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Figure 4: Stimulation target functional connectivity. A. We assigned each patient’s record-only
electrodes to two ROIs based on whether the electrode was located in a region that showed a
memory-related spectral tilt or not (Other). B. Low-frequency connectivity was higher between
the stimulation target and electrodes in classifier-defined memory regions, compared to electrodes
in Other regions (P = 0.008) and compared to high-frequency network connectivity (P = 0.03). In
contrast, there was no difference in stimulation target high-frequency network connectivity. C. For
closed-loop targets nearest to white matter, there was a significant correlation between stimulation
target low-frequency connectivity and stimulation’s effect on memory [r(12) = 0.648,P = 0.01].
There was no effect for high-frequency connectivity. Errorbars reflect s.e.m. Error regions reflect
the standard error of the estimate.

get connectivity to electrodes In vs. Out of the memory network, for both low and high-frequency
coherence (referred to as Node Strength). Stimulation targets showed stronger low-frequency con-
nectivity to electrodes in the memory network than to electrodes outside of the memory network

[t(13) = 3.14,P = 0.008, Figure 3B]. For memory network electrodes, low-frequency connectivity

was also higher than high-frequency connectivity [t(13) = 2.48,P = 0.03]. In contrast, stimula-
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10 tion targets showed equivalent high-frequency connectivity In vs. Out of the memory network
a1 [interaction: F(1,13) = 10.54, P = 0.006, Figure 3B].

412 Although stimulation targets near white matter showed greater overall low-frequency con-
a3 nectivity with memory-predicting brain areas, this finding leaves open the question of whether
a4 variability in connectivity strength with the memory network predicts variability stimulation’s
a5 effect on memory. To answer this question, we correlated low-frequency node strength with
a6 stimulation-related memory change. We found that low-frequency node strength predicted closed-
s17 loop stimulation’s effect on memory [r(12) = 0.648, P = 0.01, Figure 3C] while high-frequency node
ss  strength did not (P = 0.65). The difference in correlation for low vs. high-frequency node strength
419 was also significant (two-tailed permutation test P = 0.03). For all other targets that were further
s20 from white matter, there was no relation between node strength and stimulation-related memory

421 change (all P > 0.21).

s22 Functional connectivity mediates stimulation’s effect on downstream physiology

23 The preceding results indicate that low-frequency functional connectivity to the memory network
424 predicts stimulation effects on memory. Our final question was whether low-frequency connec-
425 tivity also predicts stimulation’s physiological effects across the memory network. To test this
a6 prediction we again examined Closed-loop stimulation targets near white matter and correlated
427 each stimulation target’s connectivity to the memory network with the stimulation-evoked spec-
428 tral power in this network (Figure 5A). Two participants” data were excluded due to excessive
w20 stimulation artifact on the recording channels. In the remaining participants, we found that
s30  stimulation-target functional connectivity predicted stimulation-related changes in low-frequency
s31 power [r(10) = —0.65, P = 0.02, Figure 5B). The correlation was not significant when using high-

12 frequency connectivity and evoked power (P = 0.81, Figure 5C).
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Figure 5: Memory network connectivity predicts physiology. A. Schematic of analysis of
stimulation-evoked physiology. B. For stimulation targets near white matter, low-frequency func-
tional connectivity predicted the stimulation evoked change in low-frequency power (P = 0.02).
C. High-frequency network connectivity did not predict stimulation’s effect on high-frequency

activity.
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s Discussion

a3« Direct electrical stimulation has emerged as a powerful tool for manipulating neural activity. The
s35  present study evaluated the hypothesis that network properties of a stimulated brain location
436 predict stimulation’s effects on both memory and network physiology. Prior studies suggest that
s37  white matter pathways mediate stimulation’s network-level physiological effects (Paulk et al., 2022;
a8 Solomon et al., 2018; Mohan et al., 2020; Khambhati et al., 2019; Stiso et al., 2019). Other studies
30 demonstrate that measures of structural and functional connectivity predict stimulation’s effects on
uo downstream targets (Keller et al., 2011; Fox et al., 2020; Solomon et al., 2018). However, none have
a1 simultaneously linked structural/functional connectivity with both (1) a reliable improvement over
w2 baseline cognitive functioning and (2) concomitant changes in neurophysiology that explain the be-
«s havioral effect. To directly address these questions, we asked whether white-matter proximity and
ss  functional connectivity underlie the degree to which stimulation of LTC produces improvements
w5 or impairments of memory, alongside changes in oscillatory signatures of mnemonic function.

