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Figure 4: Stimulation target functional connectivity. A. We assigned each patient’s record-only
electrodes to two ROIs based on whether the electrode was located in a region that showed a
memory-related spectral tilt or not (Other). B. Low-frequency connectivity was higher between
the stimulation target and electrodes in classifier-defined memory regions, compared to electrodes
in Other regions (P = 0.008) and compared to high-frequency network connectivity (P = 0.03). In
contrast, there was no difference in stimulation target high-frequency network connectivity. C. For
closed-loop targets nearest to white matter, there was a significant correlation between stimulation
target low-frequency connectivity and stimulation’s effect on memory [r(12) = 0.648,P = 0.01].
There was no effect for high-frequency connectivity. Errorbars reflect s.e.m. Error regions reflect
the standard error of the estimate.

get connectivity to electrodes In vs. Out of the memory network, for both low and high-frequency405

coherence (referred to as Node Strength). Stimulation targets showed stronger low-frequency con-406

nectivity to electrodes in the memory network than to electrodes outside of the memory network407

[t(13) = 3.14,P = 0.008, Figure 3B]. For memory network electrodes, low-frequency connectivity408

was also higher than high-frequency connectivity [t(13) = 2.48,P = 0.03]. In contrast, stimula-409

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2023. ; https://doi.org/10.1101/2023.07.27.550851doi: bioRxiv preprint 



tion targets showed equivalent high-frequency connectivity In vs. Out of the memory network410

[interaction: F(1, 13) = 10.54,P = 0.006, Figure 3B].411

Although stimulation targets near white matter showed greater overall low-frequency con-412

nectivity with memory-predicting brain areas, this finding leaves open the question of whether413

variability in connectivity strength with the memory network predicts variability stimulation’s414

effect on memory. To answer this question, we correlated low-frequency node strength with415

stimulation-related memory change. We found that low-frequency node strength predicted closed-416

loop stimulation’s effect on memory [r(12) = 0.648,P = 0.01, Figure 3C] while high-frequency node417

strength did not (P = 0.65). The difference in correlation for low vs. high-frequency node strength418

was also significant (two-tailed permutation test P = 0.03). For all other targets that were further419

from white matter, there was no relation between node strength and stimulation-related memory420

change (all P > 0.21).421

Functional connectivity mediates stimulation’s effect on downstream physiology422

The preceding results indicate that low-frequency functional connectivity to the memory network423

predicts stimulation effects on memory. Our final question was whether low-frequency connec-424

tivity also predicts stimulation’s physiological effects across the memory network. To test this425

prediction we again examined Closed-loop stimulation targets near white matter and correlated426

each stimulation target’s connectivity to the memory network with the stimulation-evoked spec-427

tral power in this network (Figure 5A). Two participants’ data were excluded due to excessive428

stimulation artifact on the recording channels. In the remaining participants, we found that429

stimulation-target functional connectivity predicted stimulation-related changes in low-frequency430

power [r(10) = −0.65,P = 0.02, Figure 5B). The correlation was not significant when using high-431

frequency connectivity and evoked power (P = 0.81, Figure 5C).432
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Figure 5: Memory network connectivity predicts physiology. A. Schematic of analysis of
stimulation-evoked physiology. B. For stimulation targets near white matter, low-frequency func-
tional connectivity predicted the stimulation evoked change in low-frequency power (P = 0.02).
C. High-frequency network connectivity did not predict stimulation’s effect on high-frequency
activity.
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Discussion433

Direct electrical stimulation has emerged as a powerful tool for manipulating neural activity. The434

present study evaluated the hypothesis that network properties of a stimulated brain location435

predict stimulation’s effects on both memory and network physiology. Prior studies suggest that436

white matter pathways mediate stimulation’s network-level physiological effects (Paulk et al., 2022;437

Solomon et al., 2018; Mohan et al., 2020; Khambhati et al., 2019; Stiso et al., 2019). Other studies438

demonstrate that measures of structural and functional connectivity predict stimulation’s effects on439

downstream targets (Keller et al., 2011; Fox et al., 2020; Solomon et al., 2018). However, none have440

simultaneously linked structural/functional connectivity with both (1) a reliable improvement over441

baseline cognitive functioning and (2) concomitant changes in neurophysiology that explain the be-442

havioral effect. To directly address these questions, we asked whether white-matter proximity and443

functional connectivity underlie the degree to which stimulation of LTC produces improvements444

or impairments of memory, alongside changes in oscillatory signatures of mnemonic function.445

