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A task-irrelevant stimulus can distort recall from visual short-term memory (VSTM). Specifically, repro-
duction of a task-relevant memory item is biased in the direction of the irrelevant memory item (Huang &
Sekuler, 2010a). The present study addresses the hypothesis that such effects reflect the influence of neu-
ral averaging under conditions of uncertainty about the contents of VSTM (Alvarez, 2011; Ball & Sekuler,
1980). We manipulated subjects’ attention to relevant and irrelevant study items whose similarity rela-
tionships were held constant, while varying how similar the study items were to a subsequent recogni-
tion probe. On each trial, subjects were shown one or two Gabor patches, followed by the probe; their
task was to indicate whether the probe matched one of the study items. A brief cue told subjects which
Gabor, first or second, would serve as that trial’s target item. Critically, this cue appeared either before,
between, or after the study items. A distributional analysis of the resulting mnemometric functions
showed an inflation in probability density in the region spanning the spatial frequency of the average
of the two memory items. This effect, due to an elevation in false alarms to probes matching the percep-
tual average, was diminished when cues were presented before both study items. These results suggest
that (a) perceptual averages are computed obligatorily and (b) perceptual averages are relied upon to a
greater extent when item representations are weakened. Implications of these results for theories of
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VSTM are discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Everyday experience provides undeniable proof that memory is
fragile and fallible. Importantly, such errors of memory have pro-
vided many key insights into memory’s structure and properties
(Schacter, 2001). One class of memory errors seems especially dif-
ficult to explain: errors that suggest memory is retained, but has
somehow become distorted. The most-studied of such distortions
are ones that afflict long-term memory, but short-term memory
is certainly not immune, and may be vulnerable to distorting influ-
ences of its own. For example, Huang and Sekuler (2010a) identi-
fied a pair of influences that each distorted recall from visual
short-term memory. One influence was attributable to the aggre-
gation of stimulus information across trials; the second influence
reflected the similarity of a trial’s task-irrelevant stimulus to an
accompanying task-relevant stimulus. Huang and Sekuler (2010a)
described these influences as “attractors” as each seemed to shift
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or pull subjects’ judgments toward itself. Although the timescale
of the across-trial effect suggests that it is memory based, Huang
and Sekuler (2010a) proposed a different approach for the with-
in-trial effect. They hypothesized that the task-irrelevant stimulus
influenced an early, encoding-related process, rather than a later,
storage or retrieval process. Specifically, Huang and Sekuler
(2010a) posited that subjects stored a weighted average of the
ith trial’s relevant and irrelevant memory items, essentially encod-
ing an ensemble representation for that trial which subsequently
influenced recall of the relevant item.

Support for this explanation can be found in studies of percep-
tual averaging (Alvarez, 2011). Specifically, abundant evidence
shows that subjects can accurately compute the average feature
values of a set of spatially-separated visual objects. In a seminal
study of such averaging, Ariely (2001) showed subjects a display
of circles differing in diameter, followed by a test set containing
a probe circle. Subjects either indicated whether a probe circle
had been in the memory set, or, on some trials, judged whether a
test circle was larger or smaller than the mean circle in the mem-
ory set. Ariely found that, though memory for individual items was
at chance, subjects made accurate mean discrimination responses.
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He suggested that the visual system relies on two mechanisms,
item identification and averaging, and may discard fine-grained
information in favor of the average when it is efficient to do so.

More recent work on perceptual averaging suggests such aver-
ages are preserved in conditions of divided or diffuse attention
(Albrecht, Scholl, & Chun, 2012; Alvarez & Oliva, 2008, 2009; Chong
& Treisman, 2005; but see Emmanouil & Treisman, 2008). Addi-
tionally, it has been shown that averages are computed not just
over items presented in a particular visual display, but may also
be computed over items presented on successive trials (Albrecht
& Scholl, 2010; Haberman, Harp, & Whitney, 2009). The latter find-
ing suggests a link between perceptual averaging and the effect re-
ported by Huang and Sekuler, which involved stimuli presented in
sequence.

Despite the growing literature on perceptual averaging in
VSTM, the conditions determining the influence of such averaging
have not been widely explored. What, if anything, determines the
extent to which averages are relied upon in VSTM? Assuming that
(i) memory load weakens individual VSTM representations and (ii)
averages are nonetheless preserved in such conditions, it seems
likely that the influence of perceptual averaging may depend (at
least in part) on memory load (see, e.g., Ball & Sekuler, 1980, for
supporting evidence related to this point). However this is by no
means guaranteed: most studies of perceptual averaging explicitly
required estimates of such averages. It is not clear that averages are
computed obligatorily, let alone that they influence responses that
do not nominally require reliance on averages.

The current study addresses two key hypotheses: first, that per-
ceptual averages influence recognition responses in the absence of
an explicit requirement to compute averages, and second, that reli-
ance on averages will increase under conditions that promote
uncertainty about VSTM'’s fidelity (Ball & Sekuler, 1980). On most
trials of the current experiment, two study items (Gabors) were
presented successively, followed after a short delay by a test probe
(another Gabor, henceforth denoted p ). A visual cue presented at
one of several possible times relative to the study items indicated
which item, either s; (the first stimulus) or s, (the second), had to
be remembered, and was therefore task-relevant. The subject
judged whether the probe’s spatial frequency matched the spatial
frequency of the task-relevant study item. In order to manipulate
selective attention’s influence on encoding processes, an atten-
tion-directing cue was presented at different times relative to the
two study stimuli.

