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Similarity effects in name-face recognition:
A dual-process, summed-similarity account
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We examined how similarity influences the ability to associate names and faces. In Experiment
1, multidimensional scaling generated perceptual similarity spaces for novel stimuli: synthetic
human faces and single-syllable Mandarin Chinese names. In Experiment 2’s associative
recognition task, face-name pairs were presented in alternating Study and Test blocks. In
every Study block, subjects were given the same 18 pairs of faces and names; in each Test
block, face-name pairs that had been studied were intermixed with face-name pairs that had
been rearranged. Subjects judged whether a face-name pair was one that had been studied,
or was a new, rearranged pairing. With repeated study opportunities, associative recognition
improved as both correct endorsements of studied pairs and correct rejections of rearranged
pairs increased. Results were well fit by NEMo.D, a model in which a test probe’s summed
similarity to the contents of memory is supplemented by a similarity-dependent recollection
process. NEMo.D’s relationship to other models for recognition is explored.
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The ability to associate names and faces is one of our most
important social skills, and like other kinds of associations,
stimulus similarity is an important determinant of the ease
with which face-name associations are encoded and retrieved
(Bower, Thompson-Schill, & Tulving, 1994; Nelson, Bajo,
McEvoy, & Schreiber, 1989). For example, when a teacher
must learn students’ names, the task becomes particularly
daunting when many look alike, or when their names sound
similar, or both (e.g., Fraas et al., 2002).

In a study of similarity effects in memory for
name-face associations, Pantelis, Vugt, Sekuler, Wilson,
and Kahana (2008) asked subjects to learn associations
between distinctive, common names, and visually confusable
synthetic faces whose similarities were parameterized and
manipulated in a four-dimensional feature space. They
found that recall performance diminished as a function of
the number of other studied faces that were perceptually
similar to the probe face, and that incorrect recalled names
were more likely to be names associated with faces that
were visually similar to the probe face. A similar pattern of
results was obtained in an associative recognition task where
subjects first studied a series of name-face pairs and later
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judged whether or not a test pair matched one of the studied
pairs: subjects tendency to endorse a target pair decreased as
the number of similar faces in the study list increased.

In the present study we further examine similarity effects
in associative recognition by manipulating both the similarity
among faces and the similarity among names. Our key
question is whether summed-similarity models that have
been highly successful in accounting for similarity effects
in item recognition tasks (e.g., Nosofsky, Little, Donkin,
& Fific, 2011) can also account for the observed pattern
of similarity effects in associative recognition. Because a
given name (or face) can also directly retrieve (recall) its
associated face (or name) from memory, we also explored
a model in which a similarity-based familiarity signal is
combined with a similarity-based recall (or recollection)
process. Of particular interest was whether a dual-process
similarity-based model of associative recognition could
substantially outperform a single process similarity-based
model.

According to summed-similarity models (e.g., Kahana
& Sekuler, 2002; Nosofsky et al., 2011), recognition
decisions are based on the sum of the pairwise similarities
between the probe item and each of the items stored in a
contextually-defined memory array (usually the items on a
just-presented list). Conceptually one can think of each
item representation as resonating to some degree with the
probe, with the sum of the resonances providing a familiarity
signal upon which recognition decisions are based. In this
way, a lure item may be endorsed as a target when it is
highly similar to multiple items in the study list, as would
be the case in experimental paradigms designed to induce
false memories (e.g., Deese, 1959; Roediger & McDermott,
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1995).

Our study began by identifying suitable stimuli whose
similarity relationships could be measured and leveraged to
theoretical advantage. Additionally, in order to track the
course of learning, we chose stimuli that would initially be
unfamiliar to test subjects. So, for name stimuli we generated
a set of spoken single-syllable Mandarin Chinese names. As
our subjects had no experience with Asian languages, we
could be certain that these stimuli would be unfamiliar. The
use of these unfamiliar names also negated the confounding
influence of pre-experimental facial stereotypes associated
with some familiar names (Lea, Thomas, Lamkin, & Bell,
2007). Stimulus faces were drawn from a library of realistic,
synthetic human faces. Various subsets of these “Wilson
faces” (named for the eponymous H. R. Wilson) have been
used in studies of face perception, face memory, and facial
expression of emotion (e.g., Wilson, Loffler, & Wilkinson,
2002; Loffler, Yourganov, Wilkinson, & Wilson, 2005;
Isaacowitz, Wadlinger, Goren, & Wilson, 2006; Yotsumoto,
Kahana, Wilson, & Sekuler, 2007; Galster, Kahana, Wilson,
& Sekuler, 2009; Pantelis et al., 2008). Over repeated
study-test trials we asked subjects to learn arbitrary pairings
of novel faces and novel names and tested their memory for
those pairings using an associative recognition procedure.
Our first goal was to define how similarity of names and
faces each influenced associative recognition. Our second
goal was to determine whether a single-process summed
similarity model of perceptual recognition memory could
account for these effects. Finally, we introduce a new
dual-process model of associative recognition in which
familiarity is modeled as a summed-similarity signal, while
recollection is modeled as a similarity-dependent recall
process. By comparing the success of single and dual process
models we sought to shed further light on the ongoing
debate concerning the contribution of recollective processes
to associative recognition (Malmberg, 2008).

Experiment One

Experiment One used multidimensional scaling (MDS) to
generate separate similarity spaces for the faces and names
that would be used in Experiment Two. The similarity
judgments needed for MDS were collected by the method of
triads (Torgerson, 1958; Yotsumoto et al., 2007). On each
trial, subjects were presented with three stimuli, and had
first to identify the two that perceptually were most similar,
and then the two that were most different. Then, the set
of judgments was transformed offline into a representation
of the faces’ and names’ perceptual spaces. The trio of
stimuli presented on each trial was governed by an efficient,
balanced incomplete block design (Weller & Romney, 1988).

