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The principles of recency and contiguity are two cornerstones of the
theoretical and empirical analysis of human memory. Recency has been
alternatively explained by mechanisms of decay, displacement, and retroac-
tive interference. Another account of recency is based on the idea of variable
context (Estes, 1955; Mensink & Raaijmakers, 1989). Such notions are typi-
cally cast in terms of a randomly fluctuating population of elements reflective
of subtle changes in the environment or in the subjects’ mental state. This
random context view has recently been incorporated into distributed and
neural network memory models (Murdock, 1997; Murdock, Smith, & Bai,
2001). Here we propose an alternative model. Rather than being driven by
random fluctuations, this formulation, the temporal context model (TCM),
uses retrieval of prior contextual states to drive contextual drift. In TCM,
retrieved context is an inherently asymmetric retrieval cue. This allows the
model to provide a principled explanation of the widespread advantage for
forward recalls in free and serial recall. Modeling data from single-trial free
recall, we demonstrate that TCM can simultaneously explain recency and
contiguity effects across time scales. © 2001 Elsevier Science
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1. THE SCALE-INVARIANCE OF RECENCY AND CONTIGUITY

We seek to explain two basic principles of human episodic memory—the
principle of recency and the principle of contiguity. The principle of recency refers
to the ubiquitous finding that memory performance declines with the passage of
time or the presence of intervening items. The principle of contiguity refers to the
equally general finding that recall of an item is facilitated by the presentation or
recall of another item that occurred close in time to the target item. Both of these
principles relate memory performance to temporal factors—the time since an item was



presented in the case of recency, and the time between item presentations in the case
of contiguity.

1.1. Recency, Contiguity, and Asymmetric Association in Free Recall

In free recall, subjects are presented with a list of words. Their task is to recall the
words in any order. Data derived from this task have been used to constrain models
of short- and long-term memory (e.g., Atkinson & Shiffrin, 1968; Glanzer, 1972),
models of episodically formed associations in long-term memory (Raaijmakers &
Shiffrin, 1980, 1981b), and models of the semantic organization of long-term
memory (e.g., Tulving, 1968).

In free recall, the principle of recency may be seen in the serial position curve
(e.g., Murdock, 1962). The last several list items are generally remembered much
better than earlier list items. This end-of-list recency effect can also be seen in
subjects’ tendency to initiate recall from the end of the list. Howard and Kahana
(1999) have shown that the probability of first recall, a serial position curve for the
very first item subjects recall, is a particularly sensitive measure of the end-of-list
recency effect.

After an item is recalled from a given serial position, the item recalled next tends
to come from a nearby serial position (Kahana, 1996). This tendency, which we
refer to as the lag-recency effect, illustrates the principle of contiguity. Although
informally suspected since the earliest studies of free recall, the lag-recency effect
was first detailed by Kahana (1996). It is measured by the conditional response
probability (CRP; Howard & Kahana, 1999; Kahana 1996) plotted as a function of
the lag (or separation) of the studied items. The CRP function has a characteristic
shape. It is peaked in the middle around lag zero, indicating that recalls to nearby
serial positions are more likely than recalls to remote serial positions. It is also
asymmetric, with a greater probability of making recalls in the forward, rather than
backward direction (see Fig. 1).

Since Ebbinghaus, theorists have assumed that forward associations are stronger
than backward associations (e.g., Ebbinghaus, 1885/1913; Gillund & Shiffrin, 1984;
Johnson, 1991). Asymmetry is clearly a very robust feature of free recall (see
Fig. 1). Although retrieval of paired associates is often symmetric (Asch &
Ebenholtz, 1962; Kahana, 1999; Rizzuto & Kahana, 2001), retrieval in free and
serial recall shows marked asymmetries. In serial recall, evidence for associative
asymmetry comes from free association to probes from serial lists (McGeoch, 1936;
Raskin & Cook, 1937), probed recall of serial lists (Kahana & Caplan, in press),
and dissociations between forward and backward recall (Li & Lewandowsky, 1993,
1995). Despite the overwhelming evidence for asymmetric association in free and
serial recall, and its importance in models of these tasks, there has been essentially
no work on mechanisms causing associative asymmetry.

Another striking feature of the serial position curve in free recall is the primacy
effect—an increase in the probability of recalling the first few list items (relative to
the items in the middle of the list). Numerous studies have linked the primacy effect
with rehearsal: Items from the beginning of the list receive a larger number of
rehearsals than do items from other list positions (Rundus, 1971; Tan & Ward,
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FIG. 1. The lag-recency effect in free recall. Shown are conditional response probability (CRP)
curves from several large free recall studies (Murdock, 1962; Murdock & Metcalfe, 1978; Murdock &
Okada, 1970). Each curve measures the probability of making a recall to serial position i+lag immedi-
ately following recall of serial position i. All of the CRP curves show the same characteristic properties:
an advantage for nearby recalls and an asymmetry favoring forward recalls. The advantage for nearby
recalls is shown by the peak in the center of the curves. The asymmetry is evident by comparing points in
the forward direction (e.g., +1 with analogous points in the backward direction (e.g., −1). Reproduced
from Kahana (1996). A. CRP from the LL=20, 2 s/item condition of Murdock (1962). B. CRP from
the LL=20, 1 s/item condition of Murdock (1962). C. CRP from the LL=30, 1 s/item condition of
Murdock (1962). D. CRP from the LL=40, 1 s/item condition of Murdock (1962). E. CRP collapsed
over conditions of Murdock and Okada (1970). F. CRP from Murdock and Metcalfe (1978).

2000). When rehearsal is disrupted, the primacy effect virtually disappears
(Glenberg et al., 1980; Howard & Kahana, 1999; Marshall & Werder, 1972;
Rundus, 1980; Watkins, Neath, & Sechler, 1989). When the serial position curve is
plotted as a function of rehearsal position, rather than the presentation position of
the items (as in the functional serial position curve of Brodie & Murdock, 1977;
Tan & Ward, 2000), the result is a pure recency effect.

In addition to the large primacy effect attributable to rehearsal, there is also a
residual one-position primacy effect in the probability of first recall that does not
seem to be dependent on rehearsal (Howard & Kahana, 1999; Laming, 1999). A
one-position primacy effect is also sometimes found in item recognation experi-
ments where verbal rehearsal is unlikely (e.g., Monsell, 1978; Neath, 1993; Neath &
Crowder, 1996; Wright, Santiago, Sands, Kendrick, & Cook, 1985).

1.2. Approximate Scale Invariance

Both recency and contiguity effects are approximately invariant across time
scales. The long-term recency effect observed in continuous-distractor free
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recall (Bjork & Whitten 1974) demonstrates the scale invariance of the end-of-list
recency effect. In the continuous-distractor technique, a period of distractor activity
separates each of the items in the list. The length of this interval is called the
interpresentation interval (IPI). A period of distractor activity also intervenes
between presentation of the last item in the list and the free recall test. The duration
of this period is called the retention interval (RI). The presence or absence of a
recency effect depends not so much on the magnitude of the delays, but very much
on the relative values of the IPI and RI (but see Nairne, Neath, Serra, & Byun,
1997). Because recall is a function of relative rather than absolute ‘‘strength,’’
approximate scale invariance of this type implicates a competitive retrieval
mechanism.