An important aspect of the current design is its inclusion of a
graded manipulation of p -s similarity. Specifically, we fixed the
similarity of s; to s, and applied a “roving probe” technique to
the test probes, in which p can take on one of several (in this case,
15) similarity values relative to the study items. By using this tech-
nique, it is possible to map out mnemometric functions, indices of
memory strength’s distributions (Sekuler & Kahana, 2007,
Williams, Titchener, & Boring, 1918; Zhou, Kahana, & Sekuler,
2004). To these distributions, we fit Skew-Normal functions
(Azzalini, 1985, 1986; Bansal, Maadooliat, & Wang, 2008), which
allowed us to directly measure changes in the spread and skew
of the observed mnemometric functions. As we will demonstrate,
such distributional analyses provide a powerful window onto the
effects of interest, which could be obscured or distorted in an
analysis restricted to coarser measures such as mean response
rate (see Balota & Yap, 2011, for further arguments in favor of
distributional analyses).

To preview the outcome, our distributional analysis of subjects’
recognition responses suggests that, under conditions of memory
load, subjects rely more heavily on ensemble representations,
matching probes to a perceptual average of s; and s,. Thus, our re-
sults support a perceptual averaging account of Huang and Sekul-
er's distortion effect. Furthermore, our results suggest that

averages are computed obligatorily, and are relied on in order to
compensate for imperfections in VSTM representations.

2. Methods

On each trial two study items, Gabor patches (s; and s, ), were
presented sequentially in the center of the computer screen, fol-
lowed by a centrally-presented probe Gabor, p.” The Gabor patches
varied in spatial frequency, and on each trial a subject made a recog-
nition judgment, reporting whether p’s spatial frequency matched or
did not match the remembered spatial frequency of one of the study
items. Cues introduced at various times during a trial instructed the
subject to attend to one or both of the study items, and to base their
recognition judgments on the attended item(s). The cue to direct
attention was meant to promote a temporary, top-down attentional
selection of a study item that occupied a particular ordinal position
in the sequence of study items, thereby strengthening its
representation.

The propensity of any lure stimulus (i.e. a non-matching p), to
draw false recognitions varies with that lure’s similarity to study
items: other things being equal, a lure that is similar to one or
more study items will attract more false recognitions than one that
is dissimilar to the study items (Sekuler & Kahana, 2007). Various
experimental manipulations, including manipulations of attention,
can alter the proportion and distribution of false recognition re-
sponses. Therefore, the set of possible lures in our experiment
was constructed so as to maximize sensitivity to the effects in
which we were interested. Specifically, we tested subjects with
probes whose spatial frequencies roved along the frequency
dimension within which s; and s, were situated.

2.1. Subjects

Six male and eight female paid volunteers completed the exper-
iment; two additional subjects began but failed to complete the
multi-session experimental protocol. All subjects had normal or
corrected-to-normal Snellen acuity, and normal contrast sensitiv-
ity as measured with Pelli-Robson charts (Pelli, Robson, & Wilkins,
1988).

2.2. Apparatus

Stimuli were generated and displayed using Matlab and exten-
sions from the Psychophysics and Video Toolboxes (Brainard,
1997; Pelli, 1997). Stimuli were presented on a 14-in. cathode
ray tube monitor with a refresh rate of 95 Hz, and a screen resolu-
tion of 800 x 600 pixels. Routines from the Video Toolbox were
used to calibrate and linearize the display. The mean luminance
of the display was maintained at 36 cd/m? throughout the
experiment.

2.3. Conditions

The experiment comprised eight main conditions in which we
varied the stimulus or stimuli that had to be attended and remem-
bered. In all conditions save a single baseline condition described
below, on each trial three Gabor patches were presented sequen-
tially (s;, s, and p), for 500 ms each. A three-second retention
interval separated the disappearance of s, and the onset of p. At
the end of a trial, subjects judged whether p had been among the
study items or not. To minimize the possibility that subjects could
base judgments exclusively on retinotopic matches between local

2 A Gabor stimulus comprises a sinusoidally modulated luminance grating
windowed by a Gaussian.
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features, the absolute phases of both horizontal and vertical com-
ponents were randomly varied from stimulus to stimulus within a
trial. Stimuli on each trial shared a single, common horizontal spa-
tial frequency. As a result, only the other, vertical spatial frequen-
cies’ differences were relevant to the task.

Fig. 1 represents the experiment’s eight conditions (white ovals)
in schematic form. Six of these conditions involved a manipulation
of selective attention; two of them did not. We begin with a
description of the two baseline conditions, in which attention
was not directed to any particular, designated stimulus. In one of
these non-selective conditions, which we designate as Both, the let-
ter B was presented for 1000 ms before s;, instructing the subject
to attend to and remember both s; and s,, and to judge whether
p matched either study item. In the other non-selective condition,
the letter S appeared for 1000 ms at the beginning of a trial, signal-
ing that only a single study item would be presented on that trial.
This condition is designated as Single. Note that Single comprises a
simple delayed discrimination task, which provided a baseline
against which memory in other conditions could be compared.
We expected that the two non-selective conditions, Single and
Both, would produce performance at the upper and lower bounds
of recognition, respectively, thereby bracketing the performance
generated in the six conditions of selective attention.