446 We found that closed-loop stimulation of LTC reliably improved memory on stimulated vs.
s7  non-stimulated lists. Consistent with the hypothesis that white-matter pathways convey the
us effects of stimulation to the broader memory network, we found the benefits of closed-loop LTC
we stimulation to arise principally from stimulating in, or near, white matter pathways. For the
ss0 electrodes nearest to white matter, stimulation yielded a 28% increase in recall performance,
ss1 whereas we failed to observe any reliable increase when delivering stimulation far from these
s2  pathways (1%). In a subgroup of subjects who received randomly timed stimulation in LTC
43 targets we failed to observe any improvement in memory performance.

454 To evaluate how stimulation—target functional connectivity mediates stimulation’s behavioral
5 and physiological effects, we analyzed participant-specific large-scale neural recordings obtained
46 during prior record-only sessions. Prior studies have shown that brain networks become coherent
57 at low-frequencies during successful memory encoding and retrieval (Solomon et al., 2017; Kragel
ss et al., 2021a), so we used low-frequency coherence to measure the network node strength of
s each stimulation target. We then asked if greater node strength between LTC stimulation targets
s0 and downstream memory-predicting areas resulted in greater effects of stimulation on memory

st performance. Consistent with this hypothesis, we found a strong positive correlation (r = 0.648, see

21


https://doi.org/10.1101/2023.07.27.550851
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.27.550851; this version posted August 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w2 Figure 4C) between low-frequency connectivity and stimulation-related memory improvement.
43 Finally, LTC stimulation engaged low-frequency activity across a broader brain network in a way
s+ that matched the network position of the stimulated location (Figure 5).

465 Our data highlight how precise targeting improves stimulation efficacy by showing that de-
a6 livering stimulation near LTC white-matter leads to greater stimulation-related memory gains
467 (Figure 3C). By linking low-frequency network connectivity with physiological and behavioral
48 outcomes, our study also points to a neural mechanism for modulating memory with stimu-
a0 lation. This result extends earlier work that demonstrated the potential to modulate episodic
s0 memory by targeting LTC with stimulation (Ezzyat et al., 2018; Kucewicz et al., 2018). Di-
471 rectly comparing closed-loop and open-loop stimulation strategies in the same study helps to
a2 establish a causal role for the closed-loop approach (Hampson et al., 2018; Ezzyat and Rizzuto,
473 2018). Finally, our data from 57 stimulation targets (across 47 patients) also represents a sub-
47+ stantial increase compared to sample sizes described in related prior studies (Ezzyat et al., 2018;
475 Hampson et al., 2018).

476 Prior work has linked successful memory function with theta power and coherence (Burke
477 et al., 2013; Solomon et al., 2017; Herweg et al., 2020; Griffiths et al., 2019; Kragel et al., 2021b;
s Ter Wal et al., 2021; Osipova et al., 2006; Guderian and Diizel, 2005; Klimesch et al., 1997;
70 Staudigl and Hanslmayr, 2013). Here, we investigated this physiological correlate of memory
40 function by testing how memory-modulating LTC stimulation affects low-frequency physiology.
s81 We found that stimulation’s effect on low-frequency activity depends on the low-frequency func-
sz tional connectivity of the stimulation target. This suggests that identifying strong functional con-
483 nections can produce stronger modulation of low-frequency activity within the memory network.
sss  Furthermore, we found that stimulation that modulated low-frequency activity also modulated
45 memory performance.

486 Several prior studies found potential therapeutic benefits of closed-loop stimulation triggered
s87 by decoding of intracranial brain recordings (Ezzyat et al., 2018; Scangos et al., 2021a; Hampson
sss et al., 2018; Kahana et al., 2023). However, with some important exceptions (Hampson et al.,
ago 2018), this work has lacked an open-loop or random stimulation control condition, leaving open
s0 the question of what specific role the closed-loop nature of stimulation played in its therapeutic

w01 effects. Here, we compared the effects of closed-loop stimulation with a random stimulation
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402 condition. Closed-loop participants received stimulation only for those items predicted to be
a3 forgotten. Participants in the random group followed the same protocol, but using classifiers
s4 trained on permuted data, resulting in stimulation being applied without regard to predicted
45 memory success. This led to reliable memory improvement for the closed-loop group and none
a6 for the random group, despite following an otherwise identical protocol (Figure 1C).