Surprisingly, a similar scale invariance also appears to hold for the principle of
contiguity. Howard and Kahana (1999) found that the lag-recency effect is
observed in continuous-distractor free recall when subjects engage in 16 s of a
demanding arithmetic distractor task between list items. Because this same distrac-
tor was sufficient to greatly attenuate the end-of-list recency effect, it is unlikely
that the lag-recency effect is a consequence of direct interitem associations formed
as a result of co-occupancy in short-term store (STS).1 Because the lag-recency

1 In the SAM model of free recall (Raaijmakers & Shiffrin, 1980, 1981b), co-occupancy in STS
produces a lag-recency effect that is well matched to the data when there is no interitem distractor
(Kahana, 1996).

effect probably does not depend on direct interitem association, we hypothesize that
it is the result of some type of temporally sensitive construct. The shape of the CRP
curve (an index of the magnitude of the lag-recency effect) does not measurably
change with a large increase in the temporal separation of items: the lag-recency
effect, like the end-of-list recency effect, is approximately scale invariant. Notably,
the asymmetry seen in the lag-recency effect in standard free recall persists in
continuous-distractor free recall.

1.3. Toward a Unified Account of Recency and Contiguity

The key to developing a unified account of recency and contiguity in free recall is
to find a single construct that measures to different intervals. According to classic
strength theory, each item’s strength is incremented when the item is studied, and
then it decays over time. At test, items compete for recall, with the stronger items
being favored. Such a model produces end-of-list recency because recent items have
high strength. By extension, it can then be said that strength ‘‘measures’’ the time
interval between study and test. To adapt this strength framework to account for
the lag-recency effect, we must assume that retrieval of an item strengthens items
that come from nearby list positions. In this enhanced model, strength is measuring
two intervals: the one between study and test, and the one between the presentation
of two different studied items. In effect, successful recall of an item allows our
strength construct to ‘‘jump back in time,’’ making remote items that were studied
close in time to the just-recalled item appear recent.

Like classic strength models, random context models (e.g., Anderson & Bower,
1972; Estes, 1955; Mensinck & Raaijmakers, 1988, 1989; Murdock, 1997; Murdock
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et al., 2001) are also sensitive to the time between study and test. Estes’s (1955)
stimulus sampling theory, for example, defines context as a set of binary elements,
some of which are ‘‘active,’’ while others are not. Context fluctuates from moment
to moment, with active elements turning off with probability p and inactive
elements turning on with probability q. Studying an item creates an association
between the item and the current state of context. At test, cueing with the current
state of context will tend to activate recent items, because the number of overlap-
ping active elements decreases as the time interval increases. In this way, random
context models can account for the recency effect observed in immediate free recall.

Howard and Kahana (1999) added a contextual retrieval process to a simple
random context model. They assumed that when an item is recalled, the population
of elements is reset to the state it was in when the item was presented. This retrieved
contextual state is then used as the cue for subsequent recalls; it is a better cue for
items close in the list to the just-recalled item. If random context is retrieved, it
serves as a temporally sensitive construct that measures the distance from the just-
recalled item—that is, it jumps back in time. When coupled with a competitive
retrieval mechanism, this retrieved random context model explains recency and
contiguity across time scales (Howard & Kahana, 1999).

By assuming that context is retrieved, Howard and Kahana (1999) showed that a
retrieved random context model could account for the basic pattern of recency and
contiguity effects across time scales. Although it provided a decent fit to the data,
this solution was superficial. How is it, upon recall of item i, that all of the contex-
tual elements were able to be reset to their values at the time of presentation of
item i? The lack of a process by which this can be accomplished is a weakness—a
lack of constraint. This is troubling in that sometimes we require the contextual
state to drift and at other times to jump back in time. How does the system know
when to jump back in time and when to drift? Imagine a sequence of items a b c d

e f. Suppose that after presentation of item f, we retrieve the context from item b

(because it is recalled or presented as a cue). Because f is remote from b, and we
have assumed perfect retrieval of b’s context, the contextual cue no longer treats f

as recent. Intuitively, this seems like an undesirable property.
In addition, some important features of the data required an ad hoc solution. The

lag-recency effect (as seen in the shape of the CRP curves) shows a reliable asym-
metry. Forward recalls are more likely than backward recalls (Howard & Kahana,
1999; Kahana, 1996). We solved this problem by simply adding a free parameter to
differentially weight forward and backward associations. Given that asymmetry in
free recall is an extremely robust result, and that asymmetry in memory would seem
to be a very useful property, a principled account of asymmetry is required.

2. CONTEXT IN MODELS OF MEMORY

In this section we start by describing how contextual cues can be implemented in
distributed memory models (DMMs). We then introduce a general framework in
which to describe and contrast both traditional random context models (Estes,

TEMPORAL CONTEXT MODEL 5



1955; Mensink & Raaijmakers, 1988; Murdock, 1997) and the temporal context
model presented here.

2.1. Contextual Cues in Distributed Memory Models

DMMs assume that perceptual recognition systems first break down incoming
information into meaningful units. Each unit is then represented by a set of abstract
feature values; mathematically, this set describes a vector in a high dimensional
feature space. These vectors are taken to correspond to items in semantic memory.
Let us denote the space on which these item vectors reside as F and specific vectors
as f. The state on F at time i is denoted as fi . We refer to individual items with
Greek superscripts and use italic subscripts to refer to a particular occurrence of an
item. For instance, if we had a list of words, absence, hollow, pupil, absence, and
the item representation for absence was f c then f c=f1=f4. For simplicity, we will
assume orthonormal item representations throughout.

To accomplish episodic tasks, the brain must distinguish between nominally
identical items that are encountered in different places and at different times. In
distributed memory models (e.g., Chappell & Humphreys, 1994), a distributed
representation of list context has been used to perform this discrimination.2 List

2 Although not a distributed memory model, the SAM model makes extensive use of fixed list context
in recall and recognition (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1980, 1981a).

context, in these models, is a random vector chosen anew for each list (see also
Anderson & Bower, 1972). This leads to a high degree of similarity between context
vectors corresponding to the same list and a much lower similarity between context
vectors corresponding to different lists. By linking item and context representations
in memory, one could accomplish two useful functions. First, one could
determine whether a specific item occurred in a specific list (episodic recognition).
Second, one can use a state of context to cue item representations for recall
(episodic recall).

In order to use context as a cue for semantic memory, we need a way to connect
the context representations to the item representations. Let us denote the state of
context at time i as ti . This vector describes a pattern of activity across another
space T. To connect T with F, we will use a matrix MTF. This matrix represents the
strength of the connection from each element in T to each element in F. We will
assume that this matrix is formed from a set of outer product terms

MTF=C
L

i=1
fi t
−

i, (1)

where tŒ is the transpose of the vector t and the sum is over all of the items in the
current list. This matrix implements the association between a state of context on T
with a particular item, a state on F. For simplicity, we assume that MTF is reset at
the beginning of each list (cf. Murdock & Kahana, 1993). Later we will clarify the
rationale for this simplification and discuss some alternative solutions.

A state on T, tj, will provide an input, fIN —MTFtj to F via MTF, the matrix of
connections from F to T. We define an activation, ai , representing the similarity of
the input, FIN, to a given item, fi .
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ai — fIN · fi

=MTFtj · fi

=C
L

k=1
(tk · tj) fk · fi

= C
fk=fi

tk · tj. (2)

The last line follows from our assumption of orthonormality of the fi s. The
effectiveness of some contextual state tj for an item fi will be a function of the
similarity of tj to the context at the times fi was presented. If fi was only presented
once in the experiment, as we shall assume in the applications here, this is just ti · tj.

2.2. A Framework for Context Models

The previous section demonstrated that a contextual state can be used to provide
a cue to activate items in semantic memory. The effectiveness of a context cue for
an item depends on its similarity to the context in which the item was encoded. This
section describes a theoretical framework for constructing contextual representa-
tions that change gradually over time.

