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Laboratory paradigms have provided an empirical foundation for much of psychological science. Some
have argued, however, that such paradigms are highly susceptible to idiosyncratic strategies and that
many findings do not reflect fundamental cognitive principles but are instead artifacts of averaging across
participants who employ different strategies. We developed a set of techniques to rigorously test the
extent to which average data are distorted by such strategy differences and applied these techniques to
free recall data from the Penn Electrophysiology of Encoding and Retrieval Study. Recall initiation
showed evidence of subgroups: The majority of participants initiated recall from the last item in the list,
but one subgroup showed elevated initiation probabilities for items 2 to 4 positions back from the end of
the list, and another showed elevated probabilities for the beginning of the list. By contrast, serial position
curves and temporal and semantic clustering functions were remarkably consistent, with almost every
participant exhibiting a recognizable version of the average function, suggesting that these functions
reflect fundamental principles of the memory system. The approach taken here can serve as a model for
evaluating the extent to which other laboratory paradigms are influenced by individual differences in
strategy use.
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Much of psychological research relies on laboratory paradigms
that have been designed to measure specific cognitive processes.
Each area of research has its own set of laboratory paradigms: For
example, psychologists studying perception use detection and dis-
crimination tasks (Chun & Wolfe, 2001), psychologists studying
memory use list recall and recognition tasks (Kahana, 2012),
psychologists studying language use word naming and lexical
decision tasks (Balota et al., 2007), and those studying decision
making use preference and temporal discounting tasks (Loewen-
stein & Prelec, 1993). An assumption of such paradigm-centric
research is that participants’ performance on laboratory tasks re-
flects the operation of the targeted cognitive processes. However,
all but the simplest task is likely to rely on multiple processes.
Moreover, many researchers have argued that performing a task
involves selecting strategies from a cognitive toolbox to create ad
hoc solutions to challenges posed by the task (Gigerenzer, 2008;
Gigerenzer, Hoffrage, & Goldstein, 2008; Marewski & Schooler,

2011; Rieskamp & Otto, 2006; Simon, 1956) and that the partic-
ular strategy a person selects can be highly sensitive to his or her
individual goals and preferences (Carstensen, Isaacowitz, &
Charles, 1999).

Indeed, there has been much interest in the extent to which
strategy use accounts for major findings in many areas including
decision making (Payne, Bettman, & Johnson, 1988), frequency
judgment (Tversky & Kahneman, 1973), students’ study habits
(Hartwig & Dunlosky, 2012), working memory (Cusack, Leh-
mann, Veldsman, & Mitchell, 2009; Ericsson & Kintsch, 1995;
Turley-Ames & Whitfield, 2003), and long-term memory (Dela-
ney, Spirgel, & Toppino, 2012; Kahneman & Wright, 1971; Paivio
& Yuille, 1969; Wright & Kahneman, 1971), as well as for
differences between individuals (Bailey, Dunlosky, & Kane, 2008;
Coyle, Read, Gaultney, & Bjorklund, 1998) and groups of indi-
viduals such as younger and older adults (Dunlosky & Hertzog,
1998, 2000; Mata, Schooler, & Rieskamp, 2007). These views,
though not generally framed as direct criticisms of using labora-
tory tasks to study particular cognitive systems (but see Hintzman,
2011), raise the question of whether performance on a laboratory
task is so contaminated by individual differences in strategy as to
be uninformative or even misleading about underlying cognitive
processes.

To answer this question it is not enough to qualitatively describe
individual differences in task behavior; rather, one must quantita-
tively test whether individuals deviate from the average in a way
that substantially distorts the average pattern. Such quantitative
tests are rare. Yet, given that data from laboratory paradigms
provide the empirical foundation for much of psychological sci-
ence, it is critical that the influence of idiosyncratic strategies be
rigorously assessed. Here we develop an approach for distinguish-
ing idiosyncratic strategies from core cognitive processes and
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apply it to a classic memory paradigm—free recall of word lists.
We choose free recall both because it reveals a very detailed
empirical pattern that has deeply influenced modern theories of
memory (Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, &
Usher, 2005; Farrell, 2012; Polyn, Norman, & Kahana, 2009) and
because, of all the major memory tasks, it provides participants
with the most opportunity to develop idiosyncratic encoding and
retrieval strategies (Dalezman, 1976; Delaney & Knowles, 2005;
Delaney et al., 2012; Hintzman, 2011; Murdock & Metcalfe, 1978;
Sahakyan & Delaney, 2003; Stoff & Eagle, 1971).

Free Recall and the Dynamics of Memory Search

Many laboratory memory tasks require participants to retrieve
very specific information, thereby imposing strong constraints on
the scope of memory search. For example, serial recall forces
participants to reconstruct the temporal order of events. Recogni-
tion provides a very strong external retrieval cue that constrains the
scope of memory search, as does the paired-associates task. The
great advantage of these tasks is that the strong constraints allow
researchers to study specific memory processes while controlling
other factors. Outside the laboratory, however, one must often
search memory without strong external retrieval cues. If I ask you
what you did last weekend, you are likely to search your memory
for the various things you did, but the question itself does not
provide any strong cues to guide you to a particular activity, nor
does it constrain the order in which you recall your activities.
Instead, you must take the vague cue of “what you did last
weekend” and elaborate it to retrieve a specific activity. Once a
first activity is retrieved associations between various activities are
likely to govern their order of recall.

Many aspects of this natural memory search are captured by the
free recall task, which allows participants to recall the studied
items in any order. Therefore, the order of a sequence of recalls
provides a window on memory search, allowing researchers to
study search processes with precision and rigor. Free recall has
helped illuminate important principles of memory search such as
recency (recent events tend to be more memorable than distant
events; Murdock, 1962), primacy (the first events in a sequence
tend to be more memorable; Murdock, 1962), temporal contiguity
(items that were experienced close together in time tend to be
recalled contiguously; Kahana, 1996), and semantic proximity
(items that are semantically related tend to be recalled together;
Bousfield, Sedgewick, & Cohen, 1954; Howard & Kahana, 2002;
Romney, Brewer, & Batchelder, 1993).

We focus on four functions that provide a summary of the
dynamics of memory search in free recall: the serial position curve
(SPC), the probability of first recall (PFR) function, the lag-
conditional response probability (lag-CRP) function, and the
semantic-conditional response probability (semantic-CRP) func-
tion. To illustrate the functions, we use data from the Penn Elec-
trophysiology of Encoding and Retrieval Study (PEERS). The
study is described in detail in the Method section, but briefly,
participants studied multiple lists, each composed of 16 words, for
immediate free recall.

The first function we consider is the classic SPC, which breaks
down overall probability of recall by serial position at presentation.
The SPC reveals the primacy and recency effects (see Figure 1A).
In immediate free recall, recency dominates and the primacy effect

is modest. The remaining functions we consider provide a detailed
picture of the dynamics of memory search by measuring how
participants initiate recall and how they transition among items
after initiation.

Recall initiation can be examined by looking at which item
participants tend to recall first and then computing a PFR function,
an SPC based only on the very first item recalled (Hogan, 1975;
Howard & Kahana, 1999; Laming, 1999). As seen in Figure 1B,
participants tend to initiate recall from the last serial position
(Deese & Kaufman, 1957).

After recall initiation, subsequent recalls are driven by associ-
ations between the just-recalled word and other words in the
lexicon (Kahana, Howard, & Polyn, 2008). Both preexisting se-
mantic associations and newly formed episodic, or temporal, as-
sociations exert a powerful influence on recall transitions. In
general, if a participant has just recalled item i from the list, we can
measure how i’s associations with other items influence which
item, j, is recalled next. To measure the influence of temporal
associations, we can compute the probability that i is followed by
j conditional on the distance, or lag, between i and j in the original
list. For example, if i � 5 and j � 6, we would have a lag, j � i,
of �1. Lag-CRP functions give these probabilities for a variety of
lags and are computed by dividing the number of times a transition
of a given lag was actually made by the number of times it could
have been made (Kahana, 1996). Note that lags that would lead
outside the list boundaries are not considered possible (e.g., a �2
lag is impossible after recalling the 15th item in a 16-item list), nor
are transitions to items that have already been recalled. Lag-CRP
functions (see Figure 1C) reveal the contiguity effect: Transitions
are most likely between temporally adjacent items and decrease in
probability with increasing lag. In immediate free recall, the con-
tiguity effect tends to be larger for the first few items recalled than
for later output positions due to the strong recency effect (Davelaar
et al., 2005; Sederberg, Howard, & Kahana, 2008). Therefore we
exclude the first two outputs from the lag-CRP analyses in this
article. The lag-CRP also shows a forward asymmetry such that
forward transitions are more likely than backward transitions for
small absolute values of lag.