We found that closed-loop stimulation of LTC reliably improved memory on stimulated vs.446

non-stimulated lists. Consistent with the hypothesis that white-matter pathways convey the447

effects of stimulation to the broader memory network, we found the benefits of closed-loop LTC448

stimulation to arise principally from stimulating in, or near, white matter pathways. For the449

electrodes nearest to white matter, stimulation yielded a 28% increase in recall performance,450

whereas we failed to observe any reliable increase when delivering stimulation far from these451

pathways (1%). In a subgroup of subjects who received randomly timed stimulation in LTC452

targets we failed to observe any improvement in memory performance.453

To evaluate how stimulation-–target functional connectivity mediates stimulation’s behavioral454

and physiological effects, we analyzed participant-specific large-scale neural recordings obtained455

during prior record-only sessions. Prior studies have shown that brain networks become coherent456

at low-frequencies during successful memory encoding and retrieval (Solomon et al., 2017; Kragel457

et al., 2021a), so we used low-frequency coherence to measure the network node strength of458

each stimulation target. We then asked if greater node strength between LTC stimulation targets459

and downstream memory-predicting areas resulted in greater effects of stimulation on memory460

performance. Consistent with this hypothesis, we found a strong positive correlation (r = 0.648, see461
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Figure 4C) between low-frequency connectivity and stimulation-related memory improvement.462

Finally, LTC stimulation engaged low-frequency activity across a broader brain network in a way463

that matched the network position of the stimulated location (Figure 5).464

Our data highlight how precise targeting improves stimulation efficacy by showing that de-465

livering stimulation near LTC white-matter leads to greater stimulation-related memory gains466

(Figure 3C). By linking low-frequency network connectivity with physiological and behavioral467

outcomes, our study also points to a neural mechanism for modulating memory with stimu-468

lation. This result extends earlier work that demonstrated the potential to modulate episodic469

memory by targeting LTC with stimulation (Ezzyat et al., 2018; Kucewicz et al., 2018). Di-470

rectly comparing closed-loop and open-loop stimulation strategies in the same study helps to471

establish a causal role for the closed-loop approach (Hampson et al., 2018; Ezzyat and Rizzuto,472

2018). Finally, our data from 57 stimulation targets (across 47 patients) also represents a sub-473

stantial increase compared to sample sizes described in related prior studies (Ezzyat et al., 2018;474

Hampson et al., 2018).475

Prior work has linked successful memory function with theta power and coherence (Burke476

et al., 2013; Solomon et al., 2017; Herweg et al., 2020; Griffiths et al., 2019; Kragel et al., 2021b;477

Ter Wal et al., 2021; Osipova et al., 2006; Guderian and Düzel, 2005; Klimesch et al., 1997;478

Staudigl and Hanslmayr, 2013). Here, we investigated this physiological correlate of memory479

function by testing how memory-modulating LTC stimulation affects low-frequency physiology.480

We found that stimulation’s effect on low-frequency activity depends on the low-frequency func-481

tional connectivity of the stimulation target. This suggests that identifying strong functional con-482

nections can produce stronger modulation of low-frequency activity within the memory network.483

Furthermore, we found that stimulation that modulated low-frequency activity also modulated484

memory performance.485

Several prior studies found potential therapeutic benefits of closed-loop stimulation triggered486

by decoding of intracranial brain recordings (Ezzyat et al., 2018; Scangos et al., 2021a; Hampson487

et al., 2018; Kahana et al., 2023). However, with some important exceptions (Hampson et al.,488

2018), this work has lacked an open-loop or random stimulation control condition, leaving open489

the question of what specific role the closed-loop nature of stimulation played in its therapeutic490

effects. Here, we compared the effects of closed-loop stimulation with a random stimulation491
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condition. Closed-loop participants received stimulation only for those items predicted to be492

forgotten. Participants in the random group followed the same protocol, but using classifiers493

trained on permuted data, resulting in stimulation being applied without regard to predicted494

memory success. This led to reliable memory improvement for the closed-loop group and none495

for the random group, despite following an otherwise identical protocol (Figure 1C).496

We found that closed-loop stimulation improved memory the most when it was delivered to497