Subjects

Eight subjects (one male; ages 19 to 21), who were
naive to the purpose of the experiment, were paid for their
participation. All had normal or corrected-to-normal vision
as measured with Snellen targets. None of them reported

problems with face perception, nor any experiences with an
Asian language.

Apparatus

Both experiments were run under control of MATLAB
scripts, which were supplemented using the Psychophysics
Toolbox (Brainard, 1997). Face stimuli, generated in
MATLAB, were presented on a 14-inch computer monitor
set to refresh at 95 Hz; screen resolution was 1152 by 864
pixels. The display’s mean luminance was maintained at 32
cd/m?. During testing, a subject sat with head supported by
a chin rest, viewing the computer display binocularly from
57 cm. Stimulus names were were pre-recorded and then
presented through audio speakers.

Stimuli

Faces. Our face stimuli were 19 realistic synthetic faces'
derived from photographs of 19 different Caucasian females
and males. The methods used to transform the photographs
to the stimuli that we use were described elsewhere (Wilson
et al., 2002). In summary, the synthetic faces were low-pass
filtered at 10 cycles per face width, an optimal value
for face processing. In addition, this filtering neutralized
distinguishing attributes such as hair color or curliness, and
skin texture. All of our stimulus faces were shown in frontal
view. Figure 1 illustrates the set of 19 faces (10 female
and 9 male faces) that we used to generate the MDS-based
similarity space for faces.

Names. The stimulus set comprised 19 Mandarin Chinese
names that native speakers would perceive as being
monosyllabic. The names are given in Table 1.2For brevity,
we refer to Mandarin Chinese as “Chinese.” Restricting
the stimulus set to one-syllable names eliminated number
of syllables as an extraneous factor that could influence
memorability. All name stimuli possessed what linguists
call the “second tone” (a.k.a., the rising tone) —a sound
that rises from mid-level pitch to high. We had two
reasons for choosing spoken Chinese names as stimuli.
First, that choice should minimize pre-existing associations
that familiar names might carry, and which might vary
from subject to subject. Also, using Chinese names that
are unfamiliar to Asian-language naive subjects should
encourage subjects to base their similarity judgments on the

"A Balanced Incomplete Block design (BIBD) (Weller &
Romney, 1988) controlled the number of trials needed for
multidimensional scaling. The design of Experiment Two required
18, not 19 face-name pairs. However, no BIBD can be constructed
for 18 items, although one can be constructed for 19 (Fisher &
Yates, 1963). To work around this problem, the faces used for MDS
included one “filler” stimulus of each class.

?Pinyin is the Romanization system for standard Mandarin.
It is used to teach standard pronunciation, and to guide the
spelling of Chinese names in non-Chinese publications. Wikipedia
(http://en.wikipedia.org/Pinyin) explains that the pronunciation of
a Chinese syllable is given in Pinyin by an initial (sound) that is
followed by a final (sound), which is a combination of vowels.
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Figure 1.  Faces used in Experiment One’s multidimensional
scaling. The stimuli in the upper two rows are female faces, those
in the lower two rows are male faces.

phonological relationships among stimuli. The name stimuli
were presented as audio recordings made by a female native
speaker of Chinese (author J.H.). Her pronunciation of each
name was captured in a 700 msec sound file.

Procedure

Face and name similarities were measured separately,
using the method of triads (Torgerson, 1958; Yotsumoto
etal., 2007). To control the number of trials needed for MDS,
the number of times each pair of stimuli was presented was
governed by a Balanced Incomplete Block design (BIBD)
(Weller & Romney, 1988). With 19 stimuli, there are
171 unique pairs. BIBD makes it possible to present each
possible pair once, distributed over 57 different triads (Fisher
& Yates, 1963). Therefore, each subject served in 580 trials
for the face stimuli and 580 for name stimuli. Face and name
stimuli were presented in separate sessions. The first 10 trials
in each session were treated as practice and were excluded
from data analysis. The remaining 570 trials allowed each
pair of faces and each pair of names to be presented 10 times.
For each subject, trials within a block were presented in a
new random order.

Multidimensional scaling of faces. To characterize faces’
pairwise similarities, a triplet of faces was presented on each
trial. A schematic of one trial is shown in Figure 2. The three
faces were displayed simultaneously on a grey background,
with each face subtending 6.80° x 5.11° visual angle. The
three faces were equidistant from a fixation point at the center
of the computer display. At the viewing distance, 57 cm,
the center of each face was 5.91° from fixation. Each trio
of faces remained visible until the subject’s responses were

Table 1

Nineteen Chinese names used in Experiment One. Names
are given in Pinyin, the most-common Romanization
system for Chinese. Also shown are the corresponding
representations in the International Phonetic Alphabet
(IPA), a system of phonetic notation based on the Latin
alphabet.  IPA is meant to represent the sounds of
spoken languages in a standardized form. An audio
presentation of the spoken names can be accessed at
http://www.brandeis.edu/~sekuler/mandarinNames. html.

Name Pinyin IPA Name Pinyin IPA
1D 1D

1 lai [la1] 11 gian [te"ien]
2 lan [lan] 12 qu [te"y]
3 Iou [I¥u] 13 xia [cia]

4 luo [luo] 14 Xue [eye]

5 lei [let] 15 xi [ei]

6 qun [te"yn] 16 xiong [eyuy]
7 qgie [tehie] 17 cha [ts"a]
8 qin [te"m)] 18 chen [ts"on]
9 quan [tehyen] 19 chuan  [ts"yen]
10 qiu [tehiou]

made. To minimize the chance that a stimulus’ location on
the display might somehow influence subjects’ responses,
the spatial ordering of items in a triplet was randomized over
trials.

