
Article
Direct Brain Stimulation M
odulates Encoding States
and Memory Performance in Humans
Highlights
d Intracranial brain stimulation has variable effects on episodic

memory performance

d Stimulation increased memory performance when delivered

in poor encoding states

d Recall-related brain activity increased after stimulation of

poor encoding states

d Neural activity linked to contextual memory predicted

encoding state modulation
Ezzyat et al., 2017, Current Biology 27, 1251–1258
May 8, 2017 ª 2017 Elsevier Ltd.
http://dx.doi.org/10.1016/j.cub.2017.03.028
Authors

Youssef Ezzyat, James E. Kragel,

John F. Burke, ..., Richard Gorniak,

Daniel S. Rizzuto, Michael J. Kahana

Correspondence
kahana@sas.upenn.edu

In Brief

Direct brain stimulation is a promising

tool for modulating cognitive function.

Ezzyat et al. show that stimulation

differentially affects episodic memory

encoding depending on its timing relative

to the brain’s encoding state. The data

suggest applications for closed-loop

treatment of memory dysfunction.

mailto:kahana@sas.upenn.edu
http://dx.doi.org/10.1016/j.cub.2017.03.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2017.03.028&domain=pdf


Current Biology

Article
Direct Brain Stimulation Modulates Encoding
States and Memory Performance in Humans
Youssef Ezzyat,1 James E. Kragel,1 John F. Burke,2 Deborah F. Levy,1 Anastasia Lyalenko,1 Paul Wanda,1

Logan O’Sullivan,1 Katherine B. Hurley,1 Stanislav Busygin,1 Isaac Pedisich,1 Michael R. Sperling,3 Gregory A. Worrell,5

Michal T. Kucewicz,5 Kathryn A. Davis,6 Timothy H. Lucas,7 Cory S. Inman,9 Bradley C. Lega,10 Barbara C. Jobst,11

Sameer A. Sheth,12 Kareem Zaghloul,13 Michael J. Jutras,14 Joel M. Stein,8 Sandhitsu R. Das,6 Richard Gorniak,4

Daniel S. Rizzuto,1,15 and Michael J. Kahana1,15,16,*
1Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Neurological Surgery, University of California, San Francisco Medical Center, San Francisco, CA 94143, USA
3Department of Neurology
4Department of Radiology

Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
5Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
6Department of Neurology
7Department of Neurosurgery
8Department of Radiology

Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
9Department of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
10Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
11Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
12Department of Neurosurgery, Columbia University Medical Center, New York, NY 10032, USA
13Surgical Neurology Branch, National Institutes of Health, Bethesda, MD 20814, USA
14Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
15These authors contributed equally
16Lead Contact
*Correspondence: kahana@sas.upenn.edu

http://dx.doi.org/10.1016/j.cub.2017.03.028
SUMMARY

People often forget information because they fail
to effectively encode it. Here, we test the hypo-
thesis that targeted electrical stimulation can
modulate neural encoding states and subsequent
memory outcomes. Using recordings from neuro-
surgical epilepsy patients with intracranially im-
planted electrodes, we trained multivariate classi-
fiers to discriminate spectral activity during
learning that predicted remembering from forget-
ting, then decoded neural activity in later ses-
sions in which we applied stimulation during
learning. Stimulation increased encoding-state es-
timates and recall if delivered when the classifier
indicated low encoding efficiency but had the
reverse effect if stimulation was delivered when
the classifier indicated high encoding efficiency.
Higher encoding-state estimates from stimulation
were associated with greater evidence of neural
activity linked to contextual memory encoding.
In identifying the conditions under which stimu-
lation modulates memory, the data suggest
strategies for therapeutically treating memory
dysfunction.
Curr
INTRODUCTION

Memory depends on encoding processes that lay down neural

representations of experiences for long-term storage [1]. Re-

cordings taken during laboratory memory tasks demonstrate

that neural activity in the hippocampus, medial temporal lobe

(MTL) cortex, frontal lobe, and parietal lobe [2, 3] differentiates

learned information that is likely to be remembered from informa-

tion likely to be forgotten. These effects extend to other brain

areas [4] and exist both during and prior to when a to-be-remem-

bered stimulus is present [5–8]. This suggests that coordinated

activity in a distributed neural network generates states that

are responsible for effective memory encoding.