In the selective attention conditions, during the 1000 ms inter-
val immediately before the presentation of s;, between s; and s;, or
after s,, a visual cue, the numeral “1” or “2,” was presented for
1000 ms at the center of the display. This numeral cued the subject
to attend to either s; or s,, for “1” or “2,” respectively. Subjects
were instructed that only the attended stimulus item was relevant
to their recognition judgment of whether p did or did not match
the cued study stimulus. Six different conditions of selective atten-
tion were produced by factorially combining three different times

at which a cue could occur and two different study items that could
be attended. We designate conditions in which a cue occurred be-
fore/between/after the study items as Pre/Mid/Post, respectively.
Further, we designate conditions as 1 and 2 according to serial
position, first or second, of the attended study item. This system
for designating conditions produces six unique binomial designa-
tions: Pre-1, Mid-1, Post-1, Pre-2, Mid-2, and Post-2.

A fixation cross remained visible at the center of the screen
throughout the experiment except when a stimulus or a cue was
being displayed. The conditions of selective attention were tested
in randomly-interspersed blocks of 80 trials each. Conditions Single
and Both were run in dedicated blocks of their own; but Pre-1 and
Pre-2 trials were intermingled in a block, as were Mid-1 and Mid-2
in other blocks, and Post-1 and Post-2 in other blocks still. Condi-
tions were presented in blocks so as to avoid forcing subjects to
make random, trialwise changes in attentional strategy. Impor-
tantly, the blocking used here gave subjects no indication as to
what item would be task-relevant on a given trial (with the excep-
tion of Single). Thirteen of the subjects produced a total of 3390 tri-
als each, distributed over 15 sessions; one subject served in
additional sessions, producing a total of 6780 trials. This subject’s
data were consistent with those of the other subjects.

2.4. Stimuli

In each stimulus one vertical and one horizontal sinusoidal-
luminance grating were superimposed. As explained below, the
spatial frequency of only the vertical component was actually
task-relevant. Each sinusoidal component’s Michelson contrast
was set to 0.2, a value well above the threshold for detection. Each
stimulus subtended 6° visual angle at a viewing distance of 82 cm.
To minimize edge effects, the luminance gratings were windowed

(Similarity between Probe and Relevant Study Item varied,15 levels)

A

[
~

|

8 >

Single

— Pre-Cue

=8

—  Mid-Cue

~— Post-Cue

S1

==

Probe

1000 500

(Attention Cue timepoint varied, 3 levels)

1000
Time (ms)

500 3000 500

Fig. 1. Schematic representation of sample trials associated with various conditions of stimulus presentation and attentional cues in the experiment. s;, S, p were presented
sequentially. On some trials, the letter “B” appeared before s; , and the subjects were required to attend to and decide on both s; and s,. On other trials, when the letter “S”
appeared at the start of a trial, only a single stimulus s followed. Finally, in selective attention trials, a numeral, either “1” or “2,” occupied one of three intervals, prompting

the subjects to attend to s; or s;, respectively.



C. Dubé et al./Vision Research 96 (2014) 8-16 11

by a circular 2-D Gaussian function whose space constant was 1°
visual angle. Viewing was binocular, with the subject’s head sup-
ported by a chin-and-forehead rest 114 cm from the display. Addi-
tional details of stimulus construction can be found elsewhere
(Kahana et al., 2007).

Prior to memory testing, each subject’s 2-interval forced-choice
spatial frequency discrimination threshold was measured with
QUEST, an adaptive psychophysical algorithm (King-Smith et al.,
1994; Watson & Pelli, 1983). As implemented here, QUEST identi-
fied the difference in spatial frequency that sufficed to produce 75%
correct identification of the higher spatial frequency of two grat-
ings. This stimulus normalization was meant to control individual
differences in visual encoding as a source of variation in recogni-
tion performance (Kahana et al., 2007; Zhou, Kahana, & Sekuler,
2004). The resulting Weber fractions for different subjects ranged
from 0.10 to 0.23. Each subject’s Weber fraction was then used
to normalize the stimuli with which that subject’s recognition
memory would be tested. Each subject’s stimulus set for the recog-
nition experiment comprised Gabors whose sinusoidal compo-
nents’ spatial frequencies were defined by the relation

f=h+K)" (1)

where fj is a fixed base frequency, K; is a subject’s Weber fraction,
and n is the desired distance from the base frequency, in just-
noticeable difference (JND ) units.

k-7 @

where Af is the JND for spatial frequency. As a result, the spatial fre-
quency of evey stimulus could be expressed in JND units.

Within a trial, the horizontal frequency for all three gratings
was held constant, but varied between trials, taking random values
drawn from a uniform distribution bounded by 0 and 7.0 c¢/deg. The
vertical frequency of each grating was scaled to an individual sub-
ject’'s Weber fraction for spatial frequency. The geometric mean of
each trial’s study gratings was set to seven JNDs above a randomly-
chosen minimum reference spatial frequency, which ranged from
1.0 to 2.0 c/deg. The value of this geometric mean, in c/deg, varied
from trial to trial, so in order to aggregate data over trials, we nor-
malized each trial’s geometric mean frequency to the same con-
stant value. The difference between the study gratings’ vertical
frequencies, |s; — s3|, was fixed at 8 JNDs. This substantial differ-
ence between study items was meant to minimize interactions be-
tween their perceptual representations (Graham, 1989).