Assume that the state of context at time i, denoted ti , is a vector that follows the
process

ti=r ti−1+tINi , (3)

where tINi is the input at time i, and 0 [ r [ 1 determines the rate of contextual
drift. We refer to this process as the drift equation. The new state of context, ti , is
derived from the previous state, ti−1, and the input, tINi . Because the new state is
derived from the previous state, and the previous state in turn was derived from its
predecessor, context changes gradually.

FIG. 2. Recurrency gives rise to slowly varying context, as in Eq. (3.) Equation (3) states that at
each time step the current state of context ti is constructed from the input vector tINi and the previous
state of context ti−1. One way to implement this would be through a recurrent network, as illustrated
above (Elman, 1990).
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Figure 2 illustrates one possible way to implement the drift equation (Eq. 3).3

3 This is essentially the architecture used in the simple recurrent network of Elman (1990) and applied
extensively to implicit serial learning tasks (Cleeremans, 1993; Cleeremans & McCleeland, 1991). The
difference is in the specification of the weight matrices between layers. The simple recurrent networks
include weight matrices modifiable by back-propagation between tIN and ti , between ti−1 and ti , and
between ti and an output layer. We have not yet discussed the connections between layers, but will
shortly describe Hebbian weight matrices between ti and both input and output layers. In contrast to
these models, we will not consider modifiable connections between ti−1 and ti .

The essential feature is some form of recurrency, so that the previous state can con-
tribute to the new state. Although Fig. 2 shows a separate set of units for the prior
state and the current state, this recurrency could occur via delay lines within a single
layer (Jordan, 1986).

2.2.1. Random Context Models

When tIN is noise, t describes a random context model (e.g., Estes, 1955; Mensink
& Raaijmakers, 1989; Murdock, 1997), as illustrated in Fig. 3. Murdock (1997)
adopts Eq. (3) with tINi =`1−r2 ni , where n is a random vector and r is the rate
of contextual drift. The drift equation, Eq. (3) with tIN given by the last expression,
is an implementation of randomly drifting context, analogous to that of Estes
(1955) and Mensink and Raaijmakers (1988). This random context model is
summarized in Fig. 3.

Random context models have an important property: the overlap between the
state of context at two different times, i and j, is a decreasing function of the time
between i and j. We term this property the proximity relationship.

For the Murdock (1997) formulation of random context, we can derive the
proximity relationship as follows. For any time i > j, ti can be written as

ti=r i− jtj+`1−r2 C
i

k=j+1
r i−knk.

If the random vectors, ni , are independent and of unit length, E[||ni ||]=1, and the
elements are symmetric with zero mean and finite variance, then E[ni ·nj]=0,
i ] j, and

E[ti · tj]=r |i− j|.

This means that the overlap between the state of context at two different times, i
and j, is a decreasing function of the time between i and j. The variance of ti · tj
approaches zero as the dimensionality of t increases without bound (because of the
finiteness of the element variance and the normality of the n vectors), and we obtain
what we will refer to as the proximity relationship:

ti · tj=r |i− j|. (4)

By accumulating noise, t functions as a temporally sensitive construct, with the
value of r determining the rate of contextual drift.
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FIG. 3. Random context model. The box labeled T takes its input, tIN, from a source of random
noise, and combines it with the previous state of t according to the drift equation (see Fig. 2). Because
the noise at one time is uncorrelated with the noise at another, t functions as a temporally sensitive con-
struct obeying the proximity relationship, Eq. (4). The matrix MTF (Eq. 1) allows the state of context at a
given time to be associated with the item on F presented at that time.

By substituting the proximity relationship into the definition of ai (Eq. 2), we can
easily calculate the activation for an item in semantic memory, fi , induced by a
contextual state tj:

ai=r |i− j|.

Notice that this expression is symmetric with respect to interchange of the indices i
and j.

In this random context model, cueing with t will differentially activate recent
memories. This provides a natural account of the recency effect. By adding a com-
petitive retrieval mechanism, this model can also explain the scale-invariance of
recency (the ratio of activation for recent and remote items will remain constant).

To explain contiguity effects we need something more. We need a second asso-
ciative operation linking items to context and thus allowing for retrieval of
previously experienced contextual states. This idea of retrieved context serves as the
basis for the temporal context model (TCM) described in the next section.

3. THE TEMPORAL CONTEXT MODEL

TCM characterizes the processes of contextual coding, storage, and retrieval. In
doing so, it seeks to explain recency and contiguity effects across time scales, and it
offers a mechanistic account for the process of contextual drift.

In TCM, retrieved context, rather than random noise, drives contextual drift.
When a randomly chosen word list is assembled, the context retrieved by each item
is uncorrelated and the model mimics randomly drifting context models. When a
word from the list is recalled, it retrieves not only its prior (previously uncorrelated)
context, but also the context from the current list.

To retrieve context, we introduce an item-to-context associative matrix. This
outer product matrix, MFT, connects the F layer to the T layer, as shown in Fig. 4.
In TCM, the input to the evolution equation, Eq. (6), is obtained by presenting the
current stimulus item to the matrix MFT:

tINi =MFT
i fi . (5)
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FIG. 4. Temporal context model. Rather than integrating random noise, TCM continuously retrieves
context associated with its inputs. T operates by a process similar to that shown in Fig. 3, but now the
inputs tIN are a superposition of prior contextual states retrieved by the item presented on F via the
matrix MFT. This results in a tight coupling between the actual sequence of inputs and the state of
temporal context.

The matrix MFT will contain a number of terms of the form tjf
−

j. When MFT

operates on an item f n, the result will be a superposition of contextual states tj such
that fj=f n.

In TCM, we rewrite the process for t as

ti=ri ti−1+bt
IN
i . (6)

We refer to this as the evolution equation. Here b is a free parameter and 0 < ri [ 1
is chosen to satisfy the constraint that ||ti ||=1.4 Note that if there is no input,

4 This constraint cannot be satisfied if ||tINi || is sufficiently large. In this case, ri will be zero. In this
paper, ||tIN|| is always one.

tINi =0 and t does not change. To solve for ri, we note that

||ti ||2=(ri ti−1+bt
IN
i ) • (ri ti−1+bt

IN
i )

=r2i+2bri (ti−1 · t
IN
i )+b2.

To satisfy the constraint that ||t||=1, we just have to solve a quadratic equation for
ri . The solution of this quadratic equation constitutes the general form for ri :

ri=`1+b2[(ti−1 · t
IN
i )2−1]−b(ti−1 · t

IN
i ). (7)

If item i has not been presented for a long time, then ti−1 · t
IN
i 4 0 and ri=r —

`1−b2, the asymptotic value for ri .

3.1. Asymmetric Association

In TCM, preexperimental context is retrieved during study. This context, in turn,
drives the evolution equation. At test, we assume that both the preexperimental
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context and the studied context are retrieved, and that together they drive the
evolution equation. As we show in this section, this assumption enables TCM to
account for the asymmetric retrieval observed in both free and serial recall (Howard
& Kahana, 1999; Kahana, 1996; Kahana & Caplan, in press; Raskin & Cook,
1937).

During study, TCM retrieves preexperimental context. When an item is repeated,
which context do we retrieve, the preexperimental context or the study context? At
one extreme, we could simply retrieve the preexperimental context again. In this
case, the contextual representation would show no learning: the context retrieved by
an item would presumably never change. At the other extreme, we could simply
retrieve the most recent contextual state associated with an item. In this case, the
contextual representation would have no memory: the long-term statistics of item
co-occurrence would be lost from tIN.

The relative contribution of preexperimental and newly learned study context
needs to be determined before we can write down a learning rule for the item-to-
context matrix. Fortunately, in addition to the rather esoteric concerns listed above,
there are strong constraints provided by the data.