If variability in distributed neural network activity reflects

fluctuation of encoding states that leads to differences in

memory performance, then it should be possible to modulate

memory by perturbing the brain’s encoding state directly [9].

We test this hypothesis using electrical stimulation delivered

through electrodes implanted in the brains of epilepsy patients.

Direct electrical stimulation allows for targeting focal brain

structures in order to modulate activity in complex neural net-

works [10–12] and can be precisely timed to target specific en-

coding events, offering some advantages over non-invasive

methods [13].

We predicted that stimulation’s effects on memory would

depend on the brain’s encoding state at the time it is delivered.

If the memory network is operating efficiently, stimulation should
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Figure 1. Experimental Design and Analysis

(A) Subjects performed delayed free recall while intracranially implanted

electrodes recorded local field potentials simultaneously across multiple re-

gions of the brain.

(B) The electrode frequency pattern of spectral power for each word-encoding

period was used as input (X) to fit a classifier to discriminate recalled from

forgotten patterns (resulting weight; w). We assessed classifier performance

using area under the receiver-operating characteristic curve (AUC).

See also Figure S1.
interfere with the encoding process and thus later memory. How-

ever, if the memory network is not operating efficiently, we pre-

dicted that stimulation should disrupt dysfunctional encoding

activity and therefore facilitate memory. A mechanism whereby

stimulation disrupts dysfunctional brain networks is thought to

explain the success in using deep brain stimulation (DBS) of tha-

lamocortical circuits in treating motor dysfunction in Parkinson’s

disease [14, 15].

To use stimulation to modulate encoding states, we first

needed to reliably identify neural activity conducive to successful

memory. There is evidence that theta activity in the hippocam-

pus and MTL cortex prior to stimulus presentation predicts

memory [5, 6, 8], and pre-stimulus theta activity has been used

to trigger learning trials and improve performance in animal

models of classical conditioning [16]. However, similar ap-

proaches in humans using MTL activity in the form of intracranial

theta [17] have not reliably modulated memory performance. We

hypothesized that we could derive a more sensitive index of

memory function by estimating encoding states that reflect

global memory function, as opposed to specific operations car-

ried out in focal brain areas.

To do so, we simultaneously measured neural activity across

the brain. We recorded intracranial electroencephalography

(iEEG) signals from subdural and depth electrodes implanted in

patients with medically refractory epilepsy undergoing clinical

monitoring to determine seizure onset foci. Subjects performed

free recall, amemory task sensitive tomany types of neurological

dysfunction [18, 19] and whose cognitive basis has been

modeled by multiple computational mechanisms [20]. We then

used multivariate classification to test whether a classifier could

predict the probability of recall success from patterns of neural

activity recorded across the brain during encoding. In this way,

we took advantage of our access to many recording channels
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to derive a subject-specificmodel that could differentiate encod-

ing states likely to lead to remembering from states likely to lead

to forgetting.

Using multivariate classification was advantageous in another

way. Direct electrical stimulation has multifaceted effects on

neural activity that are local and remote relative to the site of

stimulation [21, 22], and that depend on the baseline excitability

of the targeted neural population at the time stimulation is deliv-

ered [23–26]. This poses a challenge when trying to predict the

brain structures stimulation is likely to excite or inhibit and its

consequent effects on behavior. Stimulating hippocampal and

MTL cortical targets in humans, for example, leads to inconsis-

tent and modest effects on memory, with some studies suggest-

ing memory facilitation [27–29] and others showing memory

disruption [30–34].

We addressed this problem by using each subject’s classifier

trained on record-only sessions to decode patterns of neural ac-

tivity during later stimulation sessions. The classifier served as a

model that allowed us to assess evidence for the presence of

good encoding states before and after stimulation and control

periods. The estimates from the classifier integrate information

across electrodes and frequencies, which we predicted would

account for heterogeneity in stimulation’s physiological effects

across people. We targeted stimulation to electrodes placed in

nodes of the memory network: if available within the electrode

montage, we stimulated a single MTL structure (hippocampus

or entorhinal, perirhinal, or parahippocampal cortex) in a given

session. For subjects without MTL contacts, we stimulated other

structures linked to memory encoding, such as the prefrontal

and parietal cortex [3], which we selected by identifying the con-

tact that showed the largest subsequent memory effect in the

high-frequency range (70–200 Hz), a marker of successful mem-

ory encoding that correlates with multi-unit neural firing [35].

