieval in comparison to periods of failed memory
search when averaged across items. Kragel et al. (2017) in particular find that multivariate neural
decoders fit to predict subsequent recall from activity during encoding also distinguish brain

activity during successful retrieval from activity at moments of failed memory search during the
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recall phase. Similarly, neural decoders fit to predict retrieval success from activity during the recall
phase generalize to predict success during encoding. Whereas these results suggest shared neural
processes underlying successful encoding and retrieval, they are unable to determine whether
the shared activity is specific to memory processing or instead reflects more general cognitive
functions engaged during not only encoding and retrieval but also tasks unrelated to memory.

Here we explore the question of isolating task-specific and task-general components of neural
activity predicting performance in human memory. Using a large historical dataset of the free
recall experiment collected in 371 intracranially recorded epileptic patients, we compare neural
activity predicting behavioral outcomes during encoding and retrieval to that of an arithmetic
distractor task placed between the encoding and retrieval phases. By contrasting encoding and
retrieval against a third cognitive task, we are able to distinguish whether the relation between
encoding and retrieval is characterized by a single task-general factor encompassing all three
tasks, or whether multiple neural factors are required to account for relations between neural
activity across these tasks. If indeed neural activity associated with behavior during these three
tasks cannot be described using a single factor model, this approach further allows for addressing
the questions of whether arithmetic-related activity overlaps with activity during encoding or
separately with activity during retrieval. Comparing across multiple cognitive tasks may thereby
further our understanding of the relation between encoding and retrieval processes.

Using an arithmetic distractor as our comparison task offers several benefits. Arithmetic prob-
lem solving is known to engage task-general cognitive processes including working memory,
executive function, and sustained attention. Arithmetic generates activity in prefrontal cortex
as well as superior and inferior parietal lobules (Arsalidou and Taylor, 2011), and math perfor-
mance has been associated with performance on tests of executive functioning and with lesions
to frontal areas involved in executive function and attention (Cragg and Gilmore, 2014; Lucchelli
and De Renzi, 1993). Furthermore, we expected the distractor would largely not engage encoding
processes. Subjects are not instructed to remember distractor problems. Indeed, considering dis-
tractors have large effects on recall rates by abolishing the recency effect present in immediate free
recall, subjects are disincentivized from devoting cognitive effort to remembering these problems
(Kahana, 2012). These properties make arithmetic useful for differentiating task-specific and task-

general neural factors predicting memory behavior. Additionally, our math task’s placement as a
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distractor embedded within a free recall experiment ensured subjects provided data during both
mnemonic and arithmetic-related processing within the same sessions. This design minimized
reductions in neural similarity between tasks due to drift in recording properties as may have
occurred had subjects completed these tasks in separate sessions.

Our three-way cross-task approach allows us to answer the question of whether activity pre-
dicting successful memory behavior is specific to memory function or else better explained by
task-general processes also involved in arithmetic. We first demonstrate that intracranial record-
ings reliably decode math responses. Univariate anatomical analyses additionally reveal specific
effects within frontal regions during the math task in line with a central role for executive func-
tion. We then ask whether decoders fit to predict behavior within a given task phase generalize
to predicting outcomes in the other phases as a measure of task-related neural similarity. Our
results indicate shared neural factors between encoding and retrieval and between retrieval and
arithmetic. However, we find no evidence for a factor shared between encoding and math,
suggesting that a single task-general factor of activity cannot account for the observed relation
between these tasks. We further uncover significantly greater neural similarity between encoding
and retrieval than between either memory task and math, underscoring our claim that activity
shared between encoding and retrieval cannot be attributed solely to processes engaged during
arithmetic. Together these findings suggest that the activity predicting mnemonic behavior reflects
memory-specific processes and illustrate the benefits of comparing neural activity across multiple

distinct tasks within the same subjects.

Results

We asked whether shared patterns of neural activity that predict successful memory during both
encoding and retrieval could be accounted for by a single task-general factor of activity that
would also predict behavior during cognitive tasks unrelated to memory. Alternatively, activity
underlying encoding and retrieval may be specific to memory and therefore not generalize to
other tasks. To address this question, we used multivariate classification to decode variability in
mnemonic and cognitive task performance. Subjects studied lists of 12 common words, performed

a mental arithmetic task, and then attempted free recall of the studied items (see Figure 1A). We


https://doi.org/10.1101/2025.07.25.666835

bioRxiv preprint doi: https://doi.org/10.1101/2025.07.25.666835; this version posted July 31, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

first assessed whether spectral EEG features recorded from widespread brain regions can reliably
decode behavior during each task phase: Encoding, Retrieval, and Math. Specifically, for Encoding
we contrast activity between study periods for remembered and not remembered items from item
presentation onset to 1366 ms after onset. For Retrieval, we compare the interval from 600 to
100 ms before the retrieval vocalization to matched silent periods, or “deliberations”, during the
recall phase indicative of failed memory search as in prior work (Burke et al., 2014; Kragel et
al., 2017; see Methods). For Math, we contrast activity in the moments before typed arithmetic
problem responses between slower and faster response times (based on a median split) as a
measure of arithmetic task engagement. While we considered contrasting correct and incorrect
math responses, subject accuracy was too high to ensure sufficient incorrect responses for stable
decoder training, with a median accuracy across exploration subjects of 95.4%. To reduce the
influence of motor-related activity on any neural similarity observed between retrieval and math,
we used spectral epochs during Math from 1800 to 500 ms before subject responses, distancing
our analysis epochs from task-related motor movements. We also excluded electrodes in cortical
areas related to somatosensation, motor function, and speech from our analyses (see Methods).
For each epoch and electrode, Morlet wavelets provided 8 spectral iEEG powers logarithmically
spaced from 5 Hz to 175 Hz. These wavelet powers were averaged across time to generate the
frequencies-by-electrodes spectral features for a given epoch. After presenting neural decoding
within each task phase, we report the univariate features that differentiate task responses across
regions of interest implicated in memory and mathematical cognition (see Figure 1B for electrode
coverage). Having analyzed the neural features particular to each task, we examine whether
models trained on one task phase generalize to predict performance during other task phases in
order to elucidate the shared and distinct neural factors relating these tasks.

We developed our primary analyses of within- and cross-task neural decoding and neural sim-
ilarity in roughly half of our data. We subsequently preregistered these analyses before replicating
them on the held-out half (see Methods). We report results separately for our exploration and
confirmation datasets. Not all analyses were preregistered, and we explicitly identify exploratory

analyses throughout our results.
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Within-task neural correlates of encoding, retrieval, and arithmetic.