Subjects made two responses on each trial. They first
selected the two faces that were most similar, and then
selected the two faces that were most different from one
another. As a reminder of which judgment was to be made,
the word “similar” in blue or the word “different” in red was
presented at the center of the display. Subjects indicated
their judgments by moving the computer cursor to the desired
face, and then clicking the computer mouse. After a face had
been selected, a color frame surrounded that face, confirming
the selection. The color frame was blue during judgments of
similarity, and red during judgments of difference. During
any trial, subjects could correct an error by re-clicking on a
face, thereby erasing its selection. Subjects were instructed
not to base judgments on specific facial details (e.g., eyes or
nose), and they had unlimited time to make their responses.

Multidimensional scaling of names. It would confused
subjects had multiple spoken name overlapped in time.
Therefore, the sound files for each trial’s triplet of names
were played sequentially, with a 700 msec inter-stimulus
interval. As a name was played, one of three squares on
the computer display illuminated. The squares, labelled “A”,
“B”, and “C”, were spatially arranged on the display with the
same geometry as for face stimuli. Before making similarity
judgments, subjects could replay any or all of the names by
clicking on the appropriate square. Replays were limited to
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Figure 2.

Tllustration of a trial used to estimate pairwise similarity within the set of faces in Experiment One. On each trial, subjects gave

two judgments, first selecting the two faces that were most similar, as shown on the left side of figure, then selecting the two face that were
most different, as shown on the right. Triplets of faces stayed on the display and were visible to subjects until both responses were made.

two per name per type of judgment (“similar” or “different”).
The replays and the trial’s consistent relationship between a
spoken name and a square on the display allowed subjects
to have the names firmly in memory. In making similarity
judgments, subjects used the computer mouse to click on
squares labelled “A”, “B” or “C” identifying first the most
two similar spoken names, and then the two most different
names. Responses were made in the same way as on trials
with face stimuli.

Results and Discussion

Subjects’ responses were entered into 19x19 similarity
matrices, one for faces and one for names. When a pair
of stimuli had been judged most similar, a value of 3 was
entered into the cell defined by the two stimuli; when a pair
had been judged most different, a value of 1 was entered
into the cells corresponding to the row and column for
those stimuli. The undesignated stimulus pair earned the
value 2 (Galster et al., 2009). For individual subjects, the
pairwise similarity value in each matrix was normalized
by the frequency with which a pair of stimuli had been
presented. Using a weighted Euclidean model with SPSS’
PROXSCAL routine, the normalized response matrices were
transformed into similarity spaces by means of individual
differences multidimensional scaling. MDS was carried out
separately on judgments of names and for judgments of
faces.

MDS for face stimuli MDS solutions for the face
similarity space were generated in varying numbers of
dimensions. As Figure 3A shows, Stress (Borg & Groenen,
2005) declined sharply as the number of dimensions
increased from one to three, but saturated thereafter.
In the three dimensional solution, Stress was 0.05 (the
corresponding proportion of Dispersion Accounted For
(DAF) was 0.95), showing that a three dimensional MDS
configuration gives quite an adequate account of face
similarity judgements. Figure 3B shows the Shepard plot
associated with the three dimensional solution. There,
the 171 inter-point distances derived from the three
dimensional space are plotted against the corresponding
pairwise similarity scores averaged across the eight subjects’
judgments. The linear decrease in scatter shows that faces
that were judged similar tended to lie close to one another
in the MDS similarity space. In Figure 3C, each point
represents the weights that an individual subject assigns to
the three dimensions. As can be seen, the eight subjects
clustered within a relatively small region, indicating that
the subjects were in good agreement about the weights they
gave to each dimension. The Stress values for the eight
subjects were also tightly clustered around the average Stress
value 0.05 (SD = 0.009, 95% CI [0.043, 0.058]). The
disaggregated Stress values for the 19 faces also clustered
tightly (SD = 0.006, 95% CI [0.0478, 0.0537]). Together,
these results reveal no distinctly idiosyncratic faces in the
stimulus set, and no idiosyncratic judgement strategies from
particular subjects, which qualified the face stimuli and their
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MDS of faces
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Figure 3. Evaluating the MDS solutions for face stimuli. A: Stress values for MDS solutions in varying numbers of dimensions. Stress,
which is inversely related to goodness of fit, declined substantially from a solution in one dimensional space to a solution in three dimensions.
B: A Shepard plot of inter-point distances between faces in the three dimensional space versus pairwise similarity scores from subjects’
judgments. Each point represents one face pair of the 171 unique pairs of faces. C: Individual subjects’ weights on the three dimensions in

the MDS solution; each point represents a single subject.

similarity space as suitable for use in Experiment Two, with
other subjects.

Figure S1 shows the 19 faces’ locations in the three
dimensional similarity space. Although the interpretation
of the dimensions is not consequential for our purposes,
Dimension 1 seems to capture variation in head and chin
shape, with a more positive value signifying that a chin and
head that are wider and more square-shaped; Dimension 2
corresponds to the width and length of nose, and hair volume,
with a more positive value signifying a wide nose and more
hair; and Dimension 3 corresponds to the width of mouth
and thickness of upper lip, with a more positive value being
related to a narrower mouth with thicker lips.

MDS for name stimuli  An analysis that paralleled the one
just described for faces was used to generate a similarity
space for name stimuli. As with faces, a three dimensional
solution provided a very good fit to the similarities among
the names (see Figure 4). Decomposed Stress values for
individual subjects (ranging from 0.037-0.055), and for
individual names (ranging from 0.0230-0.069), show no
obvious outlier values for particular subjects or for particular
names.