Lag-CRPs show how the probability of transitioning between
two items is influenced by the proximity (i.e., lag) of those items
along a temporal associative dimension, but semantic associations
also exert a powerful influence on memory search (Bousfield,
1953; Romney et al., 1993). To measure the influence of semantic
associations on transition probabilities, we can employ the same
procedure used for temporal associations but replace temporal lag
with a measure of semantic proximity. We use latent semantic
analysis (LSA; Landauer & Dumais, 1997) to measure semantic
proximity. LSA allows one to measure the semantic relationship
between two words as the cosine of the angle between the words’
representations in a multidimensional model of semantic space.
Using LSA values, we can compute the semantic similarity be-
tween item i and all other items in the list. We can then bin pairs
of items based on their semantic similarity and calculate the
probability of making a transition from i to j based on the simi-
larity bin of that pair. As seen in the resulting semantic-CRP
function (see Figure 1D), there is a strong tendency to make
transitions between semantically related words (Howard, Jing,
Addis, & Kahana, 2007; Howard & Kahana, 2002; Sederberg,
Miller, Howard, & Kahana, 2010).
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These effects are quite robust. To our knowledge there is no
published failure to find a temporal contiguity effect in a standard
free recall task (but see McDaniel, Cahill, Bugg, & Meadow, 2011,
for a failure to find contiguity in recall of lists composed of
orthographically distinct items), and the effect also emerges in a
variety of other tasks such as high-confidence old/new recognition
responses (Schwartz, Howard, Jing, & Kahana, 2005) and intru-
sions in paired-associate recall (Davis, Geller, Rizzuto, & Kahana,
2008). Robust semantic clustering effects in recall of categorized
lists have been widely reported (Bousfield et al., 1954; Romney et
al., 1993). Although the semantic proximity effect in uncatego-
rized lists revealed by using LSA to construct semantic-CRPs has
not been investigated as extensively, the effect is quite consistent
across multiple independent data sets (Bridge, 2006; Howard &
Kahana, 1999; Kahana & Howard, 2005; Kahana, Howard,
Zaromb, & Wingfield, 2002; Sederberg et al., 2006; Zaromb et al.,
2006) as illustrated by the meta-analyses of Sederberg et al.
(2010). Recency is somewhat more variable, being sensitive to the
ratio of the length of the delay between successive items to the
length of the delay between the final item and recall (Glanzer &
Cunitz, 1966; Postman & Phillips, 1965), and other factors such as
presentation modality (Murdock & Walker, 1969). Primacy also
varies, being closely tied to the frequency, recency, and spacing of
rehearsals (Laming, 2006, 2008; Marshall & Werder, 1972;
Modigliani & Hedges, 1987; Rundus, 1980; Tan & Ward, 2000;

Ward, 2002). But the variables that influence primacy and recency
are well understood, and many of their effects are predicted by
several contemporary models of episodic memory (e.g., Farrell,
2012; Polyn et al., 2009).

Free recall data have played a major role in development of
memory theory over the past 50 years. For example, the presence
of recency in immediate free recall, and the absence of recency
when there is a delay between the last item and recall (Glanzer &
Cunitz, 1966; Postman & Phillips, 1965), is one of the strongest
pieces of evidence supporting the distinction between immediate
and secondary memory (Atkinson & Shiffrin, 1968; Glanzer &
Cunitz, 1966; Waugh & Norman, 1965). The temporal contiguity
effect helped solidify the role that context has long played in
episodic memory theories (Bower, 1972; Estes, 1955; McGeoch,
1932), and is now a benchmark effect that any model of episodic
memory must account for (Davelaar et al., 2005; Farrell, 2012;
Polyn et al., 2009).

Principles of Memory or Artifacts of Strategy

Despite the contributions of free recall, there remains some
question as to whether the task actually captures fundamental
principles of the memory system. Some scholars have expressed
concern that free recall requires searching memory in a way that is
alien to how memory is accessed outside the laboratory, which

1 8 16
0

0.2

0.4

0.6

0.8

1

Serial Position

R
ec

al
l P

ro
ba

bi
lit

y

1 8 16
0

0.2

0.4

0.6

0.8

1

Serial Position

R
ec

al
l P

ro
ba

bi
lit

y

−5 −3 −1 1 3 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lag

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

Semantic Similarity

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

A B

C D

Figure 1. Data from the Penn Electrophysiology of Encoding and Retrieval Study: Serial position curve (A),
probability first recall function (B), lag-conditional response probability function (C), and semantic-conditional
response probability function (D). Error bars are 95% within-subject confidence intervals (Loftus & Masson,
1994).
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encourages use of idiosyncratic strategies. For example, Hintzman
(2011) argued that participants in a free recall experiment are
obligated to devise ad hoc mnemonic strategies and that individual
differences in the type of strategy devised are likely to overlay and
obscure more general memory processes:

Allowing subjects to recall the words in any order they wish encour-
ages them to explore various encoding and retrieval strategies. (p.
255)

But the overlay of study and retrieval strategies makes the task a
grotesque, neither-fish-nor-fowl creature of the laboratory—
corresponding to nothing people do in everyday life and too complex
to be of much use for scientific analysis. (p. 255)

Others have made similar, if less sweeping, claims that various
aspects of free recall performance are either artifacts of strategy
use or modulated by strategy use (e.g., Dalezman, 1976; Delaney
et al., 2012; Hasher, 1973; McDaniel & Bugg, 2008).

Without doubt, participants will adopt strategies to help them
perform free recall or any other laboratory task. The issue we wish
to address here is whether variation across individuals in strategy
use accounts for the shape of the average curves shown in Figure
1. Specifically, are the curves the result of averaging across sub-
groups of participants who are using different strategies, in which
case they would tell us little about memory principles. Before
describing how we will address this issue, it is important to clarify
the distinction between strategies and principles of memory.

Performance on laboratory memory tasks is not a pure measure
of memory. Rather, performance represents a complex interaction
between characteristics of the participants, stimuli, the encoding
conditions, and the retrieval conditions (Jenkins, 1979; Roediger,
2008). More generally, we can think of laboratory tasks as puzzles
that require the participant to find the optimal way to use memory
to meet the task requirements. For example, free recall and serial
recall both rely on the same underlying memory system (Solway,
Murdock, & Kahana, 2012), but serial recall requires participants
to place more weight on newly learned temporal associations and
less weight on long-standing semantic associations.

A rough analogy can be made to chess playing. Chess is like a
laboratory task, with the rules of the game placing constraints on how
it can be played; the brain of the chess player is not preequipped with
any “chess processes,” just as there are no “free recall processes.”
Instead the player must take existing perception, memory, and exec-
utive processes and devise a strategy to deploy these processes in a
way well-suited to the rules of the game. If we were to find patterns
in how people play the game, for example, that they tend to plan only
x moves ahead, those effects could arise either from the particular
strategies people adopt or from more fundamental principles of the
cognitive systems those strategies deploy.

This view of task performance as an interaction between task-
specific strategy selection and domain-general memory processes
is captured by several influential theories in cognition. The notion
of “working with memory” (Moscovitch & Winocur, 2002), for
example, proposes that frontal executive processes must determine
how best to deploy medial temporal lobe memory processes to
meet the demands of the particular task. A similar view of task
performance underlies the idea of the multiple-demand system
(Duncan, 2010), which suggests that complex behavior depends on
a network of frontal regions that break a task into smaller sub-

components that can be processed by other cognitive systems such
as memory and perception. Similarly, the idea of general-purpose
cognitive systems being recruited in novel ways to address new
tasks lies at the heart of production systems such as ACT-R
(Anderson et al., 2004).