RESULTS

Multivariate Classification of Encoding Activity Predicts
Later Recall
One hundred and two subjects participated in the record-only

phase of the study. Subjects performed a free recall memory

task during which they studied at least 25 lists of 12 unrelated

words, with each list followed by a 20 smental arithmetic distrac-

tor task (a subset of subjects also performed additional sessions

of free recall with categorized word lists). Subjects then freely re-

called the words from the list in any order (Figure 1A; mean

recall = 27.2% ± 1.2%; SEM). For each encoded word, we

computed the time-frequency decomposition of the iEEG signal

for each bipolar electrode pair (50 frequencies between 1 and

200 Hz; Figure 1B). We used these estimates of spectral power

at each frequency and electrode, for each encoded word, as

input for training a logistic regression classifier. We employed

L2 penalization to avoid overfitting, then assessed performance

using N � 1 cross-validation by experimental session and area

under the receiver-operating characteristic curve (AUC), a stan-

dard measure of a classifier’s ability to generate true positives

while avoiding false positives.

Figures 2A–2D show data from two subjects for eight example

encoding lists. The classifier generated higher probabilities for

recalled than forgotten items in these periods (Figures 2A and
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Figure 2. Classifier Performance

(A and C) Classifier output probability for an eight-list period of the delayed free recall task in two example subjects. Dashed lines indicate the optimal decision

threshold dividing recalled from forgotten trials. Red, later recalled words; blue, later forgotten words. (A) Example patient 1. (C) Example patient 2.

(B and D) AUC for both subjects was significantly greater than chance. (B) Example patient 1. (D) Example patient 2.

(E) Individual receiver-operating characteristic (ROC) curves plotted for all subjects.

(F) Forward-model-derived estimates of classification importance for each electrode region 3 frequency feature, grouped into anatomical regions of interest.

(G) Subsequent memory analysis contrasting encoding power for later recalled words with later not recalled words.

(F andG) IFG, inferior frontal gyrus;MFG,middle frontal gyrus; SFG, superior frontal gyrus;MTLC,medial temporal lobe cortex; Hipp, hippocampus; TC, temporal

cortex; IPC, inferior parietal cortex; SPC, superior parietal cortex; OC, occipital cortex. Data are multiple comparisons corrected using false discovery rate (FDR)

at q = 0.05.

See also Figures S2 and S3.
2C) and across all encoded words as measured using AUC (Fig-

ures 2B and 2D). Across subjects, classification performance ex-

ceeded chance (mean AUC 0.63 ± 0.07, t(101) = 19.2, p < 10�10;

Figure 2E), which indicates that our approach can identify

subject-specific features of brain activity during encoding that

predict memory. We next asked whether the features that

were important to classification were idiosyncratic or instead re-

flected consistent activity in similar brain regions and at similar

frequencies.

We derived a forward model [36] for each subject using clas-

sifier weights, accounting for covariance between features in

the input data, to estimate the relative importance of each region

3 frequency feature for classifier performance. This showed that

the classifier relied on widespread low-frequency power de-

creases simultaneous with high-frequency power increases

across the frontal, temporal, and occipital cortex, as well as in

the hippocampus, to predict successful recall (Figure 2F). We

observed a similar pattern when contrasting power for remem-

bered and forgotten words (Figure 2G), with theMTL and parietal

cortex also showing high-frequency power increases. This
echoes prior work in intracranial and scalp EEG [37] and sug-

gests consistency in the features that predict efficient memory

function across people.