Figure S2 shows the 19 names’ locations in the three
dimensional similarity space. Visual inspection of the
inter-item separation among names along each dimension
suggests that the three dimensions capture the phonological
combination of the initial and the component “i” in the final
(Dimension 1); the phonological characteristics of names’
initial (Dimension 2); and the phonological characteristics
of the final, particularly the component of “n” (Dimension
3). The three-dimensional coordinates of the names will be
used to compute the pairwise Euclidean distances needed to
choose stimuli for and model results from Experiment Two.

Experiment Two

In this experiment we used the similarity spaces for
names and faces as embodied in Experiment 1 to examine
how similarity would influence associative recognition of
arbitrary pairings of novel names and novel faces.

Subjects

Thirty subjects (7 male, ages 19-27), all naive to the
experiment’s purposes, participated for payment. To control
previous experience and familiarity with the faces and
names that would be used in Experiment Two, subjects
who served in Experiment One were excluded, as were
subjects who had prior experience with any Asian language,
or a self-reported a problem with face perception. All
had normal or corrected-to-normal vision as measured with
Snellen acuity targets.

Stimuli

Our experimental design crossed three groups of faces
and three groups of names, with groups having low,
medium or high values of summed similarity. Each of the
three summed-similarity groups comprised six faces or six
names. The MDS spaces generated in Experiment One
yield pairwise inter-item distances, rather than inter-item
similarity per se. Although later, in modeling the resulting
data, we use Shepard’s exponential function to relate
similarity to distance, our nine stimulus groups were based
on inter-item distances. Given stimulus i, its summed
distance was calculated as Y.d;; (j=1,2...19, j#i). In
doing so, we treat the summed pairwise Euclidean distances
in MDS space between any item and all other items in its
stimulus class as a monotone inverse surrogate for similarity.
As our design required just 18 name and 18 face stimuli, we
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MDS solutions for 19 name stimuli. A: Stress values for MDS solutions for representations from one to eight dimensions.

Similarly, stress value declined dramatically from one dimension to three dimensions, and was relatively constant thereafter. B: A Shepard
plot of names’ inter-point distance within the three dimensional solution space against pairwise similarity score transformed from subjects’
judgments for names in Experiment One. Each point represents one name pair of the total 171 pairs (%). C: Eight subjects’ weights on
the three derived dimensions in the name space. Note that each point represents a single subject.

dropped one name and one face from our original set of 19
stimuli. Specifically, we dropped face F13 and name N15
as each had a summed similarity value very close to that of
another item, which made F13 and N15 redundant. Table 2
shows the summed-distance statistics for each group.

To generate the pairs of faces and names required by
our experimental design, we constructed nine categories of
face-name pairs by factorially combining three levels of
summed similarity for faces with three levels of summed
similarity for names (each category included two different
exemplars, face-name pairs that shared the same levels
of face summed similarity and name summed similarity).
All subjects studied and were tested on the same sets of
face-name pairs.

As we were interested in how an item’s similarity to
other items of the same class (faces or names) influenced
associative recognition, we used Equation 1, which relates
the similarity (1) of two stimuli to an exponential function
of the Euclidean distance (d) between those items in the
similarity space.

(1) n=ge ™

Procedure

The second experiment was carried out in two parts. First,
subjects were familiarized with the synthetic face stimuli and
with Chinese name stimuli, and demonstrated how readily
the stimuli could be discriminated from one another; second,
subjects took part in an associative recognition experiment.
Both these parts are described below.

Same-Different Task. On each trial, subjects saw a pair
of synthetic faces, or heard a pair of spoken Chinese
names. After each pair was presented, subjects judged
the items in the pair as “same” or “different.” Figure
5A shows schematically the structure of a trial on which

“same”’-“different” judgments for faces were collected. Each
trial began with a fixation point presented for 500 msec at the
center of the display. After a 500-600 msec uniform gray
screen, a face was presented at the screen’s center for 700
msec. This was followed by 700-800 msec during which
the screen was again uniform gray. Then, a second face was
presented for 700 msec, at the center of the screen. Subjects
judged whether the two faces on a trial were the same
or different. A similar procedure was adopted with name
stimuli, except a name was presented by playing a 700-msec
long sound file. Successive names on a trial were separated
by 700-800 msec of silence. For both types of stimuli, on
half the trials, the two stimuli were identical; on the other
half, one stimulus was accompanied by a randomly-chosen
item of the same class, face or name. Subjects received
immediate feedback following a response. Trials with names
and trials with faces were run in separate blocks, yielding a
total of 72 trials per subject and stimulus type. Each stimulus
within a stimulus class was presented equally often, allowing
a subject to see or hear each stimulus eight times (721§2)
throughout this portion of the experiment.

Associative  Recognition  Task. The  associative
recognition task consisted of 10 alternating Study and
Test blocks, with one minute between successive blocks.
In each Study block, 18 face-name pairs were presented
in random order (randomized separately for each subject
and each block). For each pair, the face was presented at
the center of the display for five seconds. The sound file
containing the spoken name began to play 500 msec after
the face’s onset (see Figure 5B). Successive stimulus pairs
were separated by a 1000 msec inter-trial interval; subjects
were instructed to study and remember each pair.

In each Test block, 18 test pairs of faces and names were
presented, but 9 of the pairs (Targets) preserved a pairing that
had been studied, and 9 (Lures) rearranged studied items.



FACE-NAME ASSOCIATION 7

Table 2

Summed pairwise similarity for stimuli in categories of low, medium and high summed similarity.

Stimulus identification number Mean SD Minimum Maximum

Faces

Low Summed Similarity F9, F18, F16, F14, F6, F7 46.13 1.48 44.68 48.54
Medium Summed Similarity F4, F12, F10, F8, F3, F5 43.14 0.48 42.74 44.06
High Summed Similarity F19, F15, F2, F11, F1, F17 40.72 1.08 39.13 42.39
Names

Low Summed Similarity N4, N3, N5, N2, N8, N1 45.59 0.86 44 .85 46.68
Medium Summed Similarity N7,N18,N11, N19, N13, N10 43.24 0.54 42.75 43.92
High Summed Similarity N9, N17, N6, N16, N12, N14 40.90 0.67 39.75 41.78

A “Same” or “Different” B C
700 msec 5000 msec <4500 msec

700-800 msec

700 msec

500-600 msec

500 msec

“L ai”

Same-Different Task

Figure 5.