Target (T) trials, on which p matched one of the study items,
and Lure (L) trials, on which p matched no study item, occurred
with equal frequency. To encourage subjects to attend to and
remember both study items, on T trials, p equally often matched
s; or sy. On L trials, p’s spatial frequency was drawn from a discrete
uniform distribution ranging from (i) three JNDs below the spatial
frequency of that trial’s lower spatial frequency study item, to (ii)
three JNDs units above the spatial frequency of that trial’s higher
spatial frequency study item. On half the trials, s;’s vertical spatial
frequency was less than s,’s; on the remaining trials, the reverse
was true. For any trial, p’s vertical frequency was chosen from a
set of 15 discrete values evenly spaced along a logarithmic scale
on which neighboring values differed by one JND. Because each
trial’s minimum possible spatial frequency came from a ran-
domly-chosen value, the actual values of spatial frequency (in c/
deg) that could be presented varied from one trial to another. For
each trial, p’s spatial frequency was drawn from a discrete distribu-
tion centered around the geometric mean of that trial’s spatial fre-
quencies for s; and s,. On L trials each of the 15 possible p values
was tested 10 times in each session; on T trials, each p value was
tested 75 times.

2.5. Procedure

Subjects initiated each trial by pressing a key on a keyboard
linked to the computer that controlled the experiment. Then, after
the trial’s stimuli had been presented, subjects pressed computer
keys corresponding to “Yes” and “No”, signaling their judgment
that p matched or did not match the target stimulus. Subjects
had been instructed to respond as accurately and quickly as possi-
ble. The computer produced distinctly different tones after correct
and incorrect responses, providing trial-wise knowledge of results.

In order to ensure compliance with the instructions to maintain
fixation, video images of subjects’ eyes were recorded for online
monitoring and for subsequent offline analysis. A light-emitting
diode not visible to the subject tagged the attentional conditions
and the duration of each stimulus. When a live video showed signs
of non-compliance, the subject was reminded of the experiment’s
requirements. One subject had to be excluded from the experiment
because of repeated failures to comply with instructions to main-
tain fixation.

After the experiment was complete, three judges who were
blind to the experimental aims viewed sample videos, and identi-
fied any shifts in gaze away from the screen. Calibration tests
showed that intentional shifts of 1° visual angle were easily de-
tected in the videos. Such shifts were rare, occurring on fewer than
2% of the trials in the video clips examined. Equally important, the
frequency of shifts was no higher when an irrelevant stimulus was
being presented (x = .015, SEM = .003) than when the stimulus was
relevant (x = .018, SEM =.003). We conclude that any effects that
might result from shifts of gaze are minimal and not confounding.

3. Results

Subjects’ binary recognition responses were transformed into a
graphical format that Zhou, Kahana, and Sekuler (2004) termed a
mnemometric function. Each mnemometric function expresses
the proportion of ‘Yes’ responses, hereafter P (Yes), as a function
of p’s spatial frequency. Here, p’s spatial frequency is defined rela-
tive to the spatial frequencies of the study item(s). A mnemometric
function reflects the strength of the remembered item or items at
the spatial frequency sampled by p (see Sekuler & Kahana, 2007;
Williams, Titchener, & Boring, 1918; Zhou, Kahana, & Sekuler,
2004).

3.1. Baseline conditions: Single versus Both

We begin with baseline comparisons involving mnemometric
functions produced in the two conditions that did not explicitly in-
voke selective attention. These two conditions were Single, with
only a single study item presented on each trial, and Both, with
subjects instructed to give equal attention to two study items.
Fig. 2A shows the mnemometric functions for these conditions,
with response rates normalized to sum to one in each condition.
This was done in order to facilitate the modeling of subjects’ func-
tions, and to provide a clearer picture of the distribution of sub-
jects’ response rates. Note that as only one study item was
presented in Single, the designations s; and s, do not apply to that
condition, although spatial frequency (4 or 12 JNDs) does. Data
from the Both condition are averaged over the Lower/Higher vari-
able. This designation indicates whether s; was lower or higher
in spatial frequency than s,, as there were two items presented
in this condition. We averaged over data from conditions of the
same spatial frequency, to preserve any differences in spread as a
function of Lower/Higher.

Notice first that, as expected, the peaks of each mnemometric
function are well aligned with the study items’ spatial frequencies.
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Fig. 2. Mnemometric functions for the two conditions that involved no manipulation of selective attention, Single and Both, and predictions from the probability summation
model. Here, the data from the Both condition are averaged over the order of presentation of the Lower and Higher spatial frequency study items (order had little effect on the
data). Panel A: mnemometric functions for the baseline conditions and probability summation. Panel B: predictions for the Both condition, derived from probability
summation of the two Single conditions, expressed as deviations from the observed Both data (Both - Probability Summation). The figure shows an inflation in probability
density in the region between the values of the study items (vertical dotted lines) of the two Single conditions. Error bars represent 95% Cls of the difference at each JND point.

In other words, hit rates are highest when p actually matches an
item in memory. Moreover, peak recognition performance with
Single (x =0.79) is significantly higher than the performance
achieved with either study item, s; (X = 0.59) or s, (X = 0.67), in
the Both condition,® £(13) =6.48, p <.0001, and t(13) = 4.98,
p < .001, respectively. This advantage shown by the Single condition
reflects the impact of memory load, that is, the impact of having to
hold two items in short-term memory rather than just one. Most
importantly, it indicates that the increased memory load did indeed
produce weakened memory representations of each study item.