497 We found that closed-loop stimulation improved memory the most when it was delivered to
s LTC targets in or near white matter. This finding builds on a growing literature that indicates that
490 stimulation is most effective when it is delivered in or near white matter pathways (Khambhati
soo et al., 2019; Stiso et al., 2019; Mohan et al., 2020; Solomon et al., 2018; Paulk et al., 2022). One
so1 explanation for this phenomenon is that only stimulation of white matter pathways successfully
s02 engages broader brain networks, perhaps via oscillatory synchronization. In contrast, gray matter
sos  stimulation tends to cause more local effects (Mohan et al., 2020; Paulk et al., 2022). Though purely
so+ local effects may sometimes be desirable, the key cognitive and pathophysiological processes of
so5 greatest interest to neuroscientists tend to involve multiple interconnected brain regions.

506 Among its many applications for modulating cognition and behavior (Siddiqi et al., 2022;
so7  Fox et al., 2020; Sreekumar et al., 2017) a number of recent studies have evaluated stimulation’s
sos potential for enhancing episodic memory (Mankin and Fried, 2020; Suthana and Fried, 2014;
soo  Curot et al., 2017; Lee et al., 2013; Sankar et al., 2014). While our study investigated numerous
st0  stimulation targets within the LTC, future work should compare stimulation of this region to other
511 brain areas within the broader episodic memory network. Recent work suggests that stimulating
stz white matter pathways in the medial temporal lobe, for example, can also improve memory (Titiz
s etal, 2017; Mankin et al., 2021; Suthana et al., 2012). However, these previous studies used visual
st4 and/or spatial memoranda, while the present study focused on encoding and retrieval of verbal
si5 material. Thus, future research should compare stimulation to the lateral and medial temporal
st lobes, to determine whether stimulation target location interacts with the modality of the to-be-
57 remembered information. This could contribute to other work that has used stimulation to study
sis the component processes that contribute to successful episodic memory (El-Kalliny et al., 2019).
519 We delivered stimulation using macroelectrodes, consistent with its clinical applications (Krauss
s20 et al., 2021; Morrell, 2011; Sun et al., 2008). Macroelectrode stimulation alters local activity

s21  at the spatial scale of the distance between the anode and cathode (approximately 1 cm), but
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s22 can also alter more distant regions. Because memory relies on a broad network of cortical
s2s and subcortical regions, including the hippocampus (Kim, 2011; Keerativittayayut et al., 2018),
s2+ stimulating a broader network may be necessary to impact cognitive function. On the other
s25 hand, memory also relies on the recapitulation of specific patterns of neuronal activity, espe-
s26 cially within the hippocampus (Foster, 2017; Staresina and Wimber, 2019). Thus, other work
s27 has stimulated through microelectrodes to mimic and reinstate memory-related hippocampal ac-
s28  tivity using a model-based closed loop approach (Hampson et al., 2018; Hampson et al., 2013;
s20  Deadwyler et al.,, 2017). An avenue for future work could use macroelectrode stimulation in a
ss0 similar vein, by triggering stimulation at multiple macroelectrode contacts in order to synchronize
ss1  a particular spatiotemporal pattern of activity across key memory-related regions (Kim et al., 2016;
s32 Kim et al., 2018).

533 In relating low-frequency network connectivity, physiology, and behavior, our study con-
s3  tributes to methodological development for invasive stimulation (Krauss et al., 2021; Cagnan et
s35 al., 2019) that illuminates the critical role of low-frequency networks in cognition (Voytek and
sse  Knight, 2015). In addition, the present study also suggests that other methods that manipulate
ss7 low-frequency activity could be leveraged to modulate neural and cognitive function. Several
ss8  recent studies using non-invasive methods have leveraged low-frequency theta-patterned stimu-
ss9  lation to modulate episodic and working memory (Nilakantan et al., 2017; Hermiller et al., 2020;
ss0 Tambini et al., 2018; Warren et al., 2019; Grover et al., 2022). Such low-frequency stimulation
st modulates electrophysiology perhaps by entraining low-frequency oscillations that are associated
sz with cognitive function (Solomon et al., 2021; Reinhart and Nguyen, 2019; Reinhart et al., 2017;
ses  Hanslmayr et al., 2019).

544 In summary, our demonstration of improved memory with closed-loop stimulation supports
sss  the idea that memory function is dynamic, and that closed-loop algorithms that account for
s46  moment-to-moment variability in the brain’s memory state can selectively deliver stimulation
s¢7  only when it is needed. The present study also links closed-loop stimulation efficacy to white
s¢8 Mmatter targeting, brain-wide evoked physiology, and changes in episodic memory performance.
ss0  The findings suggest future strategies for using the functional and anatomical network profile of

ss0  putative stimulation targets to optimize downstream changes in oscillatory activity and cognition.
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