Characteristics of both the task and the participants will influence
the balance between the strategy and memory process components of
free recall performance. A variety of task characteristics such as
presentation rate, presentation modality, and list length have been
shown to influence the shape of free recall functions. More generally,
if we consider task parameters such as list length to be a continuum,
there are likely to be points along this continuum where the optimal
strategy shifts (Grenfell-Essam & Ward, 2012). Indeed, Grenfell-
Essam and Ward (2012) have shown that for short list lengths many
participants tend to initiate recall from the beginning of the list rather
than from the end of the list, as seen with the longer lists we use here
(see Figure 1). Therefore, studies designed to capture the memory
component should avoid crossover points at which the strategy com-
ponent is likely to be highly influential.

An important characteristic of participants that will affect the
balance between the strategy and memory process components is
the amount of practice they have with the task. When first intro-
duced to a new task, strategy differences are likely to be promi-
nent, as participants explore different strategies in an attempt to
find an optimal one. Indeed, the findings that recall initiation
patterns change with practice (Dallett, 1963; Goodwin, 1976;
Hasher, 1973; Huang, 1986) and that memory task performance
tends to improve with practice (i.e., the “learning to learn” effect;
Postman, 1969) may stem partly from participants optimizing
strategies to meet the needs of the tasks (we revisit this suggestion
in the Discussion and make an important caveat). Therefore, we
examine the performance of participants with extensive experience
with the free recall task.

However, using well-practiced participants is not enough to
ensure that the effects shown in Figure 1 reflect general memory
processes. It is possible that even after many trials of practice,
differences in strategy use between individuals may remain and
that these differences may be obscured when looking at averaged
data. In this article, we develop an analytical framework for
detecting such strategy differences.

Establishing Consistency Across Individuals

In developing this analytical framework, we start by identifying
differing predictions of the strategy-difference and memory-
process accounts of free recall effects. One guiding principle is that
if the functions in Figure 1 reflect fundamental principles of the
memory system, then they should be universal in the sense that
every cognitively intact individual should exhibit a similar func-
tion, just as every healthy individual shows markers of fundamen-
tal physiological processes. There will, of course, be individual
differences, but they should be quantitative rather than qualitative.
By contrast, a strategy account predicts that the shape of a partic-
ipant’s function will depend on the strategy they use.

Specifically, if any of the effects described above are the result
of averaging across subgroups of participants who are using dif-
ferent strategies, each subgroup should correspond to a distinct and
identifiable cluster in the data. Assume, for example, that the
average curves actually disguise a “primacy” subgroup that adopts
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the strategy of initiating recall with items from early serial posi-
tions and a “recency” subgroup that adopts a strategy of initiating
with end-of-list items, similar to the two initiation patterns iden-
tified by Grenfell-Essam and Ward (2012). We should be able to
identify these two clusters by examining the PFR functions of
individual participants. One could imagine many other ways in
which strategy use could influence PFR functions. And similar
strategy-based accounts could be made for the contiguity and
proximity effects (e.g., there may be a cluster of participants that
shows strong contiguity and another that shows weak contiguity).
We develop a generalizable strategy detection procedure that is
based on identifying clusters in the data but does not require
specifying the particular strategies, the number of clusters, or how
strategies change the shape of the functions.

In addition to the cluster detection procedure, we use the
strategy-free context maintenance and retrieval (CMR) model of
free recall (Polyn et al., 2009) to test the strategy account. Un-
sworth, Brewer, and Spillers (2011) pointed out that although
several existing models fit a wide range of free recall effects, they
do so at the level of average data and do not model individual
differences in strategy use. This view implies that existing models
would be unable to fit data at the individual level without being
modified to incorporate a strategy component. However, whether
models need to include strategy components to account for indi-
vidual data has not been extensively investigated. The issue actu-
ally suggests a strong test of the claim that free recall effects
cannot be explained apart from reference to strategy: If a model
without a strategy component can fit individual difference data, it
constitutes a sufficiency proof—conclusively showing that refer-
ence to strategy is unnecessary to account for the existing data.

Method

Participants

The data reported here are from the Penn Electrophysiology of
Encoding and Retrieval Study (PEERS). PEERS aims to assemble
a large database on the electrophysiological correlates of memory
encoding and retrieval. The present analyses are based on the 126
young adult (age 17–30) participants who had completed Experi-
ment 1 of PEERS as of December 2012. Participants were re-
cruited through a two-stage process. First, we recruited right-
handed native English speakers for a single session to introduce
participants to electroencephalogram recordings (electroencepha-
logram data are not reported here) and the free recall task. Partic-
ipants who completed this introductory session were invited to
enroll in the full study, on the condition that they did not make an
excess of eye movements during item presentation epochs of the
experiment and their probability of recall was less than .8. Ap-
proximately half the subjects recruited for the preliminary session
agreed to participate in the multisession study. Participants were
consented according the University of Pennsylvania’s institutional
review board protocol and were compensated for their participa-
tion.

PEERS Experiment 1

Participants performed a free recall experiment consisting of
one practice session and six subsequent experimental sessions.

Each session consisted of 16 lists of 16 words presented one at a
time on a computer screen. Each study list was followed by an
immediate free recall test, and each session ended with a recog-
nition test. Half the sessions were randomly chosen to include a
final free recall test before recognition, in which participants
recalled words from any of the lists from the session.

Words were presented concurrently either with a task cue,
indicating the judgment that the participant should make for that
word, or with no encoding task. The two encoding tasks were a
size judgment (“Will this item fit into a shoebox?”) and an ani-
macy judgment (“Does this word refer to something living or not
living?”), and the current task was indicated by the color and
typeface of the presented item. Based on the results of a prior
norming study, only words that were clear in meaning and that
could be reliably judged in the size and animacy encoding tasks
were included in the pool. There were three conditions: no-task
lists (participants did not have to perform judgments with the
presented items), single-task lists (all items were presented with
the same task), and task-shift lists (items were presented with
either task). The first two lists were task-shift lists, and each list
started with a different task. The next 14 lists contained four
no-task lists, six single-task lists (three of each task), and four
task-shift lists. List and task order were counterbalanced across
sessions and participants.

Each word was drawn from a pool of 1,638 words. Lists were
constructed such that varying degrees of semantic relatedness
occurred at both adjacent and distant serial positions. Semantic
relatedness was determined using the word association space
model described by Steyvers, Shiffrin, and Nelson (2004). Word
association space similarity values were used to group words into
four similarity bins (high similarity, cos � between words � .7;
medium-high similarity, .4 � cos � � .7; medium-low similarity,
.14 � cos � � 0.4; low similarity, cos � � .14). Two pairs of items
from each of the four groups were arranged such that one pair
occurred at adjacent serial positions and the other pair was sepa-
rated by at least two other items.

For each list, there was a 1,500-ms delay before the first word
appeared on the screen. Each item was on the screen for 3,000 ms,
followed by jittered 800- to 1,200-ms interstimulus interval (uni-
form distribution). If the word was associated with a task, partic-
ipants indicated their response via a keypress. After the last item in
the list, there was a 1,200- to 1,400-ms jittered delay, after which
a tone sounded, a row of asterisks appeared, and the participant
was given 75 s to attempt to recall any of the just-presented items.

If a session was selected for final free recall, following the
immediate free recall test from the last list, participants were
shown an instruction screen for final free recall, telling them to
recall all the items from the preceding lists. After a 5-s delay, a
tone sounded and a row of asterisks appeared. Participants had 5
min to recall any item from the preceding lists.

After either final free recall or the last list’s immediate recall test
was a recognition test, indicated by an instruction screen. Target to
lure ratio was variable by session, where targets made up 80%, 75%,
62.5%, or 50% of the total items. Participants were told to respond
verbally by saying “pess” for old items and “po” for new items and to
confirm their response by pressing the space bar. This was done so
that both response types would initiate with the same stop consonant
(or plosive) so as to assist in automated detection of word onset times.
Following the old/new judgment, participants made a confidence
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rating on a scale of 1 to 5, with 5 being the most confident. Recog-
nition was self-paced, though participants were encouraged to respond
as quickly as possible without sacrificing accuracy. Participants were
given feedback on accuracy and reaction time.