Next, we examined the data for a serial order effect, which is a
hallmark of experiments using paradigms like ours. We compared
P (Yes) for the first and second study items of the Both condition.
The results show that P (Yes) for s, was higher than P (Yes) for
s1, t(13) = 2.71, p < .05. This modest but statistically significant
recency effect aligns with previous findings produced with similar
stimuli and comparable numbers of study items (Kahana & Sekuler,
2002; Kahana et al., 2007; Zhou, Kahana, & Sekuler, 2004).*

Turning to the shapes of the distributions, it is clear from
inspection of Fig. 2A that false alarm rates in the Both condition
are elevated for probes that fall near the average of s; and s, in
JND units (i.e. near 8 JNDs), relative to the corresponding response
rates for each of the Single conditions. This suggests an influence of
perceptual averaging in the Both condition, which would produce a
VSTM representation whose spatial frequency falls between those
of s; and s,.

To assess this potentially important effect, we began by esti-
mating distributional parameters of the Single data. To do so, we
fit a truncated Skew-Normal distribution (Azzalini, 1985, 1986;
Bansal, Maadooliat, & Wang, 2008) to each observed mnemometric
function, for each subject. (Truncated distributions were used as
responses were only collected over a range of 0-15 JNDs). The
Skew-Normal distribution is the product of a Gaussian probability

3 These means are prior to normalization.

4 This effect is not apparent in Fig. 2, which averages across the two Bothjower and
Bothyigher conditions. Neither the small recency effect in these data, nor the manner in
which the data were averaged (aligning based on whether s; or s, matched the probe,
or whether s; was Higher or Lower) had any effect on the modeling results reported
later in this analysis.

density function and its cumulative distribution function. More
formally, the Skew-Normal function is defined as:

fio =205 1)ol 1) 8

o

where ¢ denotes the Gaussian pdf, @ is the corresponding cdf, and A
is a weight that determines the direction and degree of skewness.
Values of / > 0 produce positive skew, values < 0 produce negative
skew, and 1 = 0 reduces to the normal distribution (in this case,
truncated between 0 and 15 jnds). We fit separate truncated
Skew-Normals to each Single condition, centered on the target JND
value for each, for each subject. This allowed us to more clearly as-
sess differences between the shapes of the distributions in this and
later mnemometric analyses. Fits were obtained by using the optim
procedure in R (R Development Team, 2006) to minimize the RMSD
between the predicted and observed response probabilities in each
condition.

The resulting functions are plotted as solid lines in Fig. 2A. The
average best-fitting (o,.) parameter pairs for Single;,,.. and
Singleyign,, were (1.28,—.04) and (1.91,.01), respectively. Paired
comparisons confirmed that while 4 did not differ across conditions
(and, therefore, did not exceed zero), t(13) = 1.20, p = .25, 0 was
clearly greater for Singleyge., t(13) = 6.87, p < .001. As this signif-
icant difference in o does not impact our subsequent analyses or
conclusions, which depend on changes in the /. parameter with
attention (see below), we reserve discussion of this effect for the
General Discussion.

Next, we used the parameters of the best-fitting Skew-Normal
distribution to generate predictions for the Both condition, assum-
ing simple probability summation of independent visual pattern
analyzers (Graham, 1989). Our question is simple: can the mnemo-
metric function obtained for the Both condition be described as an
additive combination of inputs from independent analyzers tuned
to s; and s,? If so, the function generated via probability summa-
tion of the observations from the two Single distributions should
not be exceeded by the observed distribution of Both responses be-
tween s; and s,. In other words, probability summation formalizes
the null hypothesis that perceptual averages do not contribute to
the recognition responses observed in the Both condition.
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In the current experiment, stimuli varied only in the vertical
spatial frequency dimension. Thus, we assumed the simplest prob-
ability summation model, in which summation is based on only
one cue (Pirenne, 1943; Treisman, 1998). Furthermore, we chose
study items whose spatial frequencies differ by an amount (8 JNDs)
that is known to minimize interaction among analyzers (Graham,
1989).° The distribution of responses to the 15 probes can therefore
be described as the sum of the model-predicted vectors correspond-
ing to Single,,., and Singley,,.,, minus the product of predicted prob-
abilities at each probe frequency:

Proth = Psingie, e, + Psingleygrer — Psinglesoer © Psinglergrer (4)

The predictions from probability summation are plotted as Xs in
Fig. 2A. The prediction error (Both - Probability Summation) is
plotted in Fig. 2B. As is clear in Panel A, the mnemometric distribu-
tions for Both and the model differ, with inflation of the probability
density between the means of s; and s, evident in the observed
Both data. Panel B shows that 95% Cls of the difference at each
point support this interpretation.

Note that there are, however, two large deviations at 4 and 5
JNDs in both panels. This is likely due to the large difference in ¢
for the two Single distributions. Though the origin of this difference
in the Single distributions is unclear, the change in ¢ cannot ac-
count for the systematic differences observed in the region of the
average, which are nonetheless replicated in analyses that do not
depend on the ¢ parameter, to which we now turn.