5000 msec

/ -/

Study Block

“Qian” “Qian”
1000 msec 1000 msec
<4500 msec

Test Block

Mlustration of trial structure in the Same-Different task (A) and in the associative recognition experiment (B & C). A:

Same-Different task for face stimuli. After seeing two sequentially-presented faces, a subject made a same-different judgment. Names
were tested in a similar way, except that names were presented as pre-recorded sound files. B: In the Study blocks of the associative
recognition experiment, the face in a pair was presented for 5000 msec, and its paired name (here, “Lai” or “Qian”) was presented starting
at 500 msec after the face’s onset. A subject studied the stimuli and tried to remember them. C: In Test blocks of the associative recognition
experiment, subjects were presented with face-name pairs and judged whether the pair was one that had been studied (compare the second
stimulus shown here to its counterpart in B), or was a novel, re-arranged pairing (compare the first stimulus shown here to its counterpart in
B). As explained in the text, after each face-name pair was presented, the subject’s judgment was communicated using a 6-point rating scale.

Lure and Target pairs were presented in random order. The 9
intact pairs comprised 1 pair at each combination of the three
levels of face and name summed similarity (see Stimuli). The
9 rearranged pairs were chosen such that the face and the
name both came from the same level of summed similarity
as the target. The items comprising an intact pair on block
i could be part of two rearranged pairs on block i+ 1. To
mitigate learning of rearranged pairs, in such pairs no face
was paired with any particular name more than once. To
facilitate data analysis, in each Test block, subjects were all
tested on the same set of preserved and rearranged pairs,
though the pairs were presented in an order randomized anew
for each subject.

The timing of face-name presentations was similar to

the one used in Study blocks, except that the presentation
of a face was limited to 4.5 seconds or when the subject
responded, whichever came first. Subjects almost always
responded before the time limit was reached (see Figure
5C). Subjects used a 6-point scale to report their confidence
that the just-presented face-name pair was among the pairs
that had been studied. Ratings ranged from 1" (sure “No,
this is not a studied pair”) to 7’6" (sure “Yes, this is a
studied pair’). Intermediate ratings indicated more tentative
judgments of whether the face and name had been studied
as a pair (Macmillan & Creelman, 2005). Responses were
communicated by pressing number keys on a computer’s
keyboard. A new trial began one second after the response
was recorded.



8 HUANG, KAHANA & SEKULER

Test Block
1 2 3 4 5 6 7 8 9 10

Face-Name Pair

Figure 6. The status of the 18 study face-name pairs over the ten
Test blocks. A filled rectangle signifies that the studied face-name
pair was preserved in that Test block (a target pair); an unfilled cell
signifies that the study face-name pair was rearranged in that Test
block (a lure pair). Each study pair was preserved in five of the ten
Test blocks, with each Test block comprising nine target pairs and
nine [ure pairs.

Results and Discussion

Subjects’ performance in the same-different task
confirmed that they readily distinguished among the
synthetic faces, and among the spoken Chinese names.
Across the 30 subjects, the“same”-“different” judgments
for faces were correct on 92.3% (SD =1.4%) of the
trials; the figure for names was 97.6% (SD = 2.2%). It
might be surprising that the subjects, non-Asian speakers,
managed to discriminate among the Chinese names so well.
Recall, however, that we deliberately chose names whose
phonological differences (on the second tone) would be
most distinctive to Western, non-Chinese speakers (Shen,
1989). Subjects high levels of discrimination in judging
items within each class of stimuli makes it unlikely that
within-set confusions among faces or among names would
be the primary cause of failures of associative recognition
task.

As a result of the rating scale’s bipolarity, high numerical
ratings to a Target pair and low numerical ratings to a Lure
pair were both correct responses. For some analyses below,
we express results in terms of the numerical ratings. Other,
model-related analyses were better served by less detailed
equivalents to “Yes”—“No” recognition judgements. For such
analyses, ratings of 4, 5, or 6 were taken as “Yes”; ratings of
1, 2, or 3 were taken as “No” responses.

To gauge improvement in associative recognition with
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Test Block
Figure 7. Mean confidence ratings elicited by Target ([J) and

Lure () stimuli over 10 successive Test blocks. Higher ratings
represent greater confidence that the stimulus pair was one that had
been studied. Error bars are =1 within-subject standard error of the
means.

repeated opportunities to study the same face-name pairs,
we examined subjects’ rating responses over successive
test blocks. Figure 7 shows the mean ratings for Target
trials (M) and Lure trials (()) as a function of test
block. As expected, average recognition accuracy increased
substantially over test blocks: ratings for target pairs also
increased significantly, while ratings for lure pairs decreased
significantly (F(9,261) =26.61, p < 0.001, and F(9,261) =
28.13,p < 0.001, respectively). These changes correspond
to a change in recognition accuracy (“yes”’-“no” recognition
judgments) from 0.55 (SD = 0.13) in Test Block 1, to 0.82
(SD =0.14) in Test Block 10 (one-way ANOVA, F(9,261) =
33.70,p < 0.001). Both measures of change agree that
repeated presentations strengthened associative recognition
for face-name pairs, that is, ratings for Target pairs grow
while ratings for Lure pairs decline.