We first examined the multivariate and univariate neural correlates of behavioral outcomes specific
to the three task phases: Encoding, Retrieval, and Math. Prior work has shown robust effects of
mnemonic success on widespread neural activity during both encoding and retrieval (Ezzyat et al.,
2017; Kragel et al., 2017; Weidemann et al., 2019). We extend these results by demonstrating reliable
classification of trials with slower compared to faster arithmetic problem responses as measured
by Area Under the Curve (AUC) using ridge-penalized logistic regression classifiers. As shown
in Figure 2A, we observe significant within-task decoder generalization to held-out sessions for
each of the three tasks (one-sample t-tests against random chance of AUC = 0.5: confirmation:
encoding tep = 14.1,p < 10719; retrieval, tg = 18.5, p < 107%; math tgg = 9.8, p < 10713; exploration:
encoding t73 = 12.8, p < 10719; retrieval, t73 = 17.6, p < 107%7; math t73 = 12.8, p < 10~"). Neural
activity further demonstrates reliable effects of behavioral outcomes during these task phases
when resolved across spectral frequencies and major regions of interest related to memory and
mathematical cognition (Figure 2B, C, D; these univariate analyses were not preregistered but are
presented separately for the exploration and confirmation data for comparison). Whereas increased
high-frequency activity and decreased low-frequency activity, or spectral tilt, across widespread
brain areas mark successful encoding and imminent correct retrieval, a seemingly similar pattern
of spectral features predicts slower correct response times on our arithmetic task. Although the
spectral tilt pattern appeared for all three contrasts, it emerged in somewhat different regions across
task. These spectral tilt effects during slower math problems appear in frontal regions associated
with tasks involving executive function. These findings align with work showing selective frontal
activity for arithmetic problem solving requiring procedural rather than strictly retrieval-based
strategies given the additional complexity of our math task in having subjects sum three operands
compared to two in more common arithmetic task designs (Sokolowski et al., 2023; Ashcraft,
1992). In addition, the observation that slower rather than faster problems exhibit increased
frontal high-frequency activity may be explained by differences in math problem difficulty. More
difficult problems may lead to slower arithmetic performance and greater spectral tilt suggestive
of greater cognitive demands. Alternatively, this spectral tilt effect may be interpreted in terms

of an endogenous state of cognitive efficiency. On some problems, subjects happen to retrieve or
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Figure 1: Brain recordings during mnemonic and math tasks. A. Schematic of the free recall
experiment. Subjects studied lists of 12 common words (Encoding) which they subsequently
recalled after a delay (Retrieval). During the delay period, subjects performed a mental arithmetic
task (Math). Spectral iEEG powers from 5 Hz to 175 Hz at each electrode were computed across
event epochs defined for each task (colored matrices). B. Electrodes recorded brain activity while
subjects performed the memory and math tasks. Brain heat maps illustrate counts of subjects
with electrode coverage within 5 mm of a voxel across all exploration (N = 195) and confirmation
(N = 176) subjects (not all subjects contributed data for all task phases; see Methods for exclusion
criteria).
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Figure 2: Intracranial electrophysiology predicts successful episodic memory and math en-
gagement. Top row presents results from our confirmation sample: A. Classification AUC for
decoding cognitive outcomes during the Encoding, Retrieval, and Math phases of the free recall
experiment. Dots show subject classifier scores. B., C., D. Univariate behavioral contrasts of neu-
ral spectral power in Encoding (B.), Retrieval (C.), and Math (D.) across regions of interest and
spectral frequency. These univariate analyses were not preregistered. Colors indicate Hedge’s g
with borders indicating significant ROI-frequency combinations (p < 0.05 FDR-corrected across
frequencies and ROIs). Bottom row (E., F, G., H.) presents the same results in our exploration
sample. AUC: Area Under the Curve; STG, MFG, IFG: superior, middle, and inferior frontal gyri;
PHG: parahippocampal gyrus; HPC: hippocampus; MTG, ITG: middle and inferior temporal gyri;
IPC, SPC: inferior and superior parietal cortex; OCC: occipital cortex. Error bars show standard
95% confidence intervals around the mean. ***: p < 0.001, **: p < 0.01, *: p < 0.05, n.s.: p > 0.05.
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calculate an answer quickly and with minimal neural processing, leading to the observed effect.
These possibilities motivated with a control analysis accounting for problem difficulty we present
below (see section Controlling for arithmetic problem difficulty). In line with these interpretations, we
coded our neural contrasts of arithmetic problem as slower responses minus faster responses to

provide a measure of arithmetic task engagement.

Cross-task decoding reveals memory-specific activity

We asked whether neural decoders fit to predict arithmetic problem-solving responses would
transfer to predicting success during both encoding and retrieval of episodic memories and vice
versa. If so, we hypothesized that neural activity shared between encoding and retrieval could
reflect a single neural factor common to all three tasks. On the other hand, Math may generalize to
Encoding or Retrieval but not both, suggesting a dissociation in the neural activity engaged during
Encoding and Retrieval. Figure 3 illustrates cross-task decoding among Encoding, Retrieval,
and Math classifiers. We expected, based on prior work (Kragel et al., 2017), to find reliable
transfer between episodic memory Encoding and Retrieval. Indeed, decoders trained on Retrieval
reliably predicted Encoding success (one-sample t-test against AUC=0.5: confirmation: ts = 12.2,
p < 10717; exploration: t73 = 13, p < 1071%) and vice versa (confirmation: tg = 14.2, p < 10720,
exploration: t73 = 13.4, p < 1072°). Of greater interest, however, was the finding that Math task
decoders reliably predicted behavioral outcomes during Retrieval trials (confirmation: tgy = 2.9,
pror = 0.025; exploration: t73 = 5.1, prpr < 107%) and vice versa (confirmation: ftg = 3.37,
pror = 0.011; exploration: ty3 = 4.9, prpr < 107%). In contrast, we did not observe transfer from
Math to Encoding (confirmation: t¢p = —0.42, prpr = 1.0; exploration: t73 = 0.51, prpr = 1.0) or
from Encoding to Math (confirmation: ts9 = 0.12, prpr = 1.0; exploration: t73 = 0.82, prpr = 1.0).
Critically we find significantly greater transfer from math to retrieval than from math to encoding
(paired t-test: confirmation: tsp = 3.7, prpr = 0.0012; exploration: t;3 = 5.3, prpr < 107°) and
greater transfer from retrieval to math than from encoding to math (confirmation: tsg = 3.69, prpr =
0.0012; exploration: t73 = 4.1, prpr = 0.00032). To account for the effect of within-task decoding
on these differences in cross-task decoding, we extended these comparisons after normalizing

the cross-task scores by the within-task score for the test task (see Methods; this analysis was not
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preregistered). These normalized scores reflect the proportion of signal that transfers relative to the
within-task effect size. After controlling for within-task decoding strength, we continue to observe
significantly greater transfer from math to retrieval than from math to encoding (paired t-test:
confirmation: t4 = 2.93, prpr = 0.010; exploration: t4, = 2.66, prppr = 0.020) and greater transfer
from encoding to retrieval than from encoding to math (confirmation: t4 = 8.43, prpr < 1078;
exploration: ty = 6.92, pppr =< 107%; see Supplementary Figure 1).