3.2. Selective attention conditions

We now consider the selective attention conditions, in order to
address our second hypothesis, i.e. that subjects will show a re-
duced influence of perceptual averaging when selective attention
is directed to the relevant study item in advance. The two panels
of Fig. 3 show the mnemometric functions produced when selec-
tive attention is directed to s; (Panel A) or s, (Panel B), and for
the different cue timepoints in a trial. The data from the baseline
condition, Single, are replotted for comparison to the selective
attention conditions. All distributions are plotted against relative

5 Our modeling assumptions about independence, which apply only to the
probability summation analysis of the Both condition, are based on results from
threshold conditions with simultaneously-presented gratings, conditions that differ
somewhat from our own (Graham, 2011).

JND units: 0 is the condition of minimum JNDs (i.e. O) for the distri-
bution whose target value is 4 JNDs, but is the condition of maxi-
mum JNDs (i.e. 15) for the distribution whose target value is 12
JNDs. Expressing the distributions in this manner allows for a
straightforward interpretation of changes in their form: increasing
(positive) skew indicates inflation of probability mass toward the
perceptual average of each trial’s study items.

Differences in shape across the mnemometric functions within
each panel suggest that cue timing was not without effect. Specif-
ically, as the presentation of the cue is increasingly delayed, the
mnemometric function is increasingly skewed toward the irrele-
vant study item. This inflation corresponds to an increase in false
alarm rates in the region spanning the perceptual average of s,
and s, on each trial (i.e. 5-10 JNDs, each panel). To capture what
might be an important global effect, examining P (Yes) at one or
at just a few p values would be inadequate. Instead, to generate
an appropriate, scalar distributional measure for each mnemomet-
ric function we again fit the Skew-Normal, as in our previous anal-
ysis of the Single condition.

The resulting skewness values (i) were sign-corrected, such
that skew toward the average is positive and away is negative.
The parameter values for individual subjects, along with the corre-
sponding ¢ values, are shown in Table 1; group-averaged values of
Jcore are shown in Fig. 4. A repeated measures ANOVA confirmed
that the increase in skewness relative to Single (baseline-sub-
tracted 2) varied significantly as a function of cue timing,
F(2,26)=3.96, p < .05. Neither the main effect of recency (whether
s; or s; was the relevant study item) nor its interaction with cue
timing were significant (all ps > .05). Paired comparisons showed
that the increase in skewness was greater in the Post- than in
the Pre-Cue condition, t(11) =2.46, p < .05, and was also greater
in the Post- than in the Mid-Cue condition, t(11) =2.86, p < .05.
This result suggests an increased influence of perceptual averages
as effective deployment of selective attention is delayed.

The ¢ parameter showed greater spread in the s; than in the s,
condition, F(1,13)=27.68, p < .001, and a marginally significant
effect of cue timing, F(2,26)=3.34, p =.051. In the latter case,
paired comparisons showed that the only significant effect was
that ¢ was greater in the Post- than in the Mid-Cue condition,
t(11)=2.48, p < .05. These effects are generally consistent with
weaker and/or noisier memory representations in conditions of
greater lag (i.e. time elapsed between two stimuli, being greatest
for s; in this case) or memory load (Post-Cue).
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Table 1

Best-fitting parameters of the skew-normal distribution. Reported are parameters from fits to individual subjects, the average of those parameter values, and parameters from the

fits to group average data.

ID Jcorr g
Single Pre-1 Mid-1 Post-1 Pre-2 Mid-2 Post-2 Single Pre-1 Mid-1 Post-1 Pre-2 Mid-2 Post-2

1 0.24 0.09 -0.11 0.19 0.13 0.31 0.24 1.54 2.04 1.94 230 1.77 1.65 1.73
2 -0.12 -0.04 -0.15 0.16 0.16 0.16 0.18 1.20 1.55 1.05 2.06 1.37 1.30 1.44
3 -0.13 -0.42 0.08 —-0.06 0.16 -0.02 0.50 1.48 1.95 1.58 2.22 1.34 1.38 1.92
4 -0.18 —-0.08 0.03 0.06 -0.03 -0.31 0.30 1.73 1.78 1.91 2.11 1.52 1.74 1.99
5 0.03 0.13 -0.12 -0.01 0.09 0.23 0.49 1.70 143 1.77 2.36 1.71 1.51 1.93
6 0.06 0.34 0.46 0.56 0.06 0.12 0.52 1.82 1.87 2.22 2.05 2.05 1.80 2.05
7 —0.66 0.19 -0.38 -0.03 -0.22 -0.27 -0.01 1.57 2.56 3.21 248 1.97 1.87 2.45
8 -0.26 0.32 0.05 0.38 0.14 0.13 0.12 1.88 2.11 2.13 2.38 1.89 1.79 2.45
9 -0.25 0.11 0.06 -0.30 0.13 -0.15 0.05 2.18 1.84 1.74 217 1.50 1.58 1.62
10 0.33 1.21 0.78 1.57 0.56 0.29 0.44 1.45 2.01 1.67 2.42 2.01 1.69 1.85
11 -0.25 0.06 0.46 0.22 0.12 0.75 0.47 2.06 2.94 2.75 1.42 2.29 1.97 213
12 0.22 -0.13 0.39 0.35 0.07 0.20 0.09 2.02 4.24 3.05 3.81 2.98 2.56 2.92
13 -0.10 0.16 0.23 —-0.04 0.24 —-0.34 0.05 1.38 1.65 1.88 1.71 1.65 1.32 1.34
14 -0.07 0.08 0.06 0.15 0.24 0.22 0.56 1.11 1.38 1.33 1.38 1.17 1.23 1.16
Average -0.08 0.14 0.13 0.23 0.13 0.09 0.28 1.65 2.10 2.02 2.21 1.80 1.67 1.93
Group -0.02 0.02 0.14 0.18 0.06 0.06 0.25 1.62 1.98 2.01 2.19 1.74 1.75 1.93

0.3
1

0.1

Sign-Corrected Skew (A¢,,,)
0.0

Single
Pre-1
Mid-1

Single
Pre-2
Mid-2

Post-2

Post-1

Fig. 4. Mean skew (sign-corrected 1) associated with condition Single and the six
conditions of selective attention. Each parameter value is an average over
individual-subject parameter values. The bar representing Single is shown twice
in the figure in order to facilitate comparisons involving conditions in which s; was
task-relevant (left side) and conditions in which s, was task-relevant (right side).