The first session was identical to the experimental sessions except
that this session always had final free recall. To make it easier for
participants to adjust to the encoding task, lists were not presented
randomly in the first session. Rather, Lists 1–4 were no-task lists,
Lists 5–8 were single-task lists of one randomly selected judgment
type, Lists 9–12 were single-task lists using the other judgment, and
Lists 13–16 were task-shift lists. The number of item presentations for
each judgment type were counterbalanced across lists.

Results

Overview of Data

In determining whether the free recall effects are consistent
across participants, it is useful to examine the free recall functions
for individual participants. As described in the Method section,
PEERS includes an encoding task manipulation; task trials require
participants to make either a size or an animacy judgment about
each word as it is presented, whereas no-task trials have no
encoding task. The requirement to perform a specific task during
encoding may influence a participant’s choice of strategy. There-
fore we analyze task and no-task conditions separately.

Figures 2–5 show SPC, PFR, lag-CRP, and semantic-CRP func-
tions, respectively. In the figures, a separate panel is devoted to
each participant. Each panel displays four curves. The solid curves
show no-task lists, and the dashed curves show task lists. The
black curves show the participant’s data, and the gray curves show
the fit of the context maintenance and retrieval (CMR) model to
their data (see below for details on the model and how it was fit to
the data). The ordering of participants is consistent across figures,
so that a given participant appears in the same panel in each
figure.1 We present detailed quantitative analyses below, but the
data are sufficiently clear to begin with a visual inspection and
descriptive overview.

Figure 2 shows each participant’s SPC. Although there are
clearly individual differences, every participant’s function resem-
bles a classic SPC. If we define recency as a higher average recall
probability for the final six serial positions than for Positions 5–10
(mid-list positions), then on both no-task and task lists 90% of
participants show recency. If we define primacy as higher average
probabilities for Items 1–4 than for mid-list positions, then for
both no-task and task lists 93% of participants show primacy.

Individual PFR functions are shown in Figure 3. The PFR peaks
at the final item for 64% of participants on no-task lists and for
79% participants on task lists. The PFR is uniformly near 0 for
mid-list positions: Across all participants the average initiation
probability for Items 5–10 is less than 1% for both no-task and task
lists. No participants show an average initiation probability of
more than 5% for mid-list items on no-task lists (one participant
does so on task lists). Individual PFRs do, however, vary some-
what from the average. First, on no-task lists, 27% of participants
(16% on task lists) are more likely to initiate recall from an item
one to three positions back from the final item than from the final
item itself. Second, 44% (27% on task lists) of participants initiate
recall from the beginning of the list on more than 5% of trials,

producing an uptick in the PFR at the first item. Overall, the PFR
average function is a reasonable description of the modal partici-
pant. A substantial number of participants do depart from this
modal function, but they do not greatly distort the average (with
the possible exception of a small uptick for the first item, which is
visible in the average function).

The individual participant lag-CRP functions (see Figure 4)
show remarkable consistency. If we define a contiguity effect as
the CRP for Lag �1 being greater than the CRP for Lag �2 and
the CRP for Lag �1 being greater than the CRP for Lag �2, 96%
of participants show a contiguity effect on no-task lists, and 100%
show contiguity on task lists. As a more stringent test, we created
a 6-point lag-CRP function composed of Lag �1, the averages of
Lags �2 and �3, the averages of Lags �3 and �5, and the
corresponding points for negative lags. These functions decline
monotonically with increasing absolute value of lag for 98% of
participants on no-task lists and 100% of participants on task lists.
The asymmetry effect is also highly consistent; 95% of partici-
pants show higher recall probabilities for Lag �1 than for Lag �1
on no-task lists (96% of participants show asymmetry on task
lists). There are, of course, individual differences, with some
participants showing large asymmetries and others showing very
small asymmetries. However, these differences are quantitative
rather than qualitative, as would be expected if all participants’
asymmetry effects were drawn from a normal distribution centered
above 0 with a left tail close to 0.

The semantic proximity effect also shows striking consistency
across participants (see Figure 5). For all participants, conditional
recall probability peaks at the highest similarity bin and decreases
as semantic similarity decreases. No participants show a flat or
negatively sloped function.

Even though it is not our primary focus, it is useful to compare
the no-task and task conditions. On average, SPC curves tend to be
lower for the task lists and primacy is more pronounced for
no-tasks lists. Temporal contiguity also tends to be lower on the
task lists. These differences suggest that the encoding task influ-
ences how participants approach the task; however, it is not clear
whether this reflects differences in the strategy component or the
memory component.

Figures 2–5 reveal an impressive level of consistency across
participants and strongly suggest that a common set of memory
processes underlie the functions. Yet, few individuals show a
pattern that is identical to the average. Of course, visual inspection
does not tell us whether we can reject the null hypothesis that a
given participant’s curve actually deviates significantly from the
average. Therefore, we turn to a series of analyses that provide a
more rigorous test.

Detailed Analyses

We develop a two-step procedure for detecting strategy sub-
groups. The first step is a cluster detection algorithm and is suited
to situations in which participants fall into clear subgroups. The

1 The ordering of participants (down rows first, then across columns) is
based on membership in the subgroups identified in the PFR curve (see the
Detailed Analyses section). Specifically, participants belonging to the first
cluster in Figure 9 are plotted first, followed by participants belonging to
the second cluster, and so on.
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second step is to test each individual’s deviance from the average
and is intended for cases in which the fist step fails to detect large
clusters.

We will use the PFR curve to illustrate the first step in our
approach. We created a simulated “strategy” data set composed of
two distinct groups of simulated participants; the first group shows
a strong recency effect but no primacy (see Figure 6A), and the
second shows strong primacy but no recency (Figure 6B). By
combining these two groups in a 75:25 ratio, we get an average
PFR function that resembles real data (Figure 6C). We can test the
null hypothesis that the data set contains a single cluster by
calculating the mean-squared deviation of observations from the
overall mean and then determining how much we can reduce the
this deviation by assigning the data to k clusters and getting

the deviation of each observation from its cluster mean rather than
from the overall mean. The challenge for cluster detection algo-
rithms is that mean-squared error is a monotonically decreasing
function of k, and approaches 0 as k approaches the number of
observations (i.e., each data point is its own cluster).

There are many existing cluster detection algorithms (e.g., Gar-
rido, Abad, & Ponsoda, 2012; Pelleg & Moore, 2000; Pham,
Dimov, & Nguyen, 2005; Sugar & James, 2003); however, most
deal with this overfitting problem by relying on arbitrary rules of
thumb (e.g., looking for an “elbow” or inflection point in a plot of
error against values of k) or on generic corrections for overfitting
(e.g., the Akaike and Bayesian information criteria). Instead we
use a principled method (Sugar & James, 2003) based on the
intuition that the correct number of clusters should provide a
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Figure 2. Individual participants’ serial position curves. Each panel shows the data from one participant.
Participants are displayed in the same order in each of Figures 2–5. Solid lines show the no-task lists; dashed
lines show the task lists. Black lines are each participant’s actual data. Gray lines are fits of the context
maintenance and retrieval (CMR) model to the participant’s data. A D in a participant’s panel indicates that the
individual differed significantly from the average function on at least one list type; an M indicates that CMR
failed to provide a good fit to the data for at least one list type. The electronic version of the article includes
high-resolution figures that allow for zooming in on individual plots.
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greater decrease in error than any other value of k. The algorithm
starts by assigning the data to k clusters (here we use k-means for
cluster assignment) for a range of values of k (here we use 1–4).2

Then for each value of k it computes, dk, the average Mahalanobis
distance of data points from their cluster centers divided by the
number of dimensions in the data:

dk �
1

p

�
i�1

n

(Xi � cxi
)T S�1(Xi � cxi

)

n
,

where p is the number of dimensions in the data, Xi is the ith
participant’s data as a column vector, S is the covariance matrix, n
is the number of subjects, and Cxi

is the center of the ith partici-
pant’s cluster. The next step is to raise dk to a small negative

power, �Y, so that it is an increasing function of k with a fairly
shallow slope, which reduces differences between adjacent values
of k. The final step is to calculate the reduction in error, or
“jumps,” created by moving from k � 1 to k for each value of k.
Specifically,

Jk � dk
�Y � dk�1

�Y .