LTC targets in or near white matter. This finding builds on a growing literature that indicates that498

stimulation is most effective when it is delivered in or near white matter pathways (Khambhati499

et al., 2019; Stiso et al., 2019; Mohan et al., 2020; Solomon et al., 2018; Paulk et al., 2022). One500

explanation for this phenomenon is that only stimulation of white matter pathways successfully501

engages broader brain networks, perhaps via oscillatory synchronization. In contrast, gray matter502

stimulation tends to cause more local effects (Mohan et al., 2020; Paulk et al., 2022). Though purely503

local effects may sometimes be desirable, the key cognitive and pathophysiological processes of504

greatest interest to neuroscientists tend to involve multiple interconnected brain regions.505

Among its many applications for modulating cognition and behavior (Siddiqi et al., 2022;506

Fox et al., 2020; Sreekumar et al., 2017) a number of recent studies have evaluated stimulation’s507

potential for enhancing episodic memory (Mankin and Fried, 2020; Suthana and Fried, 2014;508

Curot et al., 2017; Lee et al., 2013; Sankar et al., 2014). While our study investigated numerous509

stimulation targets within the LTC, future work should compare stimulation of this region to other510

brain areas within the broader episodic memory network. Recent work suggests that stimulating511

white matter pathways in the medial temporal lobe, for example, can also improve memory (Titiz512

et al., 2017; Mankin et al., 2021; Suthana et al., 2012). However, these previous studies used visual513

and/or spatial memoranda, while the present study focused on encoding and retrieval of verbal514

material. Thus, future research should compare stimulation to the lateral and medial temporal515

lobes, to determine whether stimulation target location interacts with the modality of the to-be-516

remembered information. This could contribute to other work that has used stimulation to study517

the component processes that contribute to successful episodic memory (El-Kalliny et al., 2019).518

We delivered stimulation using macroelectrodes, consistent with its clinical applications (Krauss519

et al., 2021; Morrell, 2011; Sun et al., 2008). Macroelectrode stimulation alters local activity520

at the spatial scale of the distance between the anode and cathode (approximately 1 cm), but521
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can also alter more distant regions. Because memory relies on a broad network of cortical522

and subcortical regions, including the hippocampus (Kim, 2011; Keerativittayayut et al., 2018),523

stimulating a broader network may be necessary to impact cognitive function. On the other524

hand, memory also relies on the recapitulation of specific patterns of neuronal activity, espe-525

cially within the hippocampus (Foster, 2017; Staresina and Wimber, 2019). Thus, other work526

has stimulated through microelectrodes to mimic and reinstate memory-related hippocampal ac-527

tivity using a model-based closed loop approach (Hampson et al., 2018; Hampson et al., 2013;528

Deadwyler et al., 2017). An avenue for future work could use macroelectrode stimulation in a529

similar vein, by triggering stimulation at multiple macroelectrode contacts in order to synchronize530

a particular spatiotemporal pattern of activity across key memory-related regions (Kim et al., 2016;531

Kim et al., 2018).532

In relating low-frequency network connectivity, physiology, and behavior, our study con-533

tributes to methodological development for invasive stimulation (Krauss et al., 2021; Cagnan et534

al., 2019) that illuminates the critical role of low-frequency networks in cognition (Voytek and535

Knight, 2015). In addition, the present study also suggests that other methods that manipulate536

low-frequency activity could be leveraged to modulate neural and cognitive function. Several537

recent studies using non-invasive methods have leveraged low-frequency theta-patterned stimu-538

lation to modulate episodic and working memory (Nilakantan et al., 2017; Hermiller et al., 2020;539

Tambini et al., 2018; Warren et al., 2019; Grover et al., 2022). Such low-frequency stimulation540

modulates electrophysiology perhaps by entraining low-frequency oscillations that are associated541

with cognitive function (Solomon et al., 2021; Reinhart and Nguyen, 2019; Reinhart et al., 2017;542

Hanslmayr et al., 2019).543

In summary, our demonstration of improved memory with closed-loop stimulation supports544

the idea that memory function is dynamic, and that closed-loop algorithms that account for545

moment-to-moment variability in the brain’s memory state can selectively deliver stimulation546

only when it is needed. The present study also links closed-loop stimulation efficacy to white547

matter targeting, brain-wide evoked physiology, and changes in episodic memory performance.548

The findings suggest future strategies for using the functional and anatomical network profile of549

putative stimulation targets to optimize downstream changes in oscillatory activity and cognition.550
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