Stimulation Has Heterogeneous Effects on Memory
Performance
Having established that classification discriminates encoding

states, we asked whether stimulation modulates these states

in a way that influences memory performance. On stimulation

(Stim) lists, we applied 50-Hz trains across a single pair of elec-

trodes at parameters previously used to modulate spatial mem-

ory in humans [28]. We then used each subject’s record-only

classifier to decode neural activity during stimulation sessions

(N = 52 stimulation datasets from 36 subjects). We first tested

classifier generalization to the stimulation sessions. Our experi-

mental design included lists without stimulation (NoStim lists)

to serve as a baseline for behavioral performance and for testing

between-session classifier generalization (Figure 3A). The classi-

fier significantly discriminated encoding activity for recalled

and forgotten words (mean AUC on NoStim lists 0.61 ± 0.01,
Current Biology 27, 1251–1258, May 8, 2017 1253
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(A) Classifier decoding prior to stimulation onset allowed us to analyzememory

performance based on pre-stimulation brain state.

(B) Spectral power prior to stimulation onset was significantly lower at high

frequencies in frontal, temporal, parietal, and occipital cortex (FDR corrected

at q = 0.05).

(C) Recall performance increased if stimulation was delivered when the brain

was in a low encoding state (p < 0.03) and decreased if delivered in a high

encoding state (p < 0.05). The difference between low and high stimulation was

also significant (p < 0.003). Red bars show mean SE of the difference.

(D) Stimulation significantly increased classifier output when delivered at low

encoding states (p < 0.01).

(E) Stimulation significantly decreased classifier output when delivered at high

encoding states (p < 0.001).

See also Table S2.
t(51) = 10.4, p < 10�10), even though recall performance was

slightly higher for NoStim lists compared to record-only ses-

sions (record-only 30.6% ± 1.7%, NoStim lists 33.5% ± 1.9%,

t(51) = 2.6, p < 0.02). This suggests that the relation between

neural activity and memory states was stable from the record-

only to the stimulation sessions.

We next asked whether encoding stimulation tended to facili-

tate or disrupt recall performance. Within-subject, stimulation

significantly increased recall performance in two subjects and

decreased recall performance in six subjects (c2 test, p <

0.05). Across the group, stimulation reliably decreased memory

performance (D normalized recall �6.8% ± 3.2%, p < 0.04; Fig-

ure 3B), but there was considerable variability in stimulation’s

effects across individuals, ranging from large memory disruption

to facilitation (SD = 22.5%). This heterogeneity is consistent with

past work [27–30, 32–34], and meant that the small difference in

overall recall performance was not accompanied by specific

group-level differences in recall organization, measured using

two traditional assays of human memory performance, the serial

position curve and lag conditional response probability curve

(Figures 3C and 3D).

Stimulation’s Behavioral and Neural Effects Are State
Dependent
Although stimulation had inconsistent effects overall, we pre-

dicted the pre-stimulation encoding state would account for

some of this variability. In subjects who showed above-chance

classifier generalization (N = 39 datasets from 27 subjects), we

applied the classifiers to intervals just prior to each stimulation

train (Figure 4A) and split the resulting distribution of classifier

outputs into low and high bins, based on the optimal classifica-

tion threshold from the previous record-only sessions. Low pre-

stimulation encoding states were associated with decreased
1254 Current Biology 27, 1251–1258, May 8, 2017
high-frequency power in widespread brain areas that predicted

memory performance during word encoding, including the

frontal, temporal, and parietal cortex (Figure 4B).

Stimulation enhanced recall performance when delivered

just after low encoding states (t(38) = 2.26, p < 0.03) but

decreased performance when delivered just after high encoding

states (t(38) = �2.09, p < 0.05; low-high difference t(38) = 3.32,

p < 0.003; Figure 4C). We compared the classifier estimates of

the brain’s encoding state post- and pre-stimulation, which

showed that low-state stimulation increased evidence for good

encoding (p < 0.02; Figure 4D) whereas high-state stimulation

decreased evidence for good encoding (p < 0.001; Figure 4E).

The data suggest that stimulation influences memory function

by perturbing the brain’s encoding state relative to its status at

the time of delivery.