4. Discussion

Huang and Sekuler (2010a) demonstrated that irrelevant items
influence VSTM responses (see also Huang & Sekuler, 2010b). Spe-
cifically, reproduction of remembered spatial frequency is shifted
in the direction of the irrelevant item’s spatial frequency. To ac-
count for this result, Huang and Sekuler (2010a) proposed a model
that assumes the effect operates at an early, encoding-related stage
of VSTM. They hypothesized that subjects stored a weighted aver-
age of a trial’s relevant and irrelevant memory items, which influ-
enced subsequent recall in the absence of selective attention. We
tested this hypothesis further, by fixing the similarity of individual
study items and varying the spatial frequency match of a recogni-
tion probe. This roving probe technique allowed us to construct
mnemometric functions, to which we applied a distributional anal-
ysis. This fine-grained technique allowed us to more clearly char-
acterize the nature of the effect reported originally by Huang and
Sekuler (2010a).

On each trial of our experiment, we delivered cues as to which
of two study items was to be matched to the upcoming test probe.
Importantly, this cue appeared either before (Pre-Cue condition),

between (Mid-Cue condition), or after (Post-Cue condition) the
two study items of a given trial. Analyses of mnemometric func-
tions showed that, in the Post-Cue conditions, lures spanning the
spatial frequency range of the average of the study items produced
elevated false alarm rates. This pattern was less pronounced in the
Pre-Cue conditions, suggesting selective attention can be used to
improve encoding of target items. Such improved encoding should
reduce subjects’ uncertainty regarding VSTM’s contents, as well as
any need to compensate for such uncertainty (Ball & Sekuler,
1980).

Though the effects of our attentional manipulation are clear,
there were changes in variance of the Single distributions, the ori-
gin of which is not clear. Specifically,  was higher for Singley;g,.
than for Single,,,.,. Study-test lag was equated in this condition,
which involved only one study item always presented at the same
timepoint in a trial. As the only factor that varies is spatial fre-
quency of the s, it seems possible that higher spatial frequencies
(which are higher above the detection threshold and, in a sense,
‘stronger’) produce more variable distributions of memory
strength. From the standpoint of long-term recognition memory,
this makes sense, as successful memory strength models in that
domain typically assume that representations with higher strength
are also more variable (Dubé et al., 2013; Wixted, 2007). Though
future work will be necessary to understand the nature of this dif-
ference, we see no obvious way in which the frequency effect in ¢
could have produced the systematic effects of similarity, attention,
and memory load that we observed in this experiment, especially
as the critical effects we reported all involved changes in 4.

Our results also failed to show a strong effect in the Mid-Cue
condition, which produced a distribution of responses similar to
that of the Pre-Cue condition, and no significant skew. However,
it is not obvious that the Pre- and Mid-Cue conditions should be
expected to show large differences to begin with. That is, the
Mid-Cue condition allows one of two possible advantages on a gi-
ven trial: either subjects can ignore an upcoming irrelevant item
(s; trials) or they can prepare to focus attention on an upcoming
relevant item (s; trials), but they cannot do both. There is thus a
partial benefit on any Mid-Cue trial, while in the Post-Cue condi-
tion, neither opportunity presents itself; irrelevant items are
equally likely to be attended, and subjects are unable to devote full
attention to the task-relevant study item. If only one of the two
scenarios provided by the Pre-Cue condition is enough to override
uncertainty in VSTM’s fidelity, then one would not expect a differ-
ence between the Pre- and Mid-Cue conditions. Unfortunately, the
present data do not allow us to do much more than speculate on
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the reasons for the convergence between the Pre- and Mid-Cue
conditions. However, we also do not see this convergence as posing
a strong challenge to our results or conclusions.

As a final caveat, we note that our results do not allow strong
inferences about the mechanism by which averages influence rec-
ognition responses. It is clear that subjects, even in conditions of
total ambiguity as to the relevant stimulus, do not sacrifice their
representations of s; and s, when making recognition responses,
and show low false alarm rates to Ls regardless of their spatial fre-
quencies. This suggest that, if subjects are computing and storing
perceptual averages, they are maintaining at least three memory
representations on a given trial. Furthermore, if responses reflect
a weighted sum of spatial frequency matches (as is assumed in glo-
bal matching models such as NEMo; Sekuler & Kahana, 2007), the
weight assigned to matches against the perceptual average is likely
exceeded by the weights for matches to representations of s; and
S>.