Effects of summed-similarity

We analyzed the effects of summed-similarity separately
for Target pairs and for Lure pairs. The left panel in
Figure 8 shows the mean numerical ratings for target pairs
as a function of face summed-similarity. The parameter
for the family of curves is name summed-similarity.
The effects of face summed-similarity and the effect of
name summed-similarity were each statistically significant
(two-way repeated measures ANOVA; see Table 3). Subjects
generally gave lower ratings to Target pairs whose face’s
summed-similarity was high, and to Target pairs whose
name’s summed-similarity was high (F(2,116) =4.90,p =
0.011 and F(2,119) = 23.48, p < 0.001, respectively). That
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Table 3

Results of two-way repeated measures ANOVAs analyzing the effects of summed-similarity of faces (low, median and high) and
summed-similarity of names (low, median and high) on three dependent variables: the confidence judgment for target pairs,

that for lure pairs, and Ag — the area beneath ROC curve.

Dependent Face Summed Similarity Name Summed Similarity Face x Name
Variable F(2,116) MSe F(2,116) MSe F(4,116) MSe
Confidence, target pairs 4.90* 1.50 23.48% 7.87 8.66"* 2.90
Confidence, lure pairs 9.10*** 1.58 29.85%** 4.61 1.13™ 0.12
Ag 20.82%** 0.23 3.64* 0.039 3.37* 0.035
"p>01. *p<0.05 *p<0.001.
o low = decrease as summed-similarity increased, and did so for both
Name Summed Similarity '\:_e‘::”” = face summed-similarity and for name summed-similarity
Yes S Yes (F(2,116) =20.82,p < 0.001 (M;g,,= 0.84, Myegiuum = 0.75,
5t Lures Mjign = 0.76), and F(2,116) = 3.64,p = 0.032, (M,,, =
"qc: 45| 0.80, Myedium = 0.78, Mpig, =.0.76),. respectively. "ljogeth;r,
IS the results suggest that face similarity and name similarity
ke 4r each had a distinct influence on associative recognition, a
3 35| face-name pair with a higher summed-similarity stimulus
§ ' (face or name) yielded poorer recognition performance.
9] 3t
% - Pt Ratings reflect summed-similarity
o .1 Targets ¥ To assess the dependence of subjects’ ratings upon
‘ ‘ ‘ ‘ ‘ ‘ summed-similarity for faces, we regressed those ratings
No Low Med. High Low Med. High No against the summed Euclidean distance in MDS space
Face Summed Similarity between a pair’s face stimulus and all the other study faces.
An equivalent analysis was done for the name stimulus
Figure 8. Mean confidence ratings vs. the summed-similarity in each pair. As explained earlier, we did not have a

of face stimuli. Values were aggregated across all test blocks and
subjects. Separate curves represent different levels (high, medium
and low) for name stimuli summed similarity. The results of target
pairs were plotted on the left, and the results of lure pairs were on
the right. Error bars are +1 within-subject standard error of the
means.

is, subjects were less confident in recognizing a Target pair
when its constituent items were similar to other items in the
respecitve stimulus classes. The inverse pattern was seen
for numerical ratings of Lure pairs. As the right-hand panel
of Figure 8 shows, increasing face summed-similarity or
increasing name summed-similarity increases the numerical
ratings given to Lure pairs (F(2,116) =9.10, p < 0.001 and
F(2,116) =29.85, p < 0.001, respectively). In other words,
when either item in a Lure was similar to studied items of
the same class, subjects were less certain about rejecting the
false, re-arranged pair.

For a converging related perspective on these results, we
examined the impact of face and name similarity via Ag,
a measure of recognition that should be less susceptible
to variation in the criterion with which information in
memory was translated into recognition responses. This
index of area under the ROC confirmed what was noted in
the recognition responses alone. Ag showed a significant

direct measure of a stimulus’ summed-similarity to the
other stimuli in its class. As a result, in the following
regression analysis, values of summed-pairwise distances
serve as surrogates for values of summed-similarity. As
mentioned above, we assume that summed-similarity would
be an inverse, monotonic function of summed-distance.

Target pairs The regression slope coefficients (B values)
showed a positive relationship between rating judgments and
a face’s summed similarity relative to all 18 studied faces.
As shown by the solid markers in Figure 9A, the higher
a face’s summed-distance, the more strongly did subjects
endorse a studied test pair, which included that face stimulus.
In particular, 95% confidence intervals around the B values
was [0.043,0.12], significantly above zero, 1(29) =4.47,p <
0.001. The same pattern was seen for the name stimuli
in Target pairs. The empty marker in Figure 9A shows
that [ values for name stimuli were significantly above
zero; the 95% confidence interval was [0.042,0.10], #(29) =
4.86,p < 0.001. Given the inverse relationship between
summed-distance and summed-similarity, these regression
analyses, for faces and for names, are consistent with the
result seen in the lefthand panel of Figure 8, namely that
a Target face-name pair with a high summed-similarity
component, either face or name, tends to be less confidently
recognized.
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Figure 9. Mean slope coefficients (f values) from several regressions. The horizontal dashed line corresponds to B=0. A: Rating judgments
for target pairs were regressed separately on face summed-distance (solid marker), and on name summed-distance (empty marker). B: Rating
judgments for lure pairs were regressed separately on face summed-distance (solid marker), and on name summed-distance (empty marker).
C: B values produced when rating judgments for lure pairs were regressed against the probe-target distance of the pair’s face stimulus (solid
marker), and name stimulus (empty marker). Error bars are 95% confidence intervals. Results of one-sample #-tests: xxx = p < 0.001, * =

p < 0.05, and ns = non-significant.