3.1.1. The Effect of tINi and ti on the CRP

If we present some item to the network at time step i, and repeat it later at time
step r, then tINr can be expressed in terms of the preexperimental context tINi and the
newly learned ti , the context evoked during presentation of the list at time step i
(see Fig. 5). The choice of the relative strength of preexperimental context, tINi , and
newly learned experimental context, ti , has important implications. The similarity
of the newly learned context to nearby contextual states tj is symmetric around i in
the absence of repetitions (this is the proximity relationship, Eq. 4). In contrast, the
preexperimental context, tINi , only participates in subsequent contextual states. That

FIG. 5. Let us suppose that an item, absence in this case, is presented at time i and then repeated at
time r. On the first presentation of the item, the retrieved context tINi is from preexperimental experience
with absence. When absence is repeated at time r, the retrieved context tINr includes both the preex-
perimental context, tINi , and the newly learned context, ti. Wide arrows indicate the operation of the
path-integrator. Curved lines indicate the functioning of retrieved context.
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FIG. 6. In TCM, context retrieved by repetition of an item serves as an asymmetric retrieval cue for
neighboring contextual states. Let us suppose that an item is presented at time i and then repeated at
time r. The context retrieved at time r, tINr , will be a combination of the newly learned context ti and the
preexperimental context tINi . The solid circles plot ti · tj as a function of the interitem lag, j− i. The open
circles plot tINi · tj. As is clear from the figure, newly learned context provides a symmetric retrieval cue,
whereas pre-experimental context only helps forward recalls.

is, ti+1 includes a tINi term, but ti−1 does not. As a result, the similarity of tINi to
nearby states tj is asymmetric. Assuming a list without repetitions:

tINi · tj=3
b(1−b) (j− i)/2 j \ i
0 j < i.

These two contributions to retrieved context are plotted in Fig. 6.

3.1.2. Specifying the Relative Contribution of tINi and ti
Contiguity effects are asymmetric (Howard & Kahana, 1999; Kahana, 1996),

favoring forward recalls over backward recalls, as does tINi . However, contiguity
effects also show an advantage for nearby versus remote recalls in the backward
direction, whereas tINi provides no basis whatsoever for recalling items that
preceded i. This advantage for nearby versus remote backward recalls must be
supported by ti . The contribution of both of these associative components can be
varied by allowing random noise to enter into the process. To gain control over the
relative strength of tINi and ti , we can write

tINr =Ai t
IN
i +Bi ti . (8)

We choose values of A and B so that the length of the input at time r, ||tINr ||, is
unity. We introduce a free parameter, c=Ai /Bi , to determine Ai and Bi at each
presentation. Combined with the constraint that ||tINr ||=1, we can solve for Ai
and Bi . To solve for Ai and Bi, we note that

||tINr ||=1

=A2i+2AiBi t
IN
i · ti+B2i .
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Substituting A=cB into this expression, we find

Bi=
1

c2+2c(tIN · ti )+1
. (9)

Everything on the right-hand side (RHS) of Eq. (9) is known. Using the definition
of c, we can trivially calculate Ai . This calculation does not require any knowledge
about the delay r− i, but simply the relationship between ti and tINi . We can now
rewrite Eq. (8) explicitly as

tINr =
ctINi +ti

c2+2c(tIN · ti )+1
. (10)

3.1.3. A Learning Rule for Contextual Retrieval

The goal of this section is to derive a learning rule for item-to-context associa-
tions, MFT, that will implement the desired relationship between the magnitudes of
preexperimental and newly learned associations, tINi and ti , in the retrieved context
tr at long delays.

Consider a particular item, f n, presented at time i and then repeated at some later
time r (fi=fr=f n). Equation (8) states that the context it retrieves changes from
presentation i to presentation r. That is, tINr is not equal to tINi , but has changed as
a result of the inclusion of ti . Because, by definition, tINr =MFT

r fr, and by assump-
tion fr=fi , the change from tINi to tINr implies some change in MFT. Here we make
explicit the changes in MFT that will enable us to use it to implement Eq. (8).

Equation (8) states that

tINr =MFT
r fi=Ai t

IN
i +Bi ti.

Now, tINi =MFT
i fi . Substituting this into the equality above gives us

MFT
r fi=AiM

FT
i fi+Bi ti . (11)

We can see from this expression how MFT
r must differ from MFT

i for this to be true.
The Bi ti term on the RHS tells us that MFT

r must contain a Bi ti f
−

i term that MFT
i

does not. The first term on the RHS tells us that terms in MFT
r contain all of the tjf

−

i

terms that MFT
i did, but they have decayed by a factor of Ai .

To implement Eq. (11) for all i, and for this expression to not depend on the lag
r− i, we must have a way to affect MFTfi while leaving MFTfj unaffected. To do
this let us define a decomposition of a matrix M into two matrices parallel and
complementary to some vector v:

M=MPv+MP̃v .

We define Pv, the projection operator with respect to v, as

Pv —
vvŒ
||v||2

,
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where the prime again denotes the transpose. Let us define the projection operator
complement with respect to a vector v as

P̃v — 1−Pv .

Notice that MPvv=Mv, whereas MP̃vv=0.
Using this notation, we can now write down an equation that will implement

Eq. (8) as a learning rule for MFT.

MFT
i+1=MFT

i P̃fi+AiM
FT
i Pfi+Bi ti f

−

i , (12)

where Ai and Bi can be easily calculated as described in the previous section. The
first two terms on the RHS of Eq. (12) refer to the persistence of preexisting con-
nections between F and T. The last two terms indicate that there is the storage of a
new Hebbian association from fi to ti .

There is nothing about Eq. (12) that would make it difficult to implement in a
neural network. We can perhaps gain some intuition into this by considering what
would happen if the fs and ts were sparse binary vectors.5 MFT

i P̃fi refers to the set

5 This assumption violates prior assumptions about the orthonormality of the fs as well as the
evolution Eq. (6). This example is purely hypothetical.

of entries of MFT
i which connect to elements on F which are zero in fi . These ele-

ments are unaffected. MFT
i Pfi refers to the set of entries in MFT

i that connect to
elements on F which are nonzero in fi . These entries decay by a factor of Ai , which
is necessarily less than one. If they connect a nonzero element of fi to a nonzero
element of ti , they are also incremented by a factor of Bi .

3.2. Summary of TCM

Table 1 summarizes all of the components of TCM. We begin by distinguishing
item representations and contextual representations. Item representations are
vectors f on a space F. Contextual representations are vectors t on a space T.

TABLE 1

Summary of the Temporal Context Model

Name Expression Eq. number

The Context-to-Item Matrixa MTF=;i fi t −i (1)
The TCM Input Equation tINi =MFT

i fi (5)
The TCM Evolution Equationb ti=ri ti−1+bt

IN
i (6)

The Item-to-Context Matrixc MFT
i+1=MFT

i P̃fi+AiM
FT
i Pfi+Bi ti f

−

i (12)

a For simplicity, MTF is assumed to be reset at the beginning of each experiment.
b ri is given by Eq. 7.
c Bi is given by Eq. (9). Ai is defined as cBi , where c is a free parameter. The operators Pfi and P̃fi are

defined in the text.
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Context, t, functions as a cue for recall of an item by means of an outer-product
matrix, MTF, associating the states on F with states on T. The TCM input equation,
(5), specifies that the input to T, tINi , is caused by the presentation of the current
item, fi , to an associative matrix, MFT

i , associating states on F to states on T. The
evolution equation, Eq. (6), describes the evolution of temporal context ti as a
function of the previous state of temporal context ti−1 and the context retrieved by
item fi , t

IN
i . In the evolution equation, b is a free parameter determining the mag-

nitude of a retrieved context’s contribution to ti , whereas ri is chosen such that
||ti ||=1. The item-to-context matrix, MFT

i+1, is updated by decaying the part of the
matrix parallel to fi by a factor Ai and storing an outer product term between ti
and fi weighted by a factor Bi (Eq. 12). These coefficients are chosen such that
||tINr ||=1 for a repeated presentation of fi . Their relative strength is controlled by a
free parameter c=Ai /Bi .