This selective pattern of cross-task neural decoding implicates distinct components of shared
variability between encoding and retrieval and between math and retrieval that are not shared
between encoding and math. We further find greater transfer from encoding to retrieval than from
math to retrieval (paired t-test: confirmation: tso = 7.9, prpr < 1077; exploration: ty3 = 7.3, prpr <
107®) and greater transfer from retrieval to encoding than from retrieval to math (confirmation:
teo = 4.0, prpr = 0.00080; exploration: t7;3 = 3.0, prppr = 0.0083). These observations indicate
a stronger correlation between encoding and retrieval than between these memory tasks and
math, suggesting the activity shared between encoding and retrieval is not explained by processes
engaged during arithmetic and instead is specific to episodic memory.

To assess whether these results stem from our particular choice of neural similarity mea-
sure, we performed an additional comparison using a form of representational similarity analysis
(Kriegeskorte et al., 2008). Specifically, we computed correlations across tasks between subject-
level vectors of univariate standardized task effects. These task effects were quantified by Hedge’s
g for each contact and frequency. This approach yielded an identical pattern of results to the cross-
task neural decoding analysis above (Figure 3C, D). The mean correlation across subjects between
neural effect vectors for encoding and retrieval (confirmation: ts = 11.3, p < 10713; exploration:
tz3 = 11.7, p < 1077 and for retrieval and math significantly exceeded random chance (confirma-
tion: tep = 2.8, prpr = 0.019; exploration: t73 = 4.0, prpr = 0.0005). However, this relation was not
found between encoding and math (confirmation: t¢p = —0.2, prppr = 1.0; exploration: t73 = 1.4,
pror = 1.0). We find the mean correlation to be significantly greater both for encoding and re-
trieval (confirmation: t¢9 = 9.8, prpr < 1077; exploration: t73 = 10.6, prpr < 10~ and for retrieval
and math compared to encoding and math (confirmation: t¢p = 3.8, prppr = 0.00061; exploration:
t73 = 3.4, prpr = 0.002). We also find the correlation between encoding and retrieval exceeds the

correlation between retrieval and math (confirmation: tsg = 7.8, prpr < 1077; exploration: t73 = 6.7,

11
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Figure 3: Cross-task decoding isolates neural factors underlying encoding, retrieval, and math.
Here we evaluate how neural decoders trained on a given task predict performance in another task.
A., B. Cross-task decoding between item encoding, spontaneous retrieval, and math distractor
performance during free recall (A: confirmation data, B: exploration data). Significance bars
compare pairs of tasks, with significance indicators based on the maximum p-value obtained
across the two directions of cross-task decoding for FDR-corrected paired t-tests (see main text).
C., D. Pearson correlations between within-task contrasts of cognitive success (C: confirmation
data, D: exploration data). Dots show subject-level statistics. Error bars display standard 95%
confidence intervals around the mean. Significance bars reflect FDR-corrected paired t-tests. ***:
p < 0.001, **: p < 0.01,* p < 0.05,n.s.: p > 0.05.
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PFDR < 1077). These results indicate that our cross-task decoding results are not an artifact of our
particular measure of neural similarity and support our finding of two distinct neural factors, one

shared between encoding and retrieval and another between retrieval and math.

Controlling for arithmetic problem difficulty

Our finding that spectral tilt predicted slower rather than faster arithmetic responses suggested
two interpretations. Response times and spectral tilt are both driven by 1. problem difficulty or by
2. endogenous states of neural activity leading to some problems being solved quickly and with
minimal cognitive effort. To determine whether problem difficulty can account for our results, we
repeated our previous analyses after controlling for variability in math problem difficulty using a
mixed-effects model of math problem RTs fit to the behavioral data across all subjects fit separately
for our exploration and confirmation data. Our model of problem difficulty included several
features of summation problems, including problem sum and whether the problem required carry
operation(s) (see Methods for all model factors). This model explained 21.3% of the residual
variance in logarithmic RTs after accounting for subject and session intercepts in our confirmation
data (exploration: 22.4%). Figure 4A presents average problem RT as a function of problem
accuracy across all problem presentations while C and D present average RTs and model predictions
for each problem respectively.

To control for problem difficulty in our neural analyses, we computed RT residuals from the
behavioral model and labeled each math trial as “slow” if its residual was above the residual median
for the session and “fast” otherwise (Figure 4B). We then repeated our prior analyses of within-task
and cross-task neural decoding. Within-task neural decoders reliably predict adjusted arithmetic
performance across subjects (Figure 5A; confirmation: tep = 11.1, p < 10716, exploration: t73 = 10.7,
p < 1071). The univariate neural effects still show increased spectral tilt for slower responses after
difficulty adjustment (Figures 5B, C). Critically, cross-task decoding continued to hold between
encoding and retrieval (all p’s < 107"), from math to retrieval (confirmation: t¢ = 3.3, p = 0.014;
exploration: t73 = 4.3, pppr = 0.0002), and from retrieval to math (confirmation: tey = 2.9, prpr =
0.023; exploration: t73 = 5.1, pppr < 10‘4) as shown in Figure 6. However as before, we find no

evidence for cross-task decoding between encoding and math (all p’s > 0.6). The encoding-retrieval
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Figure 4: Controlling for math problem difficulty. A. Response time vs. accuracy for each of
the presented 729 math problems averaged across trials. B. Approach to controlling for problem
difficulty in our cross-task decoding comparisons. A trial was labeled “slow” if its prediction
residual was slower than the median residual for that session and “fast” otherwise. C., D. Response
times for each problem averaged across trials (C.) and model predicted response times (D.) in our
confirmation data.
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Figure 5: Electrophysiology still predicts math engagement after controlling for arithmetic
problem difficulty. A. Neural decoding of Math outcomes after adjusting for problem difficulty
shown separately for the confirmation and exploration data. B., C. Univariate features after
difficulty adjustment in the confirmation (B.) and exploration (C.) data. Format otherwise follows
Figure 2.

and retrieval-math cross-task decoding remains significantly greater than the encoding-math cross-
task decoding (all p’s < 0.002). We obtained analogous results with correlation similarities. These
results suggest our findings cannot be entirely attributed to arithmetic problem difficulty. Instead,
we suggest an endogenous cognitive state, independent of problem difficulty, also contributes to

variability in math responses explained by neural activity.

Testing for effects of rehearsal on neural similarity between math and retrieval.