Lure pairs As predicted,  values from regressions for
Lure stimuli exhibited a relationship between subjects’
judgments and an item’s summed-distance that differed from
what was seen for Target pairs. In particular, for both
faces and names ratings tended to be inversely related to
an item’s summed-distance from items of the same class
in the studied set. Figure 9B shows that for both names
and faces, P values tended to be less than zero: for
face summed-distance, the 95% confidence interval for the
slopes was [—0.081,—0.022], ¢(29) = —3.60, p < 0.001; for
name summed-distance, the 95% confidence interval was
[—0.060,—0.008], 7(29) = —2.68,p = 0.012. Taking into
account the inverse relationship between summed-distance
and summed-similarity, Figure 9B’s result is consistent
with the finding shown before, in the righthand panel of
Figure 8: The relationship between numerical ratings and
summed-distance values for lure pairs suggests that subjects
often falsely endorse a lure pair, and do so with remarkable
confidence, if the pair’s face or name item is highly-similar
to other studied items in its class.

Probe-target distance alone does not control
recognition

Our analyses of similarity’s effect on face-name learning
and global matching accounts of recognition share a key
assumption, namely that summed-similarity (or its inverse,
summed-distance) is the appropriate metric for similarity
(Clark & Gronlund, 1996; Sekuler & Kahana, 2007).
Before proceeding to examine model-based accounts of our
results, it seemed prudent to compare this similarity metric
against a plausible alternative. So, we asked whether the
correlation for Lure pairs between summed-distance and
ratings (see Figure 9B) might reflect something other than
the summed-distance between the probe pair and all the
other studied pairs. We wondered if, instead, this correlation
reflected the (i) distance between each item in a Lure pair

and the distance between it and the item with which it had
been studied. For each item in the Lure pair, whether it
be a name or a face, we call this distance the probe-target
distance. The idea that the single probe-target distance would
be consequential has intuitive appeal. After all, when ratings
for lure pairs were regressed against summed-distance, any
value of the summed-distance necessarily had to include
the probe-target distance. Thus, it might be that what the
preceding paragraph attributed to summed-distance actually
arose solely from the distance between probe components
and mates with which they had been studied. Consistent
with that possibility, Pantelis et al. (2008) found that “Yes”
responses to rearranged face-name pairs (lures) increased if
the probe face looked similar to a different target face that
had been previously paired with the probe name.

To examine the effect of probe-target face distance,
we regressed subjects’ ratings on [ure trials against the
probe-target distance of faces in lure pairs. In addition,we
carried out analogous regressions with name probe-target
distance in lure pairs3

For each of the Lure pairs presented in the 10 Test blocks,
we computed probe-target distances for that pair’s name and
for the pair’s face. For example, consider a Lure pair ( f;,ny)
whose component face, f;, during Study blocks was paired
with name n;, while its component name n; was paired
with face f;. For the face in Lure pair (fj,ng), the face
probe-target distance is given by the Euclidean distance in
MDS space between f; and f;. Similarly, for the name in
that same Lure pair, the name’s probe-target distance is given
by the distance between ny and n;. For individual subjects,
the ratings given to various Lure pairs was regressed on the
distance between probe and Target for faces and for names.

* As target pairs entailed correct, preserved pairings, the probe
face in a target pair was the target face, as were the probe and target
names. Therefore, the regression on probe-target distance was not
done for target pairs.
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Then, for faces and for names, we assessed the [ values
produced by the regressions.

There was no reliable relation between subjects’ ratings
and the distance in MDS space that separated probe from
target. As shown by the solid and empty markers in
Figure 9C, B values for both names and faces were not
significantly different from zero. Specifically, the 95%
confidence intervals from the regressions for probe-target
distances were [—0.14,0.025] and [—0.086,0.052], for faces
and names, respectively (p = 0.15 and p = 0.50). These
non-significant regressions contradict the idea probe-target
distance, rather than summed-pairwise distances is actually
responsible for the significant relationships shown in Figure
9B.

Model-based analyses of associative recognition

We performed two distinct model-based analyses in
order to identify the processes responsible for associative
recognition. We began with the assumption that any
model should satisfy two key constraints from our empirical
findings: first, that recognition of a probe pair reflects
the pair’s summed similarity to studied pairs; second, that
recognition’s dependence upon summed similarity should
operate in opposite directions for Target and Lure probes.
This second constraint is based the pattern of results in
Figure 8.

To gauge its ability to account for our results, we fit NEMo,
a summed-similarity model of recognition, to the empirical
values of p(Yes) as derived from subjects’ confidence ratings,
as explained earlier. To focus on the mechanisms of the
observed similarity effects, we averaged subjects’ responses
over all 10 Test blocks. This effectively sets aside any
examination of changes in performance over successive
Test blocks, which would be an interesting topic for future
research, but is not directly relevant to our concern here.

For Target pairs, we found the mean p(Yes) value for each
of the 18 study pairs, two exemplars within each of the nine
combinations of face and name summed similarity. Then
we averaged the values associated with each exemplar pair.
This produced a mean p(Yes) value for each combination of
face-name similarity (e.g., high face summed similarity and
medium name summed similarity). For Lure pairs, a slightly
different approach was required. As each unique Lure pair
appeared only once during testing, we averaged subjects’
p(Yes) responses for each lure pair, then as we did with
Target pairs, p(Yes) values were averaged for Lures each
similarity category (3 levels of face summed similarity x 3
levels of name summed similarity).

NEMo bases its recognition responses on the summed
similarity between a test probe, p, and noisy exemplars in
memory of each study item, s; 4 €; (with €; representing the
noise parameter). When NEMo’s summed similarity exceeds
a decision criterion (C), NEMo judges p to have been in the
set of study items; otherwise the model declares p a new,
non-studied item.

18

2 Y n(p.si+e)>C
i=1

To compute the similarity values required to fit NEMo, we
applied Equation 3 to the inter-item distances in the MDS
solutions for faces and for names.