Evoked Spectral Tilt after Poor Encoding States
When stimulation was delivered in low states, both recall perfor-

mance and classifier evidence increased. We next asked how



Figure 5. Correlation between the Stimulation-Related Change

in Classifier Output and the Spectral Tilt Effect: (High-Frequency

Activity t Stat) – (Low-Frequency Activity t Stat)
increased classifier evidence relates to stimulation-evoked

changes in neural activity across the brain. To measure stimula-

tion’s effect on neural activity, we used an index of the spectral

tilt, which is characterized by increased high-frequency power

simultaneous with widespread decreases in low-frequency po-

wer. These spectral modulations are thought to reflect both local

increases in multi-unit firing [17] and decreased long-range low-

frequency synchrony [38]. Evidence for these patterns correlates

with the fMRI blood-oxygen-level-dependent (BOLD) signal [39],

predicts successful memory encoding [6, 40], and is related to

core memory processes such as item-context binding [41]. We

found that the change in classifier output after stimulation was

related to how much stimulation evoked the tilt pattern (r(37) =

0.54, p < 0.001; Figure 5), suggesting that stimulation increased

classifier evidence by modulating a neural marker that has been

linked to contextual memory encoding.

DISCUSSION

We applied direct electrical stimulation to nodes of the memory

network and found that stimulation reliablymodulatesmemory in

a way that depends on the brain’s encoding state. In showing

that stimulation improves memory in low encoding states and

disrupts memory in high encoding states, the findings suggest

that stimulation alters the ongoing course of memory processing

in the brain. By using brain-state-matched trials from non-stim-

ulated lists, our data show that stimulation modulates neural ac-

tivity beyond what might be expected by regression to the mean

arising from temporal autocorrelation in the brain’s encoding

state. Our data offer insight into the inconsistent effects that

have been reported in studies of how brain stimulation modu-

lates memory performance [27–34], and suggest that using

brain-state decoding can improve the ability to influence mem-

ory outcomes with stimulation.

Our results are consistent with amodel in which targeted stim-

ulation leads to changes in network activity across brain areas

that contribute to successful memory encoding. There is

growing consensus that direct electrical stimulation is likely to in-

fluence physiology across a network connected to the targeted
site [10, 12]. In using DBS for the treatment of Parkinson’s [42],

for example, researchers have had success targeting multiple

structures within the affected motor network [12], which sug-

gests that it is more important to target the relevant functional

network rather than individual structures within the network. In

the case of episodic memory, it may therefore be possible to

enhance the effectiveness of stimulation by using measures of

connectivity to identify nodes that offer a high degree of control-

lability over the memory network [43]. Resting-state data could

be leveraged to predict the stimulation targets that are most

likely to modulate the core memory network [44].

Prior work has shown that stimulation’s effects on physiology

depend not only on the excitability of the targeted neurons [26]

but also on ongoing rhythms generated by synchronous activity

in larger populations. Hippocampal stimulation, for example,

alternately promotes long-term potentiation or long-term

depression depending on whether theta phase is at the peak

or trough at the time of stimulation delivery [24, 25]. Learning it-

self is also state dependent, as shown in classical conditioning

experiments in which animals show faster learning when trials

are triggered based on theta rhythm [16]. Our data confirm the

role of pre-stimulus brain states for upcoming learning and

show that these states can be directly modulated.

We applied classification to whole-brain iEEG to decode brain

states that predict later recall. Multivariate decoding allowed us

to overcome individual differences in neural connectivity, clinical

etiology, and electrode placement that could increase variability

in stimulation’s neural and behavioral effects. Decodingmay also

have provided a more sensitive index of the encoding state than

would be possible if using a single feature to identify good and

poor memory states [17]. We then related stimulation’s effect

on physiology to its effect on memory, extending prior work

that has used stimulation to map behavior. Using direct brain re-

cordings most likely facilitated decoding, but future work should

address the extent to which non-invasive decoding and stimula-

tion methods [45] could be combined to modulate memory

states.

We used the classifier trained on encoding data to decode

pre-stimulation states. Our approach suggests that, at a broad

level, similar whole-brain patterns of neural activity predict

successful encoding during and prior to stimulus onset. In

both training and testing our classifier, we averaged spectral

power over a temporal interval of several hundred millisec-

onds, meaning our model was sensitive to consistent spectral

power fluctuations over the pre- and post-stimulus intervals.