A potential confound of our findings is subjects rehearsing encoded items during the math dis-
tractor. Subject rehearsal could be expected to lead to higher recall rates, retrieval-related activity
during the math distractor, and slower math RTs by interfering with problem solving. If so, one
could observe spuriously similar activity during the math and retrieval phases unrelated to math-
ematical cognition. However in this case, we would expect slower math RTs on lists with higher
recall rates. We find in contrast that mean list-level math RTs and recall rates do not correlate pos-
itively across lists at the population level (Figure 7A; t-test of z-transformed subject correlations
against zero: confirmation: fg9 = —3.0, p = 0.0035, two-sided objective Bayes factor: BFjp = 10.2;
exploration: t7;p = —1.6, p = 0.11, BF1p = 0.60). We include Bayes factors in these analyses to
allow for showing evidence for the null hypothesis of no rehearsal confound. These subject-level

correlations additionally do not themselves correlate with subject-level cross-task decoding scores
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Figure 6: Cross-task neural factor structure holds after adjusting for problem difficulty. After
adjusting the math response labels for problem difficulty, we reevaluate how classifiers trained on
a given task predict performance in another task. Format follows Figure 3.
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Figure 7: Memory rehearsal cannot explain neural similarity between retrieval and math. A.
Subject-level correlations between list-level recall rates and average math RTs for the first three
math responses in each list. Results show subjects included in the cross-task decoding analyses
for the confirmation data. B. Same as A., but using math RT residuals from the statistical model of
problem difficulty in place of RTs. Error bars show 95% standard confidence intervals around the
mean.

between retrieval and math in either direction of task transfer (confirmation: retrieval-to-math:
r = 0.026; math-to-retrieval: r = 0.0021; exploration: retrieval-to-math: r = 0.085; math-to-
retrieval: r = 0.156; all p’s > 0.1 and all Bayes factors < 0.25). We find analogous results comparing
list-level recall rates to mean math RT residuals from our model of problem difficulty (Figure

7B). Rehearsal during the distractor thus cannot account for the observed pattern of cross-task

decoding.

Discussion

We asked whether neural activity predicting successful memory encoding and retrieval can be
primarily attributed to a factor of activity specific to memory processing or to a task-general
factor also involved in behavior unrelated to memory. To address this question, we compared the
encoding and retrieval periods during a free recall experiment with an arithmetic problem solving
task known to require attentional and executive control processes. Participants performed this
math task as a distractor between the encoding and retrieval periods. Using a dataset comprising

intracranial recordings from 371 patients, we first demonstrated that math response times could
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be reliably decoded from activity just prior to problem response. We then asked whether neural
decoders trained on each task generalize to the other tasks. These cross-task decoding analyses
allowed us to evaluate whether a single factor or multiple factors underlie neural decoding within
these tasks. After replicating prior work showing that activity predicting successful encoding
also predicts success during retrieval and vice versa, we find that math decoders transfer to
retrieval and that retrieval decoders transfer to math. However, math classifiers failed to transfer
to encoding and encoding classifiers failed to transfer to math. These results hold after adjusting
for within-task decoding performance as well as math problem difficulty and cannot be explained
by rehearsal processes occurring during the math distractor task.

Our findings argue against a single-factor, task-general account of neural activity predicting
behavioral outcomes in these three cognitive tasks. Rather, our results appear consistent with a two
factor model, with one factor shared between encoding and retrieval, and a second factor shared
between retrieval and math. A parsimonious interpretation would suggest that the shared features
underlying cross-task decoding between encoding and retrieval reflect processes largely specific
to memory function. We found significantly stronger cross-task decoding between encoding and
retrieval than between either of those tasks and the math distractor. This result indicates the
relation between encoding and retrieval cannot be considered merely a byproduct of task-general
processes engaged during math. These findings extend the work of Kragel et al. (2017), who
previously reported shared activity predicting success between encoding and retrieval in a subset
of the data we present. However, they were unable to determine whether this shared component
was driven by a general attentional process that would lead to transfer across a wide range of
behavioral tasks or by a process specific to memory. By comparing the encoding and retrieval
tasks to a math task, we address this limitation.

In addition to the prominent shared activity between encoding and retrieval, we identified
a secondary-but reliable-component of neural similarity between retrieval and the math task.
We tentatively interpret this second factor as reflecting task-general executive control processes,
likely mediated by frontal cortical regions. Supporting this view, slower math responses dur-
ing putatively more difficult problems showed greater high-frequency activity and decreased
low-frequency activity in middle frontal gyrus. Although frontal activation was also present dur-

ing encoding, the more spatially concentrated effects qualitatively observed during retrieval and
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math suggest a distinct frontal control-related pattern underlying the component shared between
retrieval and math. These findings are consistent with prior work linking both mathematical
cognition (Knops et al., 2009; Sokolowski et al., 2023; Pinheiro-Chagas et al., 2024) and episodic
retrieval (Cabeza et al., 2003; Badre and Wagner, 2007; Marklund et al., 2007; Barredo et al., 2015;
Vatansever et al., 2021) to executive function in frontal regions, particularly for effortful problem
or retrieval responses.

In contrast, encoding-retrieval similarity reflected a broader spectral tilt effect encompassing
medial and lateral temporal, parietal, and frontal regions. While spectral tilt was also observed
during math, particularly in middle frontal gyrus, it was less spatially consistent than in encoding
and retrieval. Notably, despite prior findings implicating superior and inferior parietal lobules in
mathematical cognition (Grabner et al., 2009; Harvey et al., 2013; Pinheiro-Chagas et al., 2024), our
univariate analyses did not reveal consistent parietal effects during the math task. This discrepancy
may reflect the strong spatial heterogeneity in effects previously found within parietal and other
regions during mathematical processing (Daitch et al., 2016; Pinheiro-Chagas et al., 2024). Despite
the less consistent univariate effects for math within individual ROIs, our multivariate decoding
approach revealed comparable within-task effect sizes for encoding and math. This observation
highlights a benefit of multivariate decoding approaches in capturing local variability in effects
commonly observed across neighboring intracranial recording contacts—local variability which
would be obscured by averaging across electrodes within an ROI (Jacobs and Kahana, 2009; Daitch
and Parvizi, 2018). Ultimately, our multivariate approach was critical in distinguishing the neural
factor shared between encoding and retrieval from math-related activity. This approach also
allowed us to identify a second shared factor comprising math and retrieval that we argue may
reflect task-general control processes.

An alternative interpretation is that the similarity between math and retrieval is less a function
of task-general executive control and attentional processes being present during retrieval, but
rather is indicative of retrieval processes occurring during math. The addition problems of the
form “A + B + C” used in the math distractor phase can be solved by chaining together retrievals
of rotely memorized arithmetic facts. For instance, when adding 3 + 2 + 9, a subject could first
retrieve the memorized result of the subproblem 3 + 2 = 5 before adding 5 + 9 with the carry-over

operation. While solving these arithmetic problems may involve retrieval, it would seem less

19


https://doi.org/10.1101/2025.07.25.666835

bioRxiv preprint doi: https://doi.org/10.1101/2025.07.25.666835; this version posted July 31, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

likely to involve effortful encoding given subjects were not instructed to remember the problems.
Retrieval intrinsically embedded within the math task could partially explain any observed transfer
between math and retrieval. However, it appears unlikely these retrievals would explain the
entirety of the observed transfer effect, given the failure to see similar transfer to the encoding
phase when the retrieval phase itself exhibited robust transfer to encoding. Additionally, the
univariate regional activations observed during the math phase do not include canonical memory-
related regions such as the hippocampus that activated robustly during retrieval and encoding.
These observations suggest that the factor shared between retrieval and math is best attributed
to task-general processes rather than processes specific to memory, though retrieval of arithmetic
facts may also contribute.