Consider the sequence of events that are postulated to occur when an item fi is
presented. First fi retrieves context, tINi . Then, this retrieved context is used to
update ti−1, resulting in the new state ti . Then, the matrices MFT

i and MTF
i are

updated. These three stages, contextual retrieval, contextual integration, and
updating the connections, must take place in this precise order after each item pre-
sentation for the model to work. This process presumably takes place on the scale
of tenths of seconds.

In TCM, during study of a randomly assembled list of words, tIN is preexperi-
mental context retrieved by the words in the list. When an item is repeated, by
virtue of a repetition in the list, or by its successful recall, it again retrieves preex-
perimental context, but in addition, retrieves the newly learned experimental
context in which it was presented. That is, an item initially presented at serial posi-
tion i and then later at serial position r retrieves tINr , a weighted sum of tINi and ti .
Because the preexperimental context, tINi , is only similar to subsequent contextual
states, tINr is more effective as a cue for items that followed the initial presentation
than for items that preceded the initial presentation. Because the list context ti is a
good cue for items that were presented near serial position i in the list, tINr is able to
support a backward association for serial positions preceding i.

4. APPLICATION OF TCM TO RECALL DATA

We adopt a relatively simple, nonlinear competitive rule for mapping a set of
activations, ai , onto probability of recall. This section begins by describing this rule
and then employs this rule to evaluate TCM’s ability to fit a rich set of data on
retrieval dynamics in free recall. In particular, we assess TCM’s account of recency
across time scales by examining immediate, delayed, and continuous-distractor free
recall. We also assess TCM’s account of contiguity across time scales by examining
delayed and continuous-distractor free recall.6

6 In immediate free recall, the CRP is not stable across output positions (Howard & Kahana, 1999;
Kahana, 1996), making it a less-than-ideal environment for asking basic questions about contiguity
effects. On the other hand, the fact that the CRP changes shape in immediate, but neither delayed nor
continuous-distractor free recall is an interesting phenomenon in its own right. The implications of this
phenomenon are discussed in the general discussion.
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Our rule for mapping the activations onto probability of recall is a variant on
several well-known models of stimulus classification and category learning
(Nosofsky, 1986, 1987; Shepard, 1987). Given a contextual cue, a specific state t,
many items in semantic memory, fi , are activated, each by some amount ai . Given
some contextual cue t, the vector f IN is defined as fIN —MTFt and the activation of
item fi is defined as ai — fi · f IN. This input to F is ambiguous—it is more or less
similar to many items but identical to none. A reasonable assumption is that
subjects are more likely to respond with items fi that are close to fIN. Using the
(Euclidean) distance from fIN to a given item fi we can write

P(fi | fIN)=
exp 1 −1

y
||f IN− fi ||22

; j exp 1 −1
y
||f IN− fj ||22

. (13)

This equation introduces a new free parameter y, which controls the sensitivity of
Pi to differences in the distances. Assuming, as we have all along, that the item
representations fi are orthonormal, Eq. (13) simplifies to

P(fi | fIN)=
exp 12ai

y
2

; j exp 12aj
y
2
. (14)

A key question involves over what range to extend the sum in Eq. (14). On the
one hand, subjects tend to recall items from the current list predominantly. We
could restrict the sum to the current list by assuming that MTF is cleared at the
beginning of each list. This is a common assumption in distributed memory models
(Murdock & Kahana, 1993). Alternatively, we could assume that subjects use a
fixed list context as a retrieval cue (e.g., Raaijmakers & Shiffrin, 1980), where the
contexts for different lists are orthogonal. Both of these approaches are poor
approximations, at best, to what subjects really do. Subjects sometimes recall items
from prior lists, as intrusions, and tend to do so more from recent lists than from
distant ones. Subjects can also directly recall items from prior lists (Shiffrin, 1970a).
In this paper we allow the sum in Eq. (14) to extend only over the current list, while
acknowledging the limitations of this approach.

4.1. Free Recall

The serial position curve in free recall is largely characterized by two processes.
The probability of first recall measures where subjects begin recall—a serial position
curve for the first item subjects produce. The probability of first recall provides an
index of the end-of-list recency effect. After the first recall, subjects tend to make
transitions to nearby serial positions. This tendency, called the lag-recency effect, is
measured with the CRP as a function of lag (the difference in serial positions of the
word recalled at output position i+1 and output position i).
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We hypothesize that in free recall subjects use the current state of t to probe
memory and that t evolves according to TCM. End-of-list recency (as measured by
the probability of first recall) is a result of cueing with the state of context at the
time of test. The lag-recency effect (as measured by the CRP) is a consequence of
context retrieved by recalled items. We evaluate this hypothesis by applying the
model to data on the end-of-list and lag-recency effects in free recall. Although they
were fit simultaneously, these two sets of results will be presented separately in the
following sections. Before starting on the end-of-list recency effect, we note some
considerations common to all the modeling in this paper.

4.1.1. Summary of Model Parameters

TCM has two free parameters: b, which controls the proportion of retrieved
context used in updating the current state of context, and c, which controls the
degree of asymmetry seen in the CRP. For the purposes of the current simulations,
c was fixed at 1, implying an equal weighting of newly learned and preexperimental
context. The mapping onto probability of recall contributes an additional free
parameter, y. In addition, we allowed d, the effective length of the distractor inter-
vals in delayed and continuous-distractor free recall, to vary freely.

The freedom to make d different from the actual amount of clock time constitut-
ing the delay interval is a consequence of the causality of TCM and the constraint
that ti remain normalized. That is, because ri depends on the similarity of tINi to
ti−1, the rate of change of context is a causal consequence of the items presented.7

We assume that one of the properties of arithmetic distractor problems is that they

7 This property also predicts that recency should not be affected by an unfilled retention interval.
When no item is presented, fi=0, then tINi =0 and ri=1. This prediction is consistent with findings
from both free recall and short-term paired associate learning (Baddeley & Hitch, 1977; Murdock, 1963).
Furthermore, the amount of information given during a delay period, rather than the time per se, should
be the key factor affecting the recency effect, as was found by Glanzer, Gianutsos, and Dubin (1969).

are relatively similar to each other. As a consequence, they will retrieve similar
contextual states and cause less drift than an equivalent duration of list items.

The other variables, ri , Ai , and Bi , are neither free parameters nor fixed param-
eters. According to TCM, their value is determined at each item presentation to
ensure satisfaction of normalization constraints.

4.1.2. Experimental Data

To assess TCM’s ability to describe recency effects in free recall across time
scales, we fit TCM to data from the immediate condition of Experiment 1 and the
delayed and continuous-distractor conditions of Experiment 2 of Howard and
Kahana (1999). The end-of-list recency effect was measured using the probability of
first recall. The lag-recency effect was measured using the CRP as a function of lag
at the first output position.
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Howard and Kahana (1999) used a semantic orienting task in an effort to
minimize rehearsal in two free recall experiments.8 In both experiments, subjects

8 The raw data from these (and other) experiments can be downloaded from http://fechner.ccs.
brandeis.edu/Experiments/archive.html.

studied lists of 12 items, randomly sampled from the Toronto Noun Pool (Friendly,
Franklin, Hoffman, & Rubin, 1982), presented at a fast rate (1 s in Experiment 1,
1.2 s in Experiment 2). The orienting task was a judgment of concreteness to which
subjects responded with a button press. Sixteen seconds of self-paced true–false
arithmetic distractor intervened between the study of the last item and the free
recall test in all the conditions of Experiment 2. In the continuous-distractor data
for the fits here, an additional 16 s of arithmetic distractor intervened between pre-
sentation of each list item. Subjects were paid a bonus based on their performance
on the orienting and distractor tasks.