There is evidence that assessing neural activity at a finer

temporal scale can identify distinct patterns of pre- and

post-stimulus activity that predict encoding. Increased pre-

stimulus theta power recorded using non-invasive methods,

for example, has been shown to predict successful memory

[6, 46], and increased intracranial theta power has also been

shown to predict memory pre-stimulus [5, 47], although not

during free recall. Taken together with our data, these findings

suggest that both tonic and phasic pre-stimulus signals are

predictive of memory success. Algorithms to identify good en-

coding states could therefore be improved by incorporating

time as a feature, which would allow both sustained and tran-

sient fluctuations in spectral power to influence estimates of

the encoding state.
Current Biology 27, 1251–1258, May 8, 2017 1255



By testing classifier generalization across days and using the

free recall task to measure memory performance, our data sup-

port the interpretation that the decoded brain states are stable in

their neural representation over time and globally predict mem-

ory function. Free recall is a complex task that recruits multiple

core episodic memory processes [20]. We show that stimulation

increases encoding states by increasing high-frequency activity

(HFA) power and decreasing low-frequency activity (LFA) power

across the brain, a pattern that predicts behavioral measures of

item-context encoding [41]. Although such encoding processes

promote memory function, free recall is also known to depend

heavily on retrieval processes, suggesting that future work may

find success influencing memory function by applying stimula-

tion during memory search.

We show an overall reduction in verbal memory performance

when stimulating a large set of brain regions, including many

outside of the MTL. This is broadly consistent with recent work

focused on the hippocampus and entorhinal cortex that showed

that stimulation tends to impair both verbal and spatial memory

[31]. However, we further test the hypothesis that stimulation’s

effects on memory depend on timing relative to the brain’s en-

coding state [48]. Our findings therefore extend prior studies of

human intracranial brain stimulation in several ways. First, we

usemultivariate decoding of neural activity to separate pre-stim-

ulation brain states, and show that stimulation counteracts low

encoding states but disrupts high encoding states. Second, we

show that stimulation at low and high encoding states differen-

tially modulates neural activity in amanner consistent with the ef-

fect on memory. Third, we show that stimulation’s effect on the

encoding state is correlated with the spectral tilt, a biomarker

of successful memory encoding. Our work therefore identifies

situations in which stimulation increases and decreases mem-

ory, and relates stimulation’s effects on behavior to its influence

on neural activity through novel use of subject-specific multivar-

iate classification.

By showing that stimulation is most likely to improve memory

when encoding efficiency is low prior to stimulation delivery, our

data provide the foundation for future work to apply stimulation

when it is most likely to improve memory function. Non-invasive

closed-loop approaches have improved attention through

training using fMRI [49] andmaximized the benefit of restudy op-

portunities using scalp EEG [50]. Closed-loop neural decoding

could thus optimally target stimulation for treatment of memory

disorders [48, 51].

EXPERIMENTAL PROCEDURES

Participants

One hundred and two patients undergoing iEEG monitoring as part of clinical

treatment for drug-resistant epilepsy were recruited to participate in this study.

Data were collected as part of a multi-center project designed to assess the

effects of electrical stimulation on memory-related brain function. Data were

collected at the following centers: Thomas Jefferson University Hospital,

Mayo Clinic, Hospital of the University of Pennsylvania, Emory University Hos-

pital, University of Texas Southwestern Medical Center, Dartmouth-Hitchcock

Medical Center, Columbia University Medical Center, National Institutes of

Health, and University of Washington Medical Center. The research protocol

was approved by the institutional review board (IRB) at each hospital and

informed consent was obtained from each participant. Electrophysiological

data were collected from electrodes implanted subdurally on the cortical sur-

face as well as deep within the brain parenchyma. In each case, the clinical
1256 Current Biology 27, 1251–1258, May 8, 2017
team determined the placement of the electrodes so as to best localize epilep-

togenic regions. Subdural contacts were arranged in both strip and grid con-

figurations with an inter-contact spacing of 10mm.Most subjects (N = 83) also

had temporal lobe depth electrodes with 5 mm inter-contact spacing.