2 We found that using values of k � 4 produced clusters that contained
only a few participants and that cluster membership was not stable across
runs of the algorithm. The Monte Carlo procedure we introduce in the next
section for detecting deviation of individuals from the average curves is
better suited to detecting very small groups of participants that depart from
the average curve.
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Figure 3. Individual participants’ probability of first recall functions. Each panel shows the data from one
participant. Participants are displayed in the same order in each of Figures 2–5. Solid lines show the no-task lists;
dashed lines show the task lists. Black lines are each participant’s actual data. Gray lines are fits of the context
maintenance and retrieval (CMR) model to the participant’s data. An M in a participant’s panel indicates that
CMR failed to provide a good fit to the data for at least one list type. The electronic version of the article includes
high-resolution figures that allow for zooming in on individual plots.
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Note that when k � 1, dk�1 is taken to be 0 so that a jump value
can be calculated for one cluster. The largest jump should occur for
the true value of k, which can easily be seen in a plot of Jk, against
k. Sugar and James (2003) have shown that this method is highly
effective at recovering the true value of k in many simulated and
real data sets, both with normal and nonnormal underlying distri-
butions. We ran the algorithm for values of k between 1 and 4 and
took the k with the largest jump to be the appropriate number of
clusters. Noise in the data can blur the boundaries between true
clusters, making them hard to detect. We overcame this challenge
by performing the above-described fitting procedure on 5,000
bootstrap samples; the reported jump values are the averages over
all samples. Bootstrapping also allows us to create confidence
intervals around the values of Jk, which provides an natural test for

the presence of significant clustering: If the data contain k true
clusters, Jk should fall outside the 95% confidence interval for J1.

We applied this procedure to both the simulated strategy data set
and a no-strategy control set that had the same means as the
strategy set but contained a single cluster. Figure 7 shows that the
cluster detection procedure correctly determined that the simulated
strategy data contain clusters, whereas the no-strategy data do not.
To establish the effectiveness of this cluster detection procedure,
we tested its ability to detect clusters in simulated data with ratios
of recency to primacy simulated participants of 55:45, 65:35,
75:25, and 85:15. For each ratio we generated 1,000 samples of
126 simulated participants; the algorithm correctly identified all of
these data sets as having more than one cluster, and tended to
overestimate the actual value of k. That is, the procedure is highly
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Figure 4. Individual participants’ lag-conditional response probability functions. Each panel shows the data
from one participant. Participants are displayed in the same order in each of Figures 2–5. Solid lines show the
no-task lists; dashed lines show the task lists. Black lines are each participant’s actual data. Gray lines are fits
of the context maintenance and retrieval (CMR) model to the participant’s data. A D in a participant’s panel
indicates that the individual differed significantly from the average function on at least one list type; an M
indicates that CMR failed to provide a good fit to the data for at least one list type. The electronic version of
the article includes high-resolution figures that allow for zooming in on individual plots.
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accurate at detecting the presence of clusters composed of as little
as 15% of the sample. The tendency to overestimate the value of
k makes it a conservative test of the claim that k � 1. We explored
a variety of other clustering algorithms such as Monte Carlo
methods that compare multivariate distributions implied by k clus-
ters with the actual data, and found that these methods tended to
underestimate the true value of k.

We applied the same analysis to the free recall curves of the
actual participants. For the actual SPC, lag-CRP, and semantic-
CRP curves, the results in Figure 8 closely resemble the pattern
shown by the no-strategy simulations. For each of these curves, we
were unable to reject the null hypothesis that the data contained a
single cluster. By contrast, the PFR curves showed evidence of
clustering: The null of k � 1 was rejected for both the no-task and

task lists, and the jump functions peaked at k � 4 and k � 3 for
each list type. To understand the differences in initiation patterns
between the clusters, we used k-means clustering to assign each
participant to one of four clusters and plot the average curves for
each cluster in Figure 9.

The first two clusters show the same basic shape as the average
PFR curve, and likely represent an artificial division of a contin-
uous distribution at an arbitrary point. That is, both clusters show
an “end-first” initiation pattern and simply differ quantitatively.
The next two clusters, however, show qualitative deviation from
the average curve. The third cluster represents participants who
follow a “beginning-first” initiation pattern. This subgroup of
participants resembles the initiation pattern found by Grenfell-
Essam and Ward (2012) with short lists. It appears that even with
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Figure 5. Individual participants’ semantic-conditional probability functions. Each panel shows the data from
one participant. Participants are displayed in the same order in each of Figures 2–5. Solid lines show the no-task
lists; dashed lines show the task lists. Black lines are each participant’s actual data. Gray lines are fits of the
context maintenance and retrieval (CMR) model to the participant’s data. A D in a participant’s panel indicates
that the individual differed significantly from the average function on at least one list type; an M indicates that
CMR failed to provide a good fit to the data for at least one list type. The electronic version of the article includes
high-resolution figures that allow for zooming in on individual plots.
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long lists, a substantial number of participants retain the
beginning-first pattern (note, however, that the number of partic-
ipants showing this pattern is substantially smaller for task lists
than no-task lists, suggesting an influence of encoding task on
initiation pattern). The last cluster represents participants who tend
to initiate at some point near, but not exactly at, the end of the list.
This may reflect chunking (Farrell, 2012) in which participants
encode trains of three to four successive items into a chunk and
recall in forward order within chunks. Thus, the PFR function
exhibits evidence of qualitative variation that may reflect individ-
ual differences in strategy. We stress, however, that these qualita-
tive variations do not substantially distort the average function,
which provides a very good description of the modal participant. It
is not the case that the average PFR gets its shape from averaging
across subgroups that do not resemble the average. Rather, it is the
case that the average disguises two subgroups while accurately
describing the largest group.

To provide a visual check on the claim that the SPC, lag-CRP,
and semantic-CRP curves do not show clustering, we can use
k-means to force the data into clusters and plot the cluster means
as we did for PFR. In the absence of true clusters (i.e., if the data
are drawn from a single distribution), we would expect k-means to
simply divide the distribution into quantiles, which should be
apparent as systematic variation of the curves across clusters (as
opposed to the qualitatively different curves seen across clusters
for PFR). For the SPC curve, such variation should appear as a
lowering of the curve; for the contiguity curves, we would expect

some clusters to have steeper contiguity effects than others but for
all to show the same functional form (i.e., CRP changes nonlin-
early with both temporal and semantic proximity; thus we would
not expect a simple raising and lowering of the curves, but a
change in slope). As can be seen in Figures 10–12, this is exactly
the pattern we observe; each cluster shows the same basic shape as
the average curve but with the level or slope differing systemati-
cally.

The foregoing clustering analyses confirm what is obvious from
inspecting individual participants’ data: That for the SPC, lag-
CRP, and semantic-CRP curves, the average effects are not due to
substantial subgroups of participants performing the task in qual-
itatively different ways. The PFR curve provides an accurate
description of the modal participant who follows an end-first recall
initiation pattern, but disguises two subgroups that adopt a
beginning-first and a clustering initiation pattern, respectively. The
clustering analyses, however, do not tell us whether a particular
individual is well described by the average. That is, even though
coherent groups of participants do not deviate from the average
pattern, individual participants may. This is an important point, as
under the assumption that free recall is capturing something fun-
damental about the memory system, we would expect the functions
to capture the performance of every healthy adult, just as we
expect an anatomy textbook to qualitatively capture the anatomy
of any healthy individual.

How do we test whether an individual’s function is well
described by the average function? Using SPC as an example,
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Figure 6. Probability of first recall curves from simulated participants: Data from 95 simulated participants, all
showing recency but no primacy (A); data from 31 simulated participants, all showing primacy but no recency
(B); and the average function from all 126 simulated participants, showing strong recency and weaker primacy
(C). Error bars are 95% within-subject confidence intervals (Loftus & Masson, 1994).
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one could examine each serial position and determine whether
the participant’s score for that position deviated from the av-
erage. However, this approach ignores the fact that performance
across serial positions is correlated. For example, it might not
be unusual for a participant to be 1 standard deviation below the
average at all serial positions, but it would be unusual for
someone to be 3 standard deviations above the mean on the first
few serial positions and 1 standard deviation below average for
all other positions. That is, we want to know whether a partic-
ipant’s function taken as a whole is unusual.