4.1.3. Recency: The End-of-List Recency Effect in Free Recall

To make model predictions for the probability of first recall we calculate a set of
activations for the list items given the state of context at the time of test. The long-
term recency effect is predicted because of the joint use of a temporally sensitive
mechanism that is sensitive to changes over a long time scale and a competitive rule
for mapping activations onto probability of recall.

Modeling. We used the simplex method (Nelder & Mead, 1965) minimizing a
variance-adjusted root-mean-squared deviation to generate parameter values. We
allowed b and y to vary. The parameter c, which controls the magnitude of
the asymmetry in the CRP, was set to one, implying an equal contribution of tINi
and ti in Eq. (8). The effective length of the distractor intervals, d, in delayed and
continuous-distractor free recall was allowed to vary.

We used 3000 simulated trials for each set of parameter values. Model predic-
tions were derived by running the experimental analysis software on the simulated
data.

Results and discussion. Figure 7 shows that TCM nicely captures the basic
pattern of end-of-list recency across time scales. The best-fitting value of b was
0.402. The best-fitting value of y was 0.247. The best-fitting value of d was 7.24.
Because the model has no mechanism to generate primacy, it fails to capture the
small one-position primacy effect in the data. For the immediate condition,
q2(8)=26.9. A large portion (8.4) of this deviation was accounted for by the first
serial position. For the delayed condition, q2(8)=57.7. Again, the most deviant
point (18.3) was the first serial position. For the continuous-distractor condition,
q2(8)=37.3.

Although the fits were not numerically spectacular, they were acceptable given
the simplicity of the model. The prediction of the long-term recency effect is a zero
parameter prediction of the model. That is, for every choice of parameters
0 < b < 1, 0 < y <., there is a greater recency effect for continuous-distractor
compared to delayed free recall.
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FIG. 7. The end-of-list recency effect in free recall. This figure shows TCM’s fit to the probability of
first recall in immediate, delayed, and continuous-distractor free recall. The data are from Howard and
Kahana (1999). Because t is a temporally sensitive construct, and the retrieval rule is competitive and
nonlinear, TCM predicts the pattern of recency effects across conditions. Throughout this paper, error
bars on the data are 95% confidence intervals calculated with the method of Loftus and Masson (1994)
for within-subjects designs.

4.1.4. Contiguity: The Lag-Recency Effect

TCM predicts the lag-recency effect because contextual drift is driven by contex-
tual retrieval; i.e., because tINi is a causal consequence of the presentation of item i,
repetition of that item at a later time causes some reinstatement of the context
present at time i, thus mediating an associative effect. Because this retrieved com-
ponent is similar to the context associated with items from nearby list positions, a
lag-recency effect is predicted. The relative strength of the activation of nearby
items will be approximately equal in delayed and continuous-distractor free recall
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FIG. 8. The long-term lag-recency effect. Experimental points are the CRP from the first output
position from the delayed and longest-IPI conditions of Howard and Kahana (1999). The model uses the
same parameter values used to generate Fig. 7. The error bars on the data are 95% confidence intervals
calculated with the Loftus and Masson (1994) method for within-subjects variables.

because the relative spacing of the items within the list is the same. The mapping
onto probability of recall supplies a competitive retrieval rule, so the long-term
lag-recency effect is also predicted.

Modeling. We fit TCM to the CRP from the first output position of the delayed
and the longest continuous-distractor condition of Experiment 2 of Howard and
Kahana (1999). These fits were done simultaneously with those shown in Fig. 7.

Results and discussion. The results are shown in Fig. 8. The fits capture the
existence of a lag-recency effect and the asymmetry in delayed and continuous-dis-
tractor free recall. The forward direction of the CRP in the delayed condition was
the least well fit by the model, q2(5)=103. The forward direction of the CRP for
continuous-distractor free recall was best fit by the model q2(5)=5.46. Although
not numerically spectacular, the fits illustrate that TCM simultaneously predicts
asymmetry in the lag-recency effect, the persistence of the lag-recency effect with
inclusion of an interitem delay, and the persistence of the asymmetry with the
inclusion of the delay.

5. GENERAL DISCUSSION

At one level, verbal theories of episodic memory performance have defined epi-
sodic memory as the type of memory for an item appearing in a specific context,
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with a sometimes vague and flexible definition of context. More quantitative
models of episodic memory performance have relied heavily on associations
between items and list context (Chappell & Humphreys, 1994; Gillund & Shiffrin,
1984; Raaijmakers & Shiffrin, 1980). To introduce long-term forgetting, several
models (Mensink & Raaijmakers, 1988; Shiffrin & Steyvers, 1997) have used ran-
domly varying context. Despite its importance in episodic memory, the definition
and mechanisms of context have rarely been studied. This paper introduces a well-
specified and falsifiable model of temporal context. This model describes recency
and contiguity effects across time scales in a concise and elegant way and provides a
completely novel explanation for the associative asymmetry so commonly observed
in free and serial recall.

5.1. TCM: Model Summary

TCM consists of five basic components:

1. A space F corresponding to semantic memory. Specific states on F,
fi correspond to item representations.

2. A space T. Specific states on T, ti correspond to specific states of context.

3. A matrix MTF connecting T to F, enabling a state of context to serve as a
cue for recall of items. This matrix stores simple Hebbian outer-product terms. We
assume in this paper that MTF is reset at the beginning of each experiment.

4. A matrix MFT connecting F to T. This matrix enables presentation of an
item fi to retrieve prior states of context that were obtained when that item was
presented. This matrix uses item-specific unlearning to ensure that the magnitude of
the retrieved context vector does not grow without bound as the item is repeated
many times.

5. The evolution equation that allows ti to change gradually. In TCM, the
input to the path integrator is retrieved context. When an item is repeated, it
retrieves both preexperimental context, favoring forward recalls, and newly learned
context, which serves as a symmetric cue.

We applied TCM, coupled with a simple rule for mapping item activations onto
probability of recall, to data on recency and contiguity effects in free recall. In this
application we assumed that the current state on T is always the cue for recall of an
item on F. (1) Because ti drifts gradually when a list of random words is presented,
TCM predicts a recency effect (Fig. 7). (2) Because our mapping onto probability of
recall is competitive, the long-term recency effect is predicted (Fig. 7). (3) Because
repetition of an item retrieves context, and context changes gradually, a lag-recency
effect is predicted.

TCM describes the asymmetry seen in the lag-recency effect without additional
assumptions. Both preexperimental and newly learned contextual states contribute
to the contextual cue used in TCM. Preexperimental context is incorporated into
subsequent, but not previous, contextual states. The reinstatement of preexperi-
mental context results in an advantage for subsequent items—a forward recall
advantage. Newly learned experimental context is equally similar to preceding and
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subsequent contextual states. The reinstatement of newly learned experimental
context provides an advantage for nearby versus remote recalls in the backward
direction. The net result of these two factors is an asymmetric, temporally graded
lag-recency effect (Fig. 8).