As discussed above, our ability to make strong inferences about cognitive processes engaged
by the identified neural factors is limited. Experimental tasks generally involve multiple processes
to varying degrees, and cross-task comparisons will reflect the combinations of processes present.
Ideal comparison tasks will include as few processes as possible. In particular, while we took
several precautions to exclude motor- and somatosensory-related activity from our analyses, we
cannot fully rule out the possibility that our results are partly driven by motor-planning responses
present during both retrieval and math. Additionally, it is possible that the smaller within-task
effect sizes of decoding observed in encoding and math compared to retrieval may have limited
our precision to observe neural similarity between these task phases. Our findings suggest that a
weaker factor shared between encoding and math is unlikely to explain the shared features between
encoding and retrieval considering the substantially stronger similarity between these memory
tasks. Furthermore we observe the cross-task decoding between encoding and retrieval and
between retrieval and math exceeds that between encoding and math after controlling for within-
task decoding strength. Although we cannot entirely dismiss the possibility of a factor shared
between encoding and math, we find that two predominant factors shared between encoding and
retrieval and between retrieval and math best explain our results.

Future studies may address these concerns using optimized distractor tasks. Our distractor
included three operands in contrast to more standard arithmetic tasks involving only two (Ashcraft,
1992; Pinheiro-Chagas et al., 2024). Extending our study using a distractor with two operands

would shrink the space of relevant problem solving strategies, presumably reducing variability
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across subjects and problem types and thereby improving precision. In addition, an optimized
task design could require subjects to initially press the same key on each trial to indicate they
have solved the problem before typing their numerical response, thereby minimizing differences
in typing movements across problem responses. Alternatively, subjects could vocalize responses
during the math distractor task to be better matched to the retrieval phase. However, the fact
that we observe neural similarity between math and retrieval despite them having different motor
responses and stimulus sets suggests robustness of the effect and a cognitive explanation rather
than one based on stimulus or response type.

These limitations underscore the inherent challenges of isolating memory-specific neural activ-
ity from domain-general processes. While our results argue against a simple executive functional
account of the similarity between encoding and retrieval, future work using optimized com-
parison tasks may further disambiguate the contributions of task-general and memory-specific
mechanisms.

Our findings suggest that separate factors underlie the neural features shared between suc-
cessful encoding and retrieval of verbal memories and the features shared between retrieval and
engaged arithmetic problem solving. The key methodology of our study was employing a third
comparison task that is relatively dissimilar to both encoding and retrieval. To our knowledge, this
approach has not been applied to elucidate the activity common to encoding and retrieval. While
cognitive neuroscientists frequently study the relation between the brain and behavior within indi-
vidual experimental tasks, a fuller understanding of the neural features associated with behavior
may be obtained by contrasting activity from multiple tasks engaging a broad array of cognitive
functions within the same individuals. Future studies may further leverage cross-task designs
with multivariate decoding to better understand subject-level variation in memory systems and

its relation to other cognitive processes.

Methods

Participants

Patients with pharmacoresistant epilepsy (N=371) were implanted with intracranial electrodes to

identify seizure foci as part of routine medical treatment for epilepsy. The presented data were
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collected as part of a large multi-center study at Columbia University Medical Center (New York,
NY), Dartmouth Medical Center (Hanover, NH), Emory University Hospital (Atlanta, Georgia),
Hospital of the University of Pennsylvania (Philadelphia, PA), the Mayo Clinic (Rochester, MN),
the National Institutes of Health (Bethesda, MD), the University of Colorado Anschutz Medi-
cal Campus (Aurora, CO), the University of Texas Southwestern Medical Center (Dallas, TX),
and Thomas Jefferson University Hospital (Philadelphia, PA). Each hospital’s institutional review
board approved the research protocol, and each participant (or their legal guardian) provided
informed consent before data collection began. All participants were screened with standard neu-
ropsychological evaluations for normal cognitive function. Participants were not compensated for
their participation.

Prior publications using subsets of our data have presented the electrophysiological correlates
of successful memory encoding and retrieval (Burke et al., 2014, 2015; Long et al., 2014) with
Kragel et al. (2017) showing significant cross-task decoding between encoding and retrieval in a
subset of the data presented here. We note that while our analyses of within-subject cross-task
decoding between the math and memory phases of our task are novel, a previous pre-print from
our group analyzed between-subject univariate effects of success during the math distractor task
along with a statistical model of math problem difficulty (Randazzo et al., Submitted). We provide

the de-identified data and code for our analyses at https://memory.psych.upenn.edu/Data.

Pre-registration of Cross-task Decoding Analyses

To reduce statistical bias from selecting over multiple analysis approaches, we randomly split
our full dataset into an exploration dataset, in which we first tuned our methods for cross-task
decoding, and a confirmation dataset, in which we subsequently replicated our optimized analyses.
We pre-registered our final cross-task decoding analyses with the Open Science Foundation prior to
assessing them in the confirmation data (available at https://osf.i0/9mg46). Our initial sample
consisted of 397 subjects who together completed 1218 sessions of our free recall experiments.
Applying our exclusion criteria (see below) resulted in 195 subjects and 574 sessions in the encoding
phase, 165 subjects and 437 sessions in the retrieval phase, and 181 subjects and 513 sessions in the

math phase in our exploration dataset. For the confirmation set, 175 subjects and 557 sessions were
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included for encoding, 151 and 420 for retrieval, and 161 and 482 for math respectively. The above
numbers include subjects with fewer than three experimental sessions. For our primary cross-task
decoding analyses, we exclude subjects with fewer than three experimental sessions each having
observations within all three task phases after applying experiment-specific exclusion criteria.
This criterion resulted in a sample of 75 subjects and 285 sessions with 63024 encoding events,
13480 retrieval events, and 14515 math events in our exploration dataset, and in our confirmation
dataset, 61 subjects and 238 sessions with 55872 encoding events, 11738 retrieval events, and 11974

math events. We present results from the exploration, confirmation, and combined datasets.

Behavioral Tasks

Participants completed a delayed free recall task in which lists of words were presented on a
computer screen one at a time (see Figure 1). The words or study items consisted of common
English nouns, with the word pools available at https://memory.psych.upenn.edu/Word_Pools.
Subjects completed one or both of two variants of the free recall task: free recall of unrelated words
and free recall of categorized words. We pool over these experiment variants in this work. Each
list contained 12 items. Study items appeared for 1.6 seconds separated by inter-stimulus intervals
uniformly distributed from 0.75 to 1 seconds. Following the study phase, subjects completed a
mathematical distractor task, after which they recalled aloud as many of the studied items as they
could in any order. The recall phase lasted 30 seconds, and trained annotators manually marked
vocalization onsets from experimental audio recordings.