On the other hand, the present study does carry clear implica-
tions for models of VSTM that assume a fixed number of indepen-
dent “slots” for memory representations (Lee & Chun, 2001; Luck &
Vogel, 1997; Zhang & Luck, 2008, 2009, 2011). Our findings suggest
that successive incoming stimuli interact during encoding, with
each stimulus’ representation contributing to the computation of
a perceptual average, and are not insulated via entry into separate
memory slots. Although further speculation clearly requires
extrapolation beyond our data, our results can easily be construed
as supportive of flexible-resource models (Bays & Husain, 2008;
Bays, Catalao, & Husain, 2011; Wilken & Ma, 2004), in which po-
tential targets must compete for a shared resource at encoding. If
this account is true, then reliance on perceptual averages may be
a way for VSTM to resolve such competition. This suggests future
work should examine how manipulations of selective attention af-
fect performance measures in tasks that have been used to differ-
entiate between VSTM models (see, e.g., Zhang & Luck, 2009).

Our findings show that subjects compute perceptual averages
within each trial. Such effects are distinct from ones that result
from averaging across trials (Huang & Sekuler, 2010a).° However,
the existence of these two effects seems to require that subjects
compute and maintain separate representations of the two averages.
How are subjects able to differentiate the intervals over which the
two averages are computed?

A recent study by Lohnas, Polyn, and Kahana (in preparation)
suggests an answer. Those authors proposed a model of free recall
that they referred to as the modified Context Maintenance and Re-
trieval Model (CMR2). They showed that the CMR2 provides a prin-
cipled account of how subjects in a recall experiment can
separately direct memory search to items within and across lists.
CMR2 accomplishes this by assuming that events which signal a
shift in test context (e.g., a recall trial between two study trials)
produce distinct temporal contexts (e.g., the two study trials) to
which the items that were presented at those times are associated.
In our study, this would imply that each recognition event may
help to insulate the current trial from previous trials, allowing
computation of a perceptual average that produces effects that
are distinct from across-trial effects (Huang & Sekuler, 2010a).

Though the effects of perceptual averaging in our study are
clear, it is also clear that averages are not the only statistics that
subjects consider in VSTM tasks such as ours. For instance, several
studies have demonstrated that the similarity of individual study
items to one another (i.e. their homogeneity) influences subjects’

% An analysis of Yes rates as a function of Target probe similarity to the average
stimulus over all trials in the Post-Cue condition failed to detect any effect of the long-
range average in the present experiment. This further supports our interpretation of
the within-trial effect as a perceptual averaging phenomenon.

willingness to make a ‘Yes’ response to a recognition probe (i.e. re-
sponse bias). All else being equal, subjects make fewer ‘Yes’ re-
sponses when study item homogeneity is greater (Viswanathan
et al., 2010). This suggests that the variance in items’ features is
also an important determinant of recognition responses. Further-
more, it has been shown that subjects’ memory for serial position
of individual study items is more accurate when when homogene-
ity of the study items is lower (Yotsumoto et al., 2008).

Although most studies of visual recognition memory focus on
discrete measures such as hits and false alarms, our focus encom-
passed more global assays of recognition, in particular, the distri-
bution of false alarms across several levels of inter-item
similarity. We believe that these mnemometric functions (Sekuler
& Kahana, 2007) provide a powerful window onto recognition
memory. In the present case, they are particularly informative as
to the possible origin of a false recognition in conditions involving
selective attention. For example, confusion of the cued- or non-
cued status of the two study items could potentially have led
subjects to respond “Yes” when the p matched the to-be-ignored
stimulus. In other words, a portion of what seem to be false recog-
nitions could have arisen had the subject failed to comply with the
instruction to attend to just one of the study items. This possibility
is ruled out by the mnemometric functions of the selective atten-
tion conditions. Specifically, for all conditions of selective atten-
tion, the mnemometric function approached or reached its lower
limit as p deviated from the attended stimulus, demonstrating that
recognition decisions were strongly influenced by the similarity of
p to the relevant study item. More importantly, the false alarm
rates in selective attention conditions were consistently at the low-
er limit when p matched the task-irrelevant study item, as can be
seen in Fig. 3’s mnemometric functions. One-sample t-tests failed
to reveal any response rates above zero for probes matching the
irrelevant study item, largest t(11) = 1.77, p = .10 (Pre-2 condi-
tion). The fact that subjects made essentially zero false alarms
when p matched the task-irrelevant study item, but showed in-
flated false alarm rates near the average of the two stimuli, sug-
gests that our results reflect the influence of perceptual averages,
rather than an influence of the irrelevant item’s representation
per se.

5. Conclusions

Our results suggest three important facts about perceptual
averaging. First, perceptual averages (at least in our task) are com-
puted in the absence of any explicit requirement to do so. This
builds on previous work examining perceptual averaging, as such
studies have typically required subjects to report an estimate of
the perceptual average of a given trial (Alvarez, 2011). Second, per-
ceptual averages appear to be used as compensatory representa-
tions. That is, under conditions where memory representations
are weaker, subjects’ VSTM responses are more susceptible to the
average’s influence. This makes sense given previous work which
has shown (i) that subjects rely on perceptual averages under con-
ditions of stimulus uncertainty (Ball & Sekuler, 1980; Zanto et al.,
2013) and (ii) that perceptual averages are relatively robust to divi-
sion of attention at encoding (Alvarez & Oliva, 2008, 2009). Third,
our study supports previous claims that perceptual averages are
computed over time as well as space (Albrecht & Scholl, 2010;
Haberman, Harp, & Whitney, 2009).
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