5.2. Alternative Accounts of Recency and Contiguity

TCM describes recency and contiguity across time scales with a single mecha-
nism. This is not the first attempt at such a unified description of recency and con-
tiguity. The SAM model (Raaijmakers & Shiffrin, 1980) explains immediate recency
as a consequence of buffer occupancy. Short-term store is also held to be the locus
for the formation of new, episodically formed associations. Positional models9

9 The definition of positional model used here is considerably more broad than that typically used.
The models referred to here all share the property that memory search is accomplished via associating
items to some construct with some inherent structure that is independent of the items. Whether this con-
struct is the pegboard often used as an analogy in traditional positional models, a temporal dimension,
as used in the distinctiveness models, or the state of a set of coupled oscillators, all these models can give
rise to associative effects without any actual causality between one recall and another. This broad defi-
nition serves to contrast these models with traditional notions of association, as well as the approach to
association offered by TCM. In this context, TCM can be seen as a hybrid of traditional and positional
approaches to associative effects—associations are mediated by a construct that can have a temporal
metric, but this construct, and its mediating effects, are a causal consequence of the specific items and
the act of recalling them.

(Brown et al., 2000; Johnson, 1991; Lee & Estes, 1977, 1981; Nairne et al., 1997;
Neath & Crowder, 1990) can also be used to explain both recency and contiguity.
For instance, distinctiveness models (e.g., Glenberg & Swanson, 1986; Neath &
Crowder, 1990) assume that recency is a consequence of a decision based on a
comparison of memory for items along a temporal dimension. Positional models
can also be used to drive associative effects. Because nearby items will tend to have
similar positional (or temporal) representations, search along a positional (or tem-
poral) dimension could drive associative effects in the absence of any causal rela-
tionship between one recall and the next. This section discusses TCM vis-a-vis these
other approaches.

5.2.1. Short- and Long-Term Stores

In memory research, short-term store (STS) has been closely tied to the empirical
reality of rehearsal. There is little doubt that some concept of a STS must be
retained. In some applications, e.g., perception of a compound object or simulta-
neous perception of multiple objects, some notion of short-term memory is abso-
lutely indispensable. Similarly, the central point of Atkinson and Shiffrin
(1968)—that voluntary control processes have a great effect on memory—is as true
today as it was 30 years ago. By the same token, our analyses argue that recency
and contiguity reflect basic memory processes that probably do not depend on
short-term store. This of course does not preclude an influence of STS (or some-
thing very much like it) on recency or formation of associations in situations where
active maintenance of information takes place.
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Many of the properties of STS are captured by the context vector ti . Like STS, ti
contains prior items—in this case, the tINj < i. Like STS, ti is temporally sensitive—
more recent items are more likely to remain in STS and more strongly activated by
ti . Like STS, ti changes as a result of the input of new information, rather than the
passage of time per se. Also like STS, ti exhibits sequential dependencies. The effect
of a repeated item on STS depends on whether that item is currently in the buffer.
This is more or less likely depending on the recency of the item (and the number of
unique stimuli to be remembered in an experiment; Atkinson & Shiffrin, 1968).
Similarly, the effect of a repeated item on ti depends on how recently it was
presented.

One could argue that a real strength of TCM is that ti mimics STS over the short
term. Insofar as this is true, STS is like a limiting case of the behavior of ti . The
important difference has to do with the behavior of ti over the long term. Rather
than being replaced from a buffer in an all-or-none fashion, contextual states just
contribute less and less to the contextual cue. Although the probability of an item
being in STS may fall off over time exponentially over any duration one might like
to consider,10 just like ti · tj, buffer occupancy cannot be used to generate recency

10 The probability that an item remains in the buffer is exponential if incoming items are equally likely
to displace any of the items in STS. The exact form depends on the rule used for displacing items from
the buffer.

effects over the long term. The reason is that on the occasions on which the item is
not in STS, there is no benefit whatsoever for the item. In contrast, ti · tj, although
it may also have a small value, is reliable from trial to trial. As a result, it can be
used to support recency effects over long periods of time.

5.2.2. Positional Coding: Why Not a Clock?

Another concept that has been used to explain contiguity effects is positional
coding (see footnote 9). Although most frequently associated with serial recall,
positional codes have also been used to explain free recall. The distinctiveness
models (Nairne et al., 1997; Neath & Crowder, 1990), proposed to explain the long-
term recency effect in free recall, can be seen as using a (relative) positional code.
Although these models are mute as to the existence of contiguity effects in free
recall, contiguity effects can be modeled with a positional code. Indeed, positional
codes have been used to explain confusion gradients (Brown et al., 2000; Burgess &
Hitch, 1999; Estes, 1972; Henson, 1998; Lee & Estes, 1977, 1981). Search through
sequential positions could be used to mimic associative effects. The critical distinc-
tion between TCM and models of this class is the direct causality between item
presentation and associative effects in TCM and the lack of direct causality between
these two in positional models.

Recently, positional codes have been reformulated as a kind of replicable random
context model. For instance, in the Burgess and Hitch (1992, 1999) model, con-
tiguity effects are driven by a context-timing signal. This signal, a vector, changes
slowly from time-step to time-step, much like the random context models (Estes,
1955; Mensink & Raaijmakers, 1988). The context-timing signal differs from
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random context in that it is assumed to pass through the same sequence of states at
test that it did during study, much like a clock that has been wound back to a
starting point. As a consequence, items are recalled in approximately the sequence
in which they were studied. Items recalled out of sequence are likely to be recalled
near to their correct location, leading to error gradients. The OSCAR model
(Brown et al., 2000) describes a context-timing signal constructed from the states of
oscillators with different frequencies.

Although TCM and the clock-context models share some features and some
terminology, they are very different in both conception and implementation and
can be distinguished experimentally, as we will now discuss.

Retrieved context. In TCM, we make extensive use of the term ‘‘retrieved
context.’’ By this term we refer to a well-specified process of contextual retrieval
mediated by an item-to-context matrix. The clock-context models use closely
related terms such as ‘‘contextual reinstatement.’’ In the clock-context models this
means ‘‘resetting of the context vector to the state it occupied at the beginning of
list presentation.’’ The mechanism for such reinstatement is left unspecified.
However, after the context is reset to a given state, it is assumed to evolve through
the same set of states that it did during study. Although OSCAR includes an item-
to-context matrix, this could not be used for contextual reinstatement, as the
context vector is derived from a set of oscillators, which must be reset.

Context effects. The clock-context models are careful to emphasize that the
evolution of the context-timing signal is independent of the items being presented,
or recalled.11 In contrast, in TCM context is driven by particular items retrieving

11 Except of course for the assumptions that grouped presentation recruits oscillators with a specific
frequency (leading to hierarchical effects) and that the beginning of a list somehow marks that contex-
tual state as reinstatable.

context. These differing conceptions of context lead to different predictions.
TCM predicts context effects (e.g., Falkenberg, 1972), whereas a model that relies

solely on a clock-signal cannot. That is, if we precede a TBR stimulus with some
event, say a specific distractor task, then memory for that stimulus will be better
after a delay if we repeat that distractor task.

If a clock-context signal is taken to be the sole cue for recall, then any data that
imply a causal connection between one recall and another cannot be accounted for
by such a model. This has been taken by many authors as a strength of these
models, in that it allows them to account for experiments in which serial recall of a
list that includes phonologically confusable elements does not result in increased
errors for the intervening items (Henson, Norris, Page, & Baddeley, 1996). This
experiment used written recall, so it is not entirely clear that the order in which the
responses appear from top to bottom on the page corresponds exactly to the order
in which they were actually recalled. Even granting the conclusion of that particular
experiment, it remains to be seen whether the result generalizes to sources of error
other than phonological similarity (e.g., semantic similarity, episodically induced
associations). Given that models that assume no causal relationship between one
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recall and the next in serial recall have not been applied to results that certainly
seem to suggest there is such a relationship (e.g., Chance & Kahana, 1997), the
burden of proof should remain squarely on those who wish to claim that chaining
models (defined as those that maintain a causal relationship between one recall and
the next) are dead. Furthermore, leaving aside the issue of serial recall, there is a
great deal of evidence from free recall that suggests that there is a causal relation-
ship between one recall and the next.