In the mathematical distractor task phase, subjects answered problems of the form “A +B + C =
?” inwhich A, B, and C were numbers ranging from 1to 9. Subjects typed their answers and pressed
“Enter” to submit their responses. Subjects then received immediate auditory feedback with a high
or low-pitched beep indicating whether a response was correct or incorrect respectively. Subjects
were sequentially presented problems in this format for 20 seconds. Problems were untimed, and
subjects had to complete the final problem in each distractor period even after 20 seconds had
elapsed. In each experimental session, patients completed up to 12 or 25 such lists, depending
on the variant of the experiment. In some sessions, patients became fatigued and stopped testing

before reaching the maximum number of lists per session. Subjects contributed varying numbers
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of sessions depending on their interest in the experiments and availability to test. In this study,
participants included in the cross-task decoding analyses contributed a minimum of three sessions,
each with events in all three tasks. In our univariate anatomical analyses, we include participants

who completed any number of sessions.

Statistical Model of Arithmetic Problem Difficulty

To account for the effect of problem difficulty on subject responses during the arithmetic distractor
phase, we modeled log-transformed problem response times using a linear mixed-effects model fit
across subjects. We selected model factors based on broad findings in the literature of mathematical
cognition (Ashcraft, 1992), on a behavioral model presented in an earlier pre-print from our group
using a subset of the data presented here (Randazzo et al., Submitted) (227 subjects reported), and
on patterns identified in our exploration data using a forward stepwise selection approach. Our
behavioral model included regressors for the problem sum, whether the problem solution was odd,
whether any two digits summed to ten, whether any two digits were the same, whether all three
digits were the same, and whether a problem required one or two carry operations in addition to
random subject-level intercepts and slopes for the problem sum factor and random session-level
intercepts. This model was fit to all sessions that passed our exclusion criteria without event-level
exclusions for electrophysiological considerations. In particular, we did not enforce the minimum
problem RT criterion to avoid strong censorship in the model fit though we retained the maximum
problem RT cut-off to exclude outliers. Subject data were included in the model fit regardless of

how many sessions a subject completed.

Electrophysiological Recordings

Patients were implanted subdurally with grid or strip electrodes placed on the surface of the
brain, stereotactic depth electrodes placed deep within the brain, or both. Implant locations were
selected by physicians solely based on medical considerations. Neighboring recording contacts
were typically spaced 10 mm apart for grid or surface electrodes or 5 to 10 mm apart for depth
electrodes. Intracranial EEG (iEEG) was recorded using several recording systems depending

on the hospital site including clinical monitoring systems (Nihon Kohden EEG-1200, Grass Aura-
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LTM64, or Natus XLTek EMU 128) and dedicated research systems (Blackrock NSP and the External
Neural Stimulator developed by Medtronic). Recordings were either re-referenced to bipolar
montages (with channel recordings being subtracted from neighboring channels) or recorded in
a bipolar reference mode. We filtered the bipolar re-referenced EEG for line noise using a fourth-
order Butterworth notch filter with cut-off frequencies of 58 to 62 Hz. We additionally excluded
free recall lists in which the EEG for any channel on any of the list event epochs of a given task
phase was constant or otherwise resulted in invalid spectral power values (e.g., from taking the
logarithm of zero power).

A small subset of patients were re-implanted or were recorded with multiple recording mon-
tages during a hospital stay such that different sets of electrodes were recorded at different times in
the same subject. For these analyses, we compute neural decoding scores separately for each mon-
tage before averaging scores across montages within subject to obtain the subject-level decoding

score. Different montages from a given subject did not cross the exploration-confirmation split.

Anatomical Localization

Intracranial electrodes were localized using methods described in prior work (Sakon et al., 2022;
Herz et al., 2022; Ezzyat et al., 2024). Briefly, our pipeline registered post-implant CT images to
pre-implant T1-weighted MRI images using Advanced Normalization Tools (ANTS; Avants et al.,
2008). This registration generated coordinates for each electrode in image space which were sub-
sequently transformed to individual-space FreeSurfer coordinates (Fischl et al., 2004). Electrode
region labels were assigned using several methods depending on the available information. Clini-
cal neuroradiologists manually annotated regions for a subset of subjects and validated the output
of the automated pipeline used to assign region labels to the remaining subjects. The automated
pipeline used ANTS and Automated Segmentation of Hippocampal Subfields (ASHS; Yushkevich
et al., 2015) to segment whole brain and MTL volumetric regions from the T1-weighted images
and hippocampal coronal T2-weighted MRI scans. For electrodes near cortical surface regions for
which labels provided by either neuroradiologists or volumetric segmentations were unavailable,
surface labels were generated automatically using the Desikan-Killiany-Tourville cortical parcella-

tion protocol from individual-space FreeSurfer coordinates (Fischl et al., 2004; Desikan et al., 2006;
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Klein and Tourville, 2012). These coordinates were corrected for implant-related brain shift using
an energy minimization algorithm in a subset of patients (Dykstra et al., 2012). We localized a
bipolar re-referenced pair of recording contacts to the midpoint of the contact coordinates. Finally
we excluded somatosensory, motor, and speech-related regions to remove activity related to motor
responses during the math distractor and retrieval phases. These regions included pars oper-
cularis, pars triangularis, bank of the superior temporal sulcus, cerebellum, paracentral lobule,
supplementary motor cortex, and superior temporal, transverse temporal, precentral, postcentral,

and supramarginal gyri.

Task Decoding
Decoding Arithmetic Performance

We decoded subject performance on the arithmetic distractor phase to model engagement in a task
involving executive control processes, with no requirement for subjects to encode new memories.
Subjects completed the arithmetic task with high accuracy, answering 95.4% of problems correctly
(median across subjects in our exploration dataset with an inter-quartile range of 91.9% to 97.6%).
To avoid ceiling effects and to create a more balanced classification task than would be obtained
from decoding problem correctness, we elected to instead decode whether subjects answered
problems faster or slower than their individual median performance within a session. Incorrect
trials, trials containing “Backspace” keystrokes, and trials with response times greater than 20
seconds were excluded from our analyses.

While this decoding approach captured subject engagement with the arithmetic task, it does
not account for the effects of problem difficulty on response times. We therefore incorporated
problem difficulty in a variant of our decoding paradigm using a regression model fit to predict
subject response times from characteristics of the arithmetic problems. Using this model, we
computed response residuals as the difference between a subject’s response time and the response
time predicted by the model for that problem presentation. To account for problem difficulty, we
then decoded whether a response residual exceeded or fell below the median response residual

for that subject within a given session.
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Comparing Successful Retrievals to Failed Memory Search

To examine the neural activity associated with episodic retrieval, we contrast successful retrievals
against matched periods of silence or “deliberations” indicating moments of failed retrieval during
the recall phase (see Figure 1). We define correct retrieval periods as 500 ms epochs preceding
correct retrievals subject to the following exclusion criteria. We excluded repeated retrievals
and intrusions (vocalizations of words not present in the most recently studied list). Given the
importance of the current episodic context to retrieval processes, we limited our study to retrieval
events cued by prior retrievals (Howard and Kahana, 2002). We thus excluded the first correct
retrieval in each recall phase if it was not proceeded by an intrusion, ensuring each correct retrieval
had a well-defined contextual cue. To reduce cross-contamination between the activity of nearby
retrievals or other vocalizations, we excluded retrievals preceded by less than 2000 ms of silence.
Similarly, we exclude all retrievals having onsets during the first second of the retrieval phase to
avoid artifact from the audible beep and fixation cross indicating the start of retrieval.