Therefore, we started with the null hypothesis that each
participant’s function for a particular effect is the result of a
random draw from a multivariate distribution described by the
means and covariance matrix for that effect (e.g., the covariance
of the Subjects � Serial Position matrix). For each participant

we followed several steps designed to test whether this null
hypothesis could be rejected; rejection of the null would sug-
gest that the participant’s data were not drawn from the average
distribution. First, we computed the covariance matrix using the
data from all participants except the one currently being con-
sidered (so that participants did not bias the results in their
favor) and used the matrix to generate 100,000 simulated serial
position curves with the same means, distributions, and cova-
riance structure as the actual data. Next, for each simulated
function we calculated its Mahalanobis distance from the rest of
the simulated functions, providing us with a distribution of
distances for functions actually drawn from the same underly-
ing distribution. Finally, to determine whether the participant in
question was also likely to be drawn from that distribution, we
calculated the Mahalanobis distance of the participant’s func-
tion from the simulated functions. If the participant’s Ma-
halanobis distance was greater than 95% of the simulated Ma-
halanobis distances, that participant was designated as deviant.3

The same procedure was repeated for the SPC, lag-CRP, and
semantic-CRP (we do not consider the PFR, as we have already
established that subgroups deviate from the average). To avoid
giving too much weight to noise in the individual curves, we
averaged across certain data points. Specifically, we created re-
duced curves consisting of the following data points for each
function: For SPC, each of Positions 1, 2, 3, and 4; the average of
Positions 5–8; the average of Positions 9–12; and each of Posi-
tions 13, 14, 15, and 16; for lag-CRP, Lag 1, the average of Lags
2–3, the average of Lags 4–5, and the corresponding negative lags;
for semantic-CRP, each of the individual bins. Participants who
were designated as deviant are marked by the letter D in their panel
in Figures 2, 4, and 5.

For SPC, lag-CRP, and semantic-CRP, only 4%, 4.8%, and
7.14% of cases, respectively (6.3%, 4.8%, and 5.56% on task lists),
were classified as deviant. Visual inspection of these cases sug-
gests that they do not differ qualitatively from the average func-
tions (see the marked cases in Figures 2 and 5); rather, deviant
participants show the same qualitative pattern as the nondeviant
subjects, but are near the tails of the nondeviant distribution (e.g.,
relatively steep or relatively shallow contiguity effects). Because
of this qualitative similarity and the fact the these deviance rates
are very near or below the 5% false detection rate for the proce-
dure, we assume they are false alarms and do not consider them
further.

To determine whether a participant’s distance from the average
of one function predicts his or her distance from the other func-
tions, we correlated participants’ Mahalanobis distances for each
of the four functions. Mahalanobis distances are expected to be
highly skewed; therefore, we used the nonparametric Spearman’s
� rather than Pearson’s r. The results are displayed in Table 1. In
general, a participant’s distance from the average of one function
was not strongly correlated with his or her distance from the
average of the other functions. However, distance from the lag-

3 When the data matrix is multivariate normal, squared Mahalanobis
distances are distributed as chi-square with degrees freedom equal to the
dimensionality of the data. Using this fact to test whether participants
significantly deviated from average provided results very similar to those
provided by the simulation method described in the text.
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Figure 7. Results of cluster detection analyses for simulated participants:
The results of the procedure applied to a sample composed of 31 simulated
primacy participants and 95 simulated recency participants (A), and the
results of the procedure applied to a sample composed of 126 participants
all drawn from a distribution that shows both primacy and recency (B).
Jump values were normalized across values of k (i.e., the number of
clusters) to place each plot on a common scale. The horizontal lines show
the upper bound of a 95% confidence interval on the jump value for k �
1; if the jump value for any k exceeds this bound, we can reject the
hypothesis that the data contain a single cluster, with the peak of the
function indicating the appropriate number of clusters.
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CRP was moderately but significantly correlated with distance
from both semantic-CRP and PFR.

Modeling Individual Participants’ Data

As a final test of the claim that free recall effects arise from
individual differences in strategies rather than core memory pro-
cesses, we attempt to fit individual participant data using a model
of episodic memory that does not include a strategy component.
Most existing models of free recall assume that the SPC, PFR, and
CRP functions are produced by fundamental memory processes.
Thus, modelers have focused on identifying and modeling those
processes, but generally do not model strategic elements of the
task. The ability of a strategy-free model to capture free recall data
is in principle an excellent way of determining whether strategies
are a necessary part of accounting for free recall effects: If a
strategy-free model can fit the effects, there is no need to posit
strategic elements. However, most previous modeling work does

not provide such a decisive test because the models generally have
been fit to averaged data. It is possible that a strategy-free model
can capture averaged data but fail to capture individual partici-
pants’ data (Unsworth et al., 2011). Therefore, we attempt to
model individual participants’ data with the CMR model (Polyn et
al., 2009), a model that has successfully accounted for a range of
free recall effects including those considered here.

Before discussing the simulations, we provide an outline of the
CRM model (for a full formal description of the model, see Polyn
et al., 2009). In CMR, two types of cognitive representations
interact: (a) the feature representation (F), in which the features of
the current list item are activated, and (b) the context representa-
tion (C), in which the current state of context is activated. Hebbian
associative matrices connect these representations: One connecting
features to context (MFC) and one connecting context to features
(MCF). Each association matrix is a weighted sum of a preexperi-
mental component that reflects long-standing semantic relation-
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Figure 8. Results of cluster detection analyses for actual participants: Serial position curve (A), probability first
recall function (B), lag-conditional response probability function (C), and semantic-conditional response prob-
ability function (D). Solid lines are no-task lists; dashed lines are task lists. Jump values were normalized across
values of k (i.e., the number of clusters) to place each plot on a common scale. The horizontal lines show the
upper bound of a 95% confidence interval on the jump value for k � 1; if the jump value for any k exceeds this
bound, we can reject the hypothesis that the data contain a single cluster, with the peak of the function indicating
the appropriate number of clusters.
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ships (derived with LSA) and an experimental component that
reflects new learning that occurs during the experiment.

In Figure 13, the words boat, cat, and apple have already been
studied and the next word, dog, has just been presented. Studying
dog activates the corresponding features, fi, which in turn retrieve
the context states to which dog has previously been associated:
cIN

i � MFCfi. This retrieved context, cIN
i, is incorporated into the

context representation according to ci � �ici�1 � 	cIN
i. Here 	 is a

model parameter governing how quickly context changes (�i is cho-
sen such that |ci| � 1).

During recall, the current contextual state is used to cue retrieval
via the MCF associations: fIN

i � MCFci. The resulting fIN
i gives the

degree of support for each item in the model’s vocabulary. This
vector of support values is used as the starting point for a set of
competitive accumulators, one for each word, according to the
leaky competitive accumulator model of Usher and McClelland
(2001). The first word to accumulate enough activation to cross a
threshold is recalled. When an item wins the recall competition, its
representation is reactivated on F, allowing the model to retrieve
the contextual state associated with the item. Context is updated
with the same mechanism used during the study period (although
the rate of context updating 	 can differ between study and recall).
This updated state of context activates a different set of features (a
new fIN), and another recall competition begins. This series of
competitions continues until the end of the recall period is reached,
at which point the next trial begins.

Critically, under CMR all the free recall effects derive from
memory processes that are assumed to be qualitatively invariant
across healthy adults. Recency occurs because the context at the

end of the list, which is used as a retrieval cue, most closely
matches items presented near the end of the list. Contiguity occurs
because each recalled item retrieves a new context that is similar
to the contexts associated with its neighbors in the list and less
similar to its more distant neighbors. Semantic proximity occurs
because recalled items retrieve a context representation that is
similar to the contexts associated with its semantic associates.