5.3. TCM Is Not a Free Recall Model

TCM is a model that prescribes a set of rules for how a distributed episodic
representation should change from moment to moment. The way that this repre-
sentation changes enables it to describe recency effects and associative effects in a
way that can persist across time scales. The availability of data on recency and
contiguity across time scales in free recall varies. We used these data to constrain
TCM and to test its key assumptions. We did not, however, develop a full-fledged
model of free recall. This is an ambitious project that will involve tackling a number
of other important aspects of memory function not yet addressed by TCM. The
purpose of this section is to discuss the additional factors needed to build a
complete model of free recall that uses TCM as its associative engine.

5.3.1. Immediate Recall

As shown in Fig. 7, TCM does a good job at describing the recency effect in
immediate free recall as manifest in the probability of first recall. However, it fails
to quantitatively describe a phenomenon observed in immediate recall at sub-
sequent output positions: in immediate, but in neither delayed nor continuous-
distractor free recall, the CRP changes shape with output position. Specifically, at
early output positions, the CRP is steeply peaked in immediate free recall. As
output continues, the CRP becomes less pronounced, asymptoting at a level
consistent with that seen in delayed recall (Howard & Kahana, 1999; Kahana, 1996).

Kahana (1996) showed that the change in the CRP with output position is per-
fectly consistent with retrieval from short-term store to initiate immediate recall.
Although the effect of output position on the CRP in immediate free recall does not
necessarily require short-term store, we think it does requires a model of semantic
retrieval significantly more complex than the simple activation-choice rule used
here.

The traditional view of immediate recency would be that multiple item represen-
tations are active in semantic memory at the time of test. Because these representa-
tions all tend to come from the end of the list, there is an enhanced lag-recency
effect while the active representations are recalled. If the recency effect in immediate
free recall was indeed always fueled by active item representations in short-term
memory, it would seriously undermine the view of immediate recency presented in
this paper: that the recency effects in immediate and delayed recall share a common
source. No one would argue that there are not major differences between immediate
recall and delayed recall. In addition to the change of the CRP with output posi-
tion, there are also big differences in the latencies observed in continuous-distractor
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versus immediate recall: latencies in continuous-distractor free recall are much more
comparable to latencies in delayed than immediate free recall.12

12 M. W. Howard and M. J. Kahana, unpublished observation.

These incontrovertable differences between immediate recency and long-term
recency are not necessarily inconsistent with the idea that the recency effect in
immediate and continuous-distractor free recall are a consequence of cueing with
end-of-list context. Within TCM there is indeed a difference between the contextual
cue in immediate and delayed recall that could be utilized to drive the effect on the
CRP in immediate recall. Although the relative activation of the items in the list is
comparable in immediate and continuous-distractor free recall, the absolute activa-
tion of the items in immediate recall is much higher than in delayed recall. Perhaps
retrieval from semantic memory could exploit this difference in magnitude to drive
the effect of output position. This would require multiple retrievals taking place in
semantic memory in response to the initial (contextual) recall cue in immediate, but
not delayed recall. Potentially, the difference in the absolute levels of activation
could also manifest as faster recall latencies in immediate recall.

There is a rather subtle distinction between this position and the position a pro-
ponent of STS in immediate recency might take. The traditional view of immediate
recency is that there are multiple active states in semantic memory at the time of
test that drive the recency effect. There is little question that this is possible under at
least some circumstances. We are arguing that, at least in some circumstances in
which active maintenance of information is precluded, semantic memory is ‘‘empty’’
at the time of test, but multiple item representations are quickly activated by a
strong contextual cue.

5.3.2. Avoiding Repetitions

In free recall, subjects rarely repeat words that they have already recalled
(Laming, personal communication). Furthermore, what repetitions there are tend to
take place after several other recalls have intervened since the initial recall (Laming,
personal communication). There are two main classes of mechanisms that have
been introduced to account for these data. One mechanism is response suppression.
The other is a recognition or editing process that follows item selection or genera-
tion.

Response suppression. Response suppression has been popular in models of
serial recall (e.g., Brown et al., 2000; Burgess & Hitch, 1999; Henson, 1998;
Lewandowsky & Murdock, 1989; Page & Norris, 1998). The basic idea of these
models is that after being activated, items are temporarily inhibited. In the simplest
variant of response suppression (Brown et al., 2000; Henson, 1998; Lewandowsky
& Murdock, 1989), words that have already been recalled are simply removed from
the pool of recallable words. More sophisticated versions (Burgess & Hitch, 1999;
Grossberg, 1978) explicitly model a transient inhibition that they identify with
neuronal fatigue.

Generate–recognize models. According to generate–recognize models, subjects
generate candidate responses which are then submitted to a recognition process. If
subjects generate an item which is not familiar or does not match the list context,

26 HOWARD AND KAHANA



the response is censored. In Shiffrin’s models (Raaijmakers & Shiffrin, 1980, 1981b;
Shiffrin, 1970b), items that are already recalled may still be sampled and recovered.
A special assumption is added to prevent these resampled items from being
produced. Although the recognition decision is not explicitly modeled in SAM,
this editing of recovered items places SAM squarely in the tradition of generate–
recognize models (Anderson & Bower, 1972; Bahrick, 1970; Kintsch, 1970). In
generate–recognize models, the more items that have been recalled, the lower
the probability of sampling a new item. As a consequence the expected number
of samples between successful recalls goes up with output position. Accordingly,
resampling is likely a factor in the growth of interreponse times with output
position (Murdock & Okada, 1970; Rohrer & Wixted, 1994).

Both generate–recognize and response–suppression models account for the
absence of repetitions as an effect downstream from the results of an initial inquiry
of memory. In the generate–recognize models, the omission of repetitions is the
result of a conscious editing that takes place after items have been generated. In the
response–suppression models, activations of output codes are modulated by an
inhibition local to the level of the output codes. The choice of output mechanism
used to inhibit repetition, and for that matter the choice of model for retrieval from
semantic memory, is largely orthogonal to the choice of TCM. If one prefers the
generate–recognize model, then TCM, including the simple mapping of activations
onto probability of recall can be seen as a means for generating potential recalls. If
one prefers the response–suppression approach, then TCM can be used to generate
a set of activations, which can in turn be modulated by response suppression.

5.4. Conclusions

We developed a distributed model of temporal context that we call TCM, for
temporal context model. Building on previous formulations of random context
(Estes, 1955; Mensink & Raaijmakers, 1988; Murdock, 1997), TCM uses retrieved
preexperimental contextual states to drive contextual drift. This assumption leads to
an integrated account of contextual retrieval. As a consequence, repeating an item
retrieves an asymmetric retrieval cue. This, in turn, provides a straightforward
account of the ubiquitous asymmetry observed in memory retrieval (Howard &
Kahana, 1999; Kahana, 1996; Kahana & Caplan, in press).

Because TCM uses retrieved context to drive associative effects, it does not
require any direct interitem connections. Finally, we have shown that retrieved
context and contextual drift, coupled with a competitive retrieval rule, enable TCM
to predict the scale-invariance in both recency and contiguity effects in free recall.
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