We define candidate deliberations as periods of silence during the recall phase that meet the
following constraints. Candidate deliberation periods must fall after the first recall or intrusion
and before the last recall or intrusion in a list. The onset of the preceding vocalization must have
occurred at least 2000 ms prior to the onset of the candidate deliberation period, and the onset
of the subsequent vocalization must have fallen at least 1000 ms after the onset of the candidate
deliberation period. Subject to the above criteria, we selected moments of deliberation within
the candidate periods for analysis as follows. For each correct retrieval meeting our inclusion
criteria, we attempted to match the vocalization onset time relative to the start of the retrieval
phase to a time within a candidate period from a different list. These matches were made exactly
when possible and within 5 seconds of the vocalization onset otherwise. When a retrieval could
be matched to multiple candidate deliberation periods across different lists (either multiple exact
matches if available or else multiple tolerated matches), we selected the match belonging to the
list closest to the retrieval, breaking ties randomly. We further required consecutive deliberations
to be separated by at least 1000 ms. Retrievals that could not be matched were dropped from
subsequent analysis, and we excluded all matches from experimental sessions with fewer than

eight matches. These criteria were selected to ensure the onset times and list numbers of retrievals
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and matched deliberations closely aligned. After applying these criteria, subjects had a median
of 25.2% of retrievals matched (inter-quartile range (IQR): 14.8%, 36.9%) in our confirmation data
(exploration: 26.7% IQR: 16.4%, 37.0%). Onset times differed between retrievals and deliberations
by a median of -7.3 ms (IQR: -76 ms, 258 ms) across subject-level average differences in our
confirmation data (exploration data : IQR: -58 ms, 287 ms). List numbers differed by a median of

0.15 (IQR: -0.26, 1.2; exploration: 0.02, IQR: -0.47, 1.1).

Spectral Feature Extraction

For each task phase, we compute spectral power during event epochs designed to capture moments
of successful and unsuccessful cognitive processing (Figure 1A). For the math phase, we computed
spectral powers from 1800 ms to 500 ms before the first response keystroke entered by the subject.
Given the math problems were untimed, we chose this epoch to coincide with engaged problem
solving near the moment of problem resolution. We selected the offset time of this epoch to reduce
motor-related artifact generated at the time of response while the epoch duration was selected to
maximize predictive performance in our exploration dataset. A mirrored buffer of 500 ms was
appended to each end of the math response epochs to further avoid contamination by motor-
related artifact. To exclude visual activity related to the onset of problem presentation (which
would tend to differentially impact problems with faster responses), we required all EEG epochs
to begin at least 500 ms after problem onset.

For the retrieval phase, we analyzed epochs ranging from 600 to 100 ms before the onset of
retrieval vocalization or matched deliberation. We used mirror buffers of 500 ms on each side of
retrieval epochs and matched deliberation epochs. Mirroring retrieval epochs on the side near-
est the vocalization removes vocalization artifact while mirroring both sides of the deliberation
intervals prevents overlap between the buffers of nearby deliberations. Finally, to ensure com-
parisons between retrieval and deliberation epochs are not driven by differences in artifact due to
mirror buffering, we similarly mirror buffered the retrieval epochs on the side furthest from the
vocalization.

For the encoding phase, we define EEG epochs 1366 ms in length starting from the onset of

item presentation as used in prior studies (Ezzyat et al., 2018, 2024). We use mirror buffers of 500
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ms for the encoding epochs in line with the arithmetic and retrieval phases.

We computed spectral power across the epochs for each task phase using eight Morlet wavelets
with center frequencies logarithmically spaced from 5 Hz to 175 Hz (wave number 5). The resulting
wavelet-transformed epoch time series were log-transformed, averaged across time (excluding
epoch buffers), and z-scored within experimental session to generate a set of eight spectral features

per channel for each epoch.

Evaluating Neural Decoding of Memory and Mathematical Cognition

We fit subject-level logistic regression classifiers to predict cognitive success in each of the three
task phases from neural activity transformed into spectral power features. We evaluated within-
task classification performance using cross-validated Area Under the Receiver-Operating Curve
(AUC). For evaluating neural decoding, we used the Python scikit-learn library implementations
of logistic regression (sklearn.linear_model.LogisticRegression with the LIBLINEAR solver and
balanced class weighting) and AUC (sklearn.metrics.roc_auc_score) (Pedregosa et al., 2011; Fan et
al., 2008). Each subject included in the neural decoding analyses was required to have completed
at least three experimental sessions each with a minimum of 15 events separately for each task
passing the relevant exclusion criteria. To ensure our classifiers generalized across experimental
contexts, we employed a leave-one-session-out cross validation (LOSO-CV) approach. In LOSO-
CV, one session out of the K total sessions for a subject is held out from the model fitting process
to provide a test set for unbiased model evaluation. The remaining K-1 sessions are used to fit
the model parameters, and the resulting model is evaluated on the held-out session. This process
repeats with each session being held out in turn, and the average model performance (AUC) across
all held-out sessions provides the final measure of neural decoding performance for a given subject
and task. To fit the model parameters for a given held-out session, we similarly used a nested
inner LOSO-CV process on the remaining K-1 sessions to optimize the L2 regularization penalty
weighting over held-out inner fold sessions, with the linear model parameters for each inner cross-
validation fold being fit to K-2 sessions. We optimized the regularization penalty over 52 points
logarithmically spaced from 10 to 10'!. We then refit the classifier parameters on all K-1 sessions

with the optimized regularization weighting before evaluation on the held-out session from the
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outer cross-validation fold. We averaged AUCs from outer-fold sessions for each subject to obtain
the within-task decoding performance for that subject and tested the population average decoding
performances for each class against random chance performance of an AUC of 0.5 with one-sample
t-tests across subjects. As described previously, a small number of subjects were recorded with
multiple recording montages. For these subjects, decoding scores were computed separately for
each recording montage with at least three sessions and then averaged scores across montages to
obtain the decoding score for that subject.

To measure the neural similarity between successful cognition across tasks, we compute the
degree to which classifiers fit on a source task A transfer to predicting observations from a target
task B. For each subject, we trained a single classifier on all sessions available for task A. The
L2 penalty for this classifier was selected to maximize the standard leave-one-session-out cross-
validated AUC averaged across hold-out sessions rather than the nested cross-validation approach
used for within-task evaluation. We evaluate the predictive performance (AUC) of that subject
classifier with the neural features and behavioral outcomes from task B pooled across all sessions
to obtain our measure of subject-level task-A-to-task-B cross-task neural decoding. Decoding
performance was estimated in this way for all pair-wise combinations of our three cognitive
decoding tasks. For each combination of decoding tasks (task A predicting B, or B predicting
A), we assess significant performance at the population level using one-sample f-tests across
subjects compared to random chance performance. We further compare the subject-level decoding
performance across task combinations (i.e., whether task A predicts task B better than task C
predicts B and whether task B predicts A better than C predicts A) using paired ¢-tests. Specifically
we compare the neural similarity between math and retrieval to the similarity between math
and encoding by testing math-to-encoding cross-task decoding vs. math-to-retrieval. We also
assess the similarities of encoding and retrieval to math with the reversed directions of cross-
task decoding by testing encoding-to-math vs. retrieval-to-math. For each direction of cross-task
decoding, we match either the source task or the target task across the comparison (for example, in
the first comparison listed, the math distractor phase provides the source task for the two cross-task
decoding tasks being compared). We analogously compare the similarities of math to encoding
and of retrieval to encoding by testing encoding-to-retrieval cross-task decoding vs. encoding-to-

math and retrieval-to-encoding vs. math-to-encoding, and we compare the similarities of math
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and encoding to retrieval by testing retrieval-to-encoding vs. retrieval-to-math and encoding-to-
retrieval vs. math-to-retrieval.