To prevent overfitting noise in participants’ curves, we fit the
model to the reduced curves described in the previous section (for
the PFR, which was not considered in the previous section, the
reduced curve consisted of Position 1; the average of Positions
2–13; and each of Positions 14, 15, and 16). For each participant,
we used a genetic algorithm to minimize the root-mean-square
deviation (RMSD) between model simulations and the partici-
pants’ data across these 30 data points. The no-task and task lists
were fit independently.4

The resulting fits are shown by the dotted lines in Figures 2–5.
A visual inspection indicates that the model fits quite well for

4 The fitting algorithm began by simulating 2,500,000 parameter sets ran-
domly distributed throughout the parameter space. Then, for each participant,
we calculated the fit of each of the known parameter sets to their data. We
selected the best fitting parameter set from each orthant (the multidimensional
equivalent of a quadrant) of the parameter space. This resulted in 2,048
parameter sets. We then added the next 2,952 best fitting sets with the
constraint that they did not lie within half an orthant of any already included
set. The resulting 5,000 parameter sets then served as the starting point for a
genetic algorithm that ran for 30 generations, gradually decreasing the popu-
lation size and increasing the number of times each parameter set was rerun,
allowing it to converge efficiently on the best fitting set.
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Figure 9. Means of clusters for probability of first recall functions. K-means with k � 4 was used to assign each
participant to a cluster. Solid lines show the no-task lists; dashed lines show the task lists. The legends give the
number of participants assigned to each cluster.
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almost all the participants. To test whether the model provided an
adequate fit for a given participant and a given curve, we tested
whether the deviation between the best fitting model curve and the
participant’s curve was greater than would be expected had the two
curves been drawn from the same distribution. In principle, we
could use the same Mahalanobis distance test we used above when
testing whether individual participants deviated from the average
functions. However, the Mahalanobis test requires computing co-
variances, and seven sessions per participant is too few to provide
stable estimates of covariance. Therefore, we adopted a slightly
different procedure that does not require covariances. Specifically,
for a given participant and a given curve, we computed an RMSD,
RMSDmodel, for the deviation between model and data. We then
created 100,000 simulated curves with the same means and stan-
dard deviations as the participant’s data (computed across ses-
sions). For each simulated curve we calculated an RMSD for the
deviation between the simulated curve and the participant’s actual
curve, providing us with a distribution of RMSDdata values for
curves drawn from the same distribution. The model was said to
provide an adequate fit if RMSDmodel fell below the 95th percen-
tile of the RMSDdata distribution.

Participants for whom the model failed to provide an adequate
fit are designated by an M in their panel in Figures 2–5. For SPC,
lag-CRP, and semantic-CRP, the number of poorly-fit subjects was
below the 5% false detection rate at 0%, 0%, and 0%, respectively
(0.79%, 0%, and 0% for task lists). For PFR, the model failed to
fit 4.8% (11% for task lists) of participants. These poorly fit PFRs
tended to be from participants in the chunking cluster, which
suggests that these participants’ initiation patterns may reflect
strategy use. It is notable, however, that CMR captures the initi-

ation pattern of most participants in the beginning-first cluster,
which suggests that this pattern may reflect a difference in the
parameterization of memory processes rather than differences in
strategies (we return to this claim in the Discussion). Overall,
CMR captures the recall initiation of most participants, and after
recall initiation, CMR captures the recall dynamics of essentially
all participants.

Discussion

Laboratory tasks designed to measure specific cognitive pro-
cesses are a staple of psychological research and have provided
much of the empirical foundation of our science. For this promi-
nent position to be justified, we must be sure that the key measures
derived from such tasks are not contaminated by differences across
individuals in idiosyncratic strategy use (Hintzman, 2011). Here
we have taken up this challenge for free recall, a task that has
played a key role in memory research and theory development.
Contrary to predictions of a strategy-difference account of free
recall, serial position functions, lag-CRP functions, and semantic-
CRP functions showed no evidence of subgroups of participants
employing different strategies. The average PFR curve accurately
described the modal participant but disguised two qualitatively
different subgroups. These results suggest that free recall effects,
especially those describing postinitiation dynamics, are not sub-
stantially contaminated by different participants employing differ-
ent strategies. We hope that the approach we have taken here can
serve as a model for assessing the influence of strategy on impor-
tant paradigms in other research areas.
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Figure 10. Means of clusters for serial position curves. K-means with k � 4 was used to assign each participant
to a cluster. Solid lines show the no-task lists; dashed lines show the task lists. The legends give the number of
participants assigned to each cluster.
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Stability and Variability in Free Recall

Serial position functions, lag-CRP functions, and semantic-CRP
functions were all extremely consistent across participants and did
not show the multimodal distributions one would expect with
strategy differences. These data provided absolutely no evidence
that the average function distorts individual participants’ behavior.
Instead the functions of most participants could be characterized as
a sample from a multivariate distribution described by the average
function—that is, generated by the same underlying processes. A
model of these underlying processes, CMR, provided a very good
fit to individual participants. In the case of temporal contiguity and
semantic proximity, 126 out of 126 participants showed the effect.
This level of consistency suggests that temporal contiguity and
semantic proximity are universal principles in the sense that every
healthy adult shows them. Indeed, the contiguity and proximity
effects were so consistent across individuals that one is tempted to
rename them contiguity and proximity laws.

Most participants’ PFR functions were flat through early list
items and began a steep, monotonic increase a few items back from
the end of the list, mirroring the average function. However, we
found evidence of two subgroups that showed patterns quite dif-
ferent from the average PFR. The first subgroup showed a
“beginning-first” pattern reminiscent of the average initiation pat-
tern seen on early trials (Dallett, 1963; Goodwin, 1976; Hasher,
1973; Huang, 1986) and with short lists (Grenfell-Essam & Ward,
2012). The second subgroup showed a tendency to initiate recall
from a variety of positions from the second half of the list rather
than the strong tendency to initiate at the last item. Notably, the
PFR of this subgroup is nonmonotonic, peaking about one item

back from the end of the list (see Figure 9D), suggesting that items
are chunked and recalled in forward order within chunks (Farrell,
2012).

Strategies Versus Processes

As detailed in the introduction, we view task performance as an
interaction between task-specific strategy selection and domain-
general memory processes. Under this view strategy plays a im-
portant role in memory tasks; it allows a common set of memory
processes to be intelligently deployed to meet the demands of a
wide range of tasks. Moreover, there is no doubt that there are
differences between participants in the strategies that they adopt.
Our analyses show, however, regardless of any variation among
participants in strategy use, that there is a set of effects that are
highly consistent across participants, which we suggest reflect the
operation of a common set of memory processes.

Throughout the article we have built a case that differences
among participants in strategy use cannot account for the shape of
average free recall functions, and suggested that these curves
instead represent the operation of core memory processes. Of
course, the fact that differences in strategy use do not account for
the shape of the curves does not logically preclude the possibility
that all participants adopt a common strategy, and that the common
strategy determines the shape of the curves. For example, the
constraints of the task may force all participants into a common,
but still ad hoc, strategy that tells us little about the memory
system. Such a common-strategy account borders on unfalsifiable
if we limit ourselves to examining behavioral performance on a
single task (indeed one could argue that almost any effect in
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Figure 11. Means of clusters for lag-conditional response probability functions. K-means with k � 4 was used
to assign each participant to a cluster. Solid lines show the no-task lists; dashed lines show the task lists. The
legends give the number of participants assigned to each cluster.
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psychology represents a strategy rather than a cognitive process).
Luckily we can gain some traction in separating common-strategy
and core-process accounts in a few ways. First, we can resort to
models of the cognitive system. We have shown that CMR, a
model of core memory processes that has been used to account for
a wide range of empirical findings without simulating strategy use,
can account for the data of almost all individuals. These simula-
tions show conclusively that the effects can be accounted for
without strategies. Second, we can attempt to generalize the effects
beyond a single task. The contiguity effect is observed on a variety
of other tasks that do not obviously have the same strategy affor-
dances as free recall, such as high-confidence old/new recognition
responses (Schwartz et al., 2005), intrusions in paired-associate
recall (Davis et al., 2008), and more naturalistic recall of autobi-
ographical events (Moreton & Ward, 2010).