Verbal Memory Task

Each subject participated in a delayed free recall task in which they were in-

structed to study lists of words for a later memory test; no encoding task

was used. Lists were composed of 12 words chosen at random and without

replacement from a pool of high-frequency nouns (either English or Spanish,

depending on the participant’s native language; http://memory.psych.

upenn.edu/Word_Pools). Each word remained on the screen for 1,600 ms, fol-

lowed by a randomly jittered 750- to 1,000ms blank inter-stimulus interval (ISI).

Immediately after the final word in each list, participants performed a dis-

tractor task (20 s) consisting of a series of arithmetic problems of the form

A + B + C = ?, where A, B, and C were randomly chosen integers ranging

from 1 to 9. After the distractor task, participants were given 30 s to verbally

recall as many words as possible from the list in any order; vocal responses

were digitally recorded and later manually scored for analysis. Each session

consisted of 25 lists of this encoding-distractor-recall procedure. A subset

of subjects completed additional sessions of the free recall task using catego-

rized word lists, which were included in the electrophysiological analyses. The

categorized recall task is identical to the free recall task, with the exception that

the word pool was drawn from 25 semantic categories (e.g., fruit, furniture,

office supplies). Each list of 12 items in the categorized version of the task con-

sisted of four words drawn from each of three categories. In total, 41 patients

completed at least one session of the categorized recall task.

Stimulation Methods

At the start of each session, we determined the safe amplitude for stimulation

using a mapping procedure in which stimulation was applied at 0.5 mA while

a neurologist monitored for afterdischarges. This procedure was repeated,

incrementing the amplitude in steps of 0.5 mA, up to a maximum of

1.5 mA for depth contacts and 3.5 mA for cortical surface contacts. These

maximum amplitudes were chosen to be well below accepted safety limits

for charge density [52]. For each stimulation session, we passed electrical

current through a single pair of adjacent electrode contacts. Because the

electrode locations were determined strictly by the monitoring needs of the

clinicians, we used a combination of anatomical and functional information

to select stimulation sites. If available, we prioritized electrodes in the hippo-

campus, entorhinal cortex, perirhinal cortex, parahippocampal cortex, and

dorsolateral prefrontal cortex. To choose among these regions in cases in

which more than one was available, we selected the electrode demonstrating

the largest subsequent memory effect (SME) in the high-frequency range

(70–200 Hz) among these regions. In cases in which none of the aforemen-

tioned regions was available, we selected the contact with the largest

SME. We used a mapping procedure at the start of each session to deter-

mine the safe amplitude for stimulation. Stimulation was delivered using

charge-balanced biphasic rectangular pulses (pulse width = 300 ms) at

50 Hz frequency, and was applied continuously for 4.6 s while subjects en-

coded two consecutive words; stimulation was not applied for the following

two words. This alternation of stimulated and non-stimulated word pairs

continued until the end of the list. Stimulation onset was 200 ms prior to

word presentation and lasted until 200–450 ms after the offset of the next

word (the range is due to the variable ISI between words). Stimulation was

applied in 20 of the 25 lists in a session, and each stimulation list was

randomly chosen to begin with a stimulated or non-stimulated pair of words.

We randomized the order of the 20 stimulation lists and the remaining five

non-stimulation control lists within each session.

Statistics

Data are presented as mean ± SEM. Unless otherwise specified, all statistical

comparisons were conducted as two-tailed tests. Data distributions were

either visually inspected or assumed to be normal for parametric tests. For

both the record-only and stimulation samples, we included any enrolled sub-

ject who completed at least one full session of the task. In both cases, the sam-

ple sizes were chosen to at least match or exceed the sample sizes reported in

prior human intracranial record-only and stimulation studies. For stimulation

http://memory.psych.upenn.edu/Word_Pools
http://memory.psych.upenn.edu/Word_Pools


analyses, we treated all sessions collected in a single patient at a single stim-

ulated bipolar pair as our unit of observation.

All other methods are described in the Supplemental Experimental

Procedures.

Data and Software Availability

All deidentified raw data and analysis code may be downloaded at http://

memory.psych.upenn.edu/Electrophysiological_Data.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2017.03.028.
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