We separately correct these two sets of tests of cross-task decoding for multiple comparisons
using the Benjamini-Yekutieli method of controlling the false discovery rate (FDR) at a rate of
g < 0.05 (Benjamini and Yekutieli,2001). Given cross-task decoding between encoding and retrieval
was previously reported in (Kragel et al., 2017), we do not include the tests of encoding-retrieval
cross-task decoding against random chance in our FDR correction. We repeat these primary
cross-task decoding analyses with two sets of controls. First, we adjust our labels of trial-level
arithmetic success for problem difficulty using our behavior model of response times as described
previously. Second, we exclude contacts localized to brain regions involved in somatosensation,
motor movement, or speech (see above). We assess our results with these controls applied together
as well as separately for comparison, basing our primary inferences on the combined control
condition.

To control for the effect of within-task decoding strength on these comparisons of cross-task
decoding, we repeat a subset of these hypothesis tests after normalizing the cross-task scores by
dividing them by the within-task scores for the test task. This analysis was not preregistered. We
limit this analysis to subjects with a test task AUC of at least 0.55 to stabilize the normalization.
To account for the within-task score of the train task, we compare these normalized scores only
for pairs of tasks matched by the train task (e.g., transfer from encoding to retrieval compared
to transfer from encoding to math). The resulting three paired t-tests (normalized transfer from
encoding to retrieval compared to normalized transfer from encoding to math, retrieval-math com-
pared to retrieval-encoding, and math-retrieval compared to math-encoding) are FDR-corrected
for multiple comparisons.

To compare our measure of cross-task neural decoding against a more typical measure of neural
similarity, we further assess the Pearson correlation between subject-level standardized effects of
our cognitive contrasts. For each subject and session we compute Hedge’s g of the spectral power
between successful and unsuccessful events for every bipolar pair and wavelet frequency. We
average these effects across sessions within subject-montage and compute the Fisher z-transformed
correlation across the resulting vectors of contact-frequency-level effects for all pairs of tasks. As

before, we average these transformed correlations across subject-montages within subject to obtain
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the final subject-level measure of neural similarity. We test these transformed correlations for
each pair of tasks against zero using a one-sample t-test. We similarly test the difference in z-
transformed correlations between pairs of tasks (e.g., comparing math correlated with retrieval to
math correlated with encoding) using paired t-tests. We ran these tests separately with the subjects
and sessions from the cross-task decoding analysis as well as using all subjects and sessions with
data in all three tasks regardless of whether those subjects completed at least three sessions. We
also repeated this analysis controlling for arithmetic problem difficulty and motor-related activity

as done for the cross-task neural decoding analysis.

Measuring regional spectral power predicting behavioral outcomes

We computed the spectral activity associated with engaged cognition during each task across
several regions of interest (ROIs) used in prior work: superior, middle, and inferior frontal gyri,
hippocampus, parahippocampal gyrus, middle and inferior temporal gyri, inferior and superior
parietal lobule, and occipital cortex (Ezzyat et al., 2017, 2018). As discussed above, our controls
for motor-related activity entirely excluded superior temporal gyrus as well as pars opercularis
and pars triangularis from inferior frontal gyrus. Specifically, we computed Hedge’s g for each
recording electrode and frequency band by comparing successful and unsuccessful events within
experimental session for each task (Hedges, 1981). We average these electrode-level effects first
within ROIs and frequencies and then across sessions for a given subject. Statistically reliable
effects across ROIs and frequencies were inferred with one-sample t-tests across subjects against
a null effect of zero. We corrected the resulting p-values for multiple comparisons across ROIs
and frequencies using the Benjamini-Krieger-Yekutieli two-stage linear step-up procedure for false

discovery rate (FDR) correction at a false discovery rate of g < 0.05 (Benjamini et al., 2006).

Controlling for rehearsal during the math phase

We test the alternative hypothesis that any observed neural similarity between math and retrieval
could be due to rehearsal of studied items during the arithmetic distractor phase. If subjects
rehearsing during the arithmetic distractor led to 1. slower math response times, 2. higher

recall rates, 3. retrieval-related neural activity appearing during the distractor, one could expect
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spurious cross-task decoding unrelated to neural similarities underlying mathematical cognition
and retrieval processes. If this were the case, we would expect that list-level recall rates and math
response times would correlate in the same direction as the effect of cross-task decoding. We would
also expect that those subject-level correlations would predict cross-task decoding performance. To
test this hypothesis, we correlated mean list-level recall rates and response times within all sessions
included in our cross-task decoding analyses with at least 10 lists each having at least three math
responses. To ensure no biases arose from differing numbers of math responses across distractor
phases, we compute the mean RT over only the first three responses during a list. We averaged
these session-level correlations within subject after Fisher z-transformation and tested the mean
population z-transformed Pearson correlation across subjects against zero. Our exploration data
showed no evidence for this rehearsal hypothesis using standard frequentist t-tests. To allow for
finding evidence in favor of the null hypothesis of no effect of rehearsal, we opted to test this
difference in means using a Bayes factor with an objective Jeffreys-Zellner-Siow (JZS) prior for
a Cauchy scale factor of 0.5 (Rouder et al., 2009). We further tested the correlation of subject-
level recall-RT correlations with cross-task decoding AUCs for math and retrieval against zero.
We similarly test this hypothesis using a Bayes factor for correlation with an objective JZS prior
(Wetzels and Wagenmakers, 2012). For consistency, we also report the results of the equivalent
frequentist t-tests for both of these comparisons but base our inferences on the Bayes factors.
Finally, these analyses were conducted both with standard RTs as well as with the residualized

RTs from our model of problem difficulty.

Statistical Analyses

All frequentist tests were evaluated at the p < 0.05 threshold unless specified otherwise. We cor-
rected for multiple comparisons with false discovery rate (FDR) correction (prpr < 0.05; Benjamini
and Yekutieli, 2001). Bayes factors were interpreted using standard thresholds, with a Bayes fac-
tor of great than 10 (or less than 1/10) providing strong evidence for the alternative (or the null)
hypothesis and a Bayes factor between 3 and 10 (or between 1/3 and 1/10) indicating notable but

weaker evidence (Wetzels and Wagenmakers, 2012).
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