The claim that core cognitive processes are not hopelessly
obscured by strategy use should not be surprising: A good strategy
must operate within the constraints of how the memory system
operates. For example, a strategy that ignores the powerful effect
of semantic proximity on the memorability of items is a bad
strategy. This view suggests that when participants are exposed to
a new task, they likely explore different strategies, abandoning
ineffective ones as they gain practice, and converging on those that
take best advantage of core memory processes. Therefore, a first
hurdle in attributing an effect to a core memory process is showing
that it does not disappear with practice. We cleared that hurdle by
examining free recall functions in participants who are highly
practiced with the free recall task having completed many trials
over multiple sessions. In typical single-session laboratory studies,
early trials constitute a much higher percentage of the total number
trials and therefore likely confound learning-to-learn effects with
underlying memory processes.

However, even in the case of learning a new task, we should not
overestimate the importance of strategy. If we view task perfor-
mance as reflecting both a strategy component and a memory
component, there is no reason to assume that only the strategy
component is optimized with practice. Just as participants will
explore different strategies when first exposed to a task, partici-
pants likely go through a “tuning period” in which they attempt to
optimize the parameters of their memory system to fit the demands
of the task. To use CMR as an example, participants may tune the
parameters that control the weighting of pre-experimental seman-
tic associations versus newly learned temporal associations to
optimally balance the influence of the two types associations in

Table 1
Correlations (Spearman’s �) Between Mahalanobis Distances
for the Four Free Recall Functions

Variable 1 2 3 4

1. SPC —
2. PFR .11 —
3. Lag-CRP .11 .2 —
4. Semantic-CRP .029 .03 .26 —

Note. Correlations in bold are significant at 
 � .05. SPC � serial
position curve; PFR � probability of first recall; CRP � conditional
response probability.

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

Semantic Similarity

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

 

 

n = 27
n = 30

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

Semantic Similarity

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

 

 

n = 31
n = 28

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

Semantic Similarity

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

 

 

n = 41
n = 54

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

Semantic Similarity

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

 

 

n = 27
n = 14

Figure 12. Means of clusters for semantic-conditional probability functions. K-means with k � 4 was used to
assign each participant to a cluster. Solid lines show the no-task lists; dashed lines show the task lists. The
legends give the number of participants assigned to each cluster.
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guiding recall. Tuning parameters is not the same as exploring
strategies; two participants may have the same strategy but differ-
ent parameter settings. The distinction can be clarified by asking
whether the effect in question could be captured by varying the
parameters of a strategy-free model. If so, it may be a case of
parameter tuning; if not, strategy differences may be the cause. For
example, a weakening of semantic clustering and a strengthening
of temporal clustering with repeated exposure to the same list
(Klein, Addis, & Kahana, 2005) could naturally be modeled by
gradually increasing the CMR parameter that controls the weight-
ing of new temporal associations. By contrast, the difference
introduced by asking participants to encode deeply or shallowly
would likely require some addition to the model to account for
selective attention to stimuli features.

This logic suggests that the beginning-first and end-first recall
initiation clusters do not necessarily reflect a difference in strategy.
The fact that CMR can fit the beginning-first cluster suggests that
it is in fact a difference in parameter tuning, as one would expect
CMR to be unable to fit individuals who are using different
strategies. A similar analysis could be applied to the recently
reported finding that beginning-first initiation becomes less likely
as list length increases (Grenfell-Essam & Ward, 2012). Such an
effect could occur because different list lengths encourage the use
of different strategies, but it could also result from a strategy-free
model under which both a primacy gradient and a recency gradient
influence the accessibility of list items. If we assume that both
primacy and recency decay with temporal separation between an
item and the retrieval cue, then, all else being equal, we expect
participants to initiate with an item from near the end of the list. If,
however, primacy is stronger than recency, then as list length
decreases and the proximity of early items to the end of the list
increases, there will be a point at which primacy overcomes the
temporal-proximity advantage of recency and participants shift to

a beginning-first initiation pattern. Moreover, there will also be
individual differences in the shift point if there are any systematic
or stochastic differences between individuals in their recency and
primacy parameters.

Individual Differences in Recall Dynamics

Although there is some work on individual differences in
strategy selection (Bailey et al., 2008; Coyle et al., 1998), the
notion of parameter tuning has received little attention. Thus,
the extent to which differences between individuals on early
trials are due to strategy exploration versus parameter tuning
should be an important target for individual differences re-
searchers. For example, some variables, such as orthographic
distinctiveness of list items, can influence and possibly elimi-
nate the contiguity effect (McDaniel et al., 2011) among par-
ticipants with limited practice, but it remains to be seen whether
these variables influence contiguity directly by disrupting mem-
ory processes or indirectly by encouraging participants to ex-
plore strategies that obscure contiguity.

Similarly, analyses reported by Unsworth et al. (2011) could be
seen as showing an effect of individual differences in strategy on
the shape of the SPC. They found three distinct clusters of partic-
ipants, which they labeled “recency,” “primacy,” and “both.”
However, the participants completed only 10 free recall lists (com-
pared with 112 lists for the participants reported here), and there-
fore the subgroups may represent variation in strategy exploration
and parameter tuning and not variation in core processes. More-
over, Unsworth et al. reported results only from dividing the data
into three clusters and did not report parsimony-corrected fit
values for other numbers of clusters. Indeed, inspecting the SPCs
of these clusters suggests that they vary quantitatively rather than
qualitatively; each group seems to show both a recency and a
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Figure 13. Schematic of context maintenance and retrieval. When an item is studied, a set of features (F) is
activated, corresponding to the item’s identity. This set of features is then used to update a context representation
(C) by projecting through the feature-to-context associative weight matrix (MFC). Hebbian learning creates links
between coactive features and context elements (on both MFC and MCF). During recall, context is used to
reactivate the features of studied items by projecting through MCF.
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primacy effect but to varying degrees. Therefore, we argue that
their findings are consistent with our own.

The analyses presented here suggest that individual differences
in SPC, PFR, lag-CRP, and semantic-CRP functions are largely
due to quantitative variations in the efficiency of the same under-
lying memory processes, rather than qualitative differences in
strategies employed. The claim that individual differences are
quantitative rather than qualitative should not be mistaken for the
claim that individual differences are unimportant. Indeed, we think
individual differences have been neglected in memory research in
general, and free recall research in particular. By contrast, re-
searchers investigating working memory have a long and produc-
tive tradition of studying individual variation in memory processes
and the relation of those processes to other aspects of cognition
(e.g., Hasher, Lustig, & Zacks, 2007; Kane, Poole, Tuholski, &
Engle, 2006; McCabe, Roediger, McDaniel, Balota, & Hambrick,
2010; Miyake et al., 2000).

There is growing interest in individual differences in long-term
memory tasks (Mogle, Lovett, Stawski, & Sliwinski, 2008; Un-
sworth & Engle, 2007) driven by accumulating evidence that the
tasks used to study working memory actually measure, at least
partly, long-term memory (Healey & Miyake, 2009; Unsworth &
Engle, 2006). We have recently shown that four sources of vari-
ation underlie individual differences in recall dynamics, corre-
sponding to primacy, recency, and temporal and semantic conti-
guity (Healey, Crutchley, & Kahana, 2013). We expect that the
emerging literature on individual differences in long-term memory
will have a major impact on the field, but it is important to
understand the nature of those individual differences: Quantitative
variation in a common set of memory processes.

Conclusions

Laboratory paradigms have been the most important tools in
developing an understanding of human cognition. Concerns that
the key measures provided by these paradigms do not reflect core
cognitive processes, but are in fact artifacts of averaging across
individuals who employ different strategies (e.g., Hintzman,
2011), must be taken seriously. But the solution is not to abandon
existing paradigms. Rather, the solution is to rigorously test their
validity. Here we found that four key free recall measures are
highly consistent across individuals, with only recall initiation
showing signs of qualitative differences among individuals. This
level of consistency, and the fact that individual participants’ data
are well characterized by a computational model of core memory
processes that makes no use of strategy, suggest that these free
recall effects reflect fundamental principles of the memory system.
We hope that the analytical techniques we have introduced here
can be used test the validity of other key laboratory paradigms.
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