(3)
T](P>Si+€i) =

_ e_T\/dface(pasi +€i)2 +dname(pvsi +€i)2

e_Td(pﬂgi + Si)

For each category of summed similarity, NEMo was
fit to mean p(Yes) values for Target and Lure probe
pairs. The resulting 18 values, nine for Targets and nine
for Lures, were fit by means of a multi-start, stochastic
hill-climbing algorithm that optimized In(likelihood). The
parameters that were estimated, along with the range of
values explored for each, were T (the exponential gradient
of the similarity function as in Equation 2 and 3, [0, 3]),
€7, €, (noise associated with the memory representations of
faces, and of names, [0, 3]), and C (the decision criterion,
[0, 2]). With optimized parameters. NEMo produced a
respectable overall fit: 2 =0.92, and RMSD = 0.063 (see
the scatter plot in Figure 10. However, as anticipated,
NEMo predicted incorrectly that p(Yes) would increase with
summed similarity for both categories of test stimuli, Lures
(rearranged study items) and Targets (intact study pairs).
As a result, NEMo failed to satisfy the second empirical
constraint that we described earlier, a shortcoming whose
detection was made possible by the systematic variation of
stimulus similarity.

An alternate model for associative recognition: NEMo.D.
Earlier, we cited two empirical constraints that a model had
to satisfy. Although NEMo satisfied the first constraint, it
failed to satisfy the second. Therefore, we expanded NEMo
to incorporate a recollective process that functions in tandem
with a global matching computation of probe familiarity.
In this expanded model, NEMo.D, upon the presentation of
a test probe, associative recognition either proceeds along
a global matching (NEMo) route, as described earlier, or
proceeds along what we can call the “Recollection Route” to
recognition. Lest the term be misinterpreted, “recollection”
is defined as the act of remembering something, but, of
course, remembering does not guarantee the validity of what
is remembered.

NEMo.D begins with a variant of Luce’s choice rule
(1959/2005). This choice rule formulation allows stimulus
similarity to determine by which of the two alternative routes
a test probe will be processed and judged. Given some test
probe, p, the probability that p will be processed via the
Recollection Route and result in the recollection of a study
item s, depends upon p’s similarity to s;, and upon the
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Figure 10. Panels A-C: Results of the best-fit NEMo model; Panels D-F: results from NEMo.D with optimized parameter values. Panel
A: The predicted p(Yes) for recognition responses in the best-fit NEMo model are plotted against the observed p(Yes), r2 = 0.92. Panel B:
Observed (solid markers) and predicted (empty markers) p(Yes) for Target and Lure pairs are plotted as a function of face summed-similarity
of a probe pair. Panel C: Observed (solid markers) and predicted (empty markers) p(Yes) for Target and Lure pairs as a function of name
summed-similarity of a probe pair. Panel D: The predicted p(Yes) for recognition responses in the best-fit NEMo.D model are plotted against
the observed p(Yes), 2 = 0.96. Panel E: Observed (solid markers) and predicted (empty markers) p(Yes) for Target and Lure pairs are
plotted as a function of face summed-similarity of a probe pair. Panel F: Observed (solid markers) and predicted (empty markers) p(Yes) for
Target and Lure pairs as a function of name summed-similarity of a probe pair.

sum of p’s pairwise similarities to each study item. More
formally,

N(sk, p)
3

Y n(si,p)+h

i=1

4) pr(Recollection — sp) =

Note that the & parameter modulates the probability that
test probe p is processed via one route rather than the other.
The probability that test probe p will be processed via the
NEMo route is given by

h
5) pr(NEMo) = T

Y n(si,p)+h

i=1

If a probe is processed via NEMo, the recognition
response is controlled by processes summarized in Equation

2. If, however, a probe is processed via the alternative,
Recollection route, Equation 4 implies that the probability
that any particular studied pair, such as s, will be recollected,
depends on its similarity to the probe, N(p,s¢), and on the
probe’s summed similarity to all study items.

From Equation 4, we can see that if the test probe were
p, and if p =2 s;, the probability of recollecting that correct,
p-congruent studied pair, s, would be

_M0wp)
18
Zn(si»l?) +h
i=1

1
18
Y n(siosi)+h

i=1

pr(recollection — s) =

(6)

Once some studied pair, say s, has been recollected,
if that study pair matches p, the response is Yes”,



FACE-NAME ASSOCIATION 13

otherwise, the response is “No”. As a result, if a
Lure pair happens to be processed via the Recollection
route, that Lure will be rejected as a match, producing
a “No” response. As for Target pairs, only when the
correct studied pair is recollected, does the model accept
the Target pair as correctly paired and responds “Yes”.
Therefore, the probability of correctly endorsing a Target
pair in recollection route is inversely related to the summed
similarity of this Target pair to all the remaining study pairs
(see Equation 6). More specifically, if a Target pair is
highly similar to other study pairs, recollection will produce
a relatively low p(Yes) to this target. Intuitively, this pattern
would mimic the similarity effect on Target pairs that we saw
in our subjects’ recognition data. More importantly, this is
precisely where NEMo, operating alone, failed.

Note that NEMo.D’s choice rule operates adaptively,
differentially affecting the likelihood on Target and on Lure
trials that a probe will be processed via NEMo. According
to Equation 5, the probability that a probe will be processed
via NEMo is inversely related to the summed similarity of
that test probe to all studied pairs. As a result, Lures are
more likely to be processed via NEMo’s global matching
process (which predicts higher p(Yes) for pairs with higher
summed similarity, consistent with Lures’ result), while
Targets are more likely to be processed via the Recollection
route (which predicts lower p(Yes) for pairs with higher
summed similarity, consistent with Targets’ result).

We fit NEMo.D to subjects’ 18 mean p(Yes) responses,
averaged over the 10 Test blocks. The model was fit using a
multi-start, stochastic hill-climbing algorithm that optimized
In(likelihood). In addition to NEMo’s four parameters, the
NEMo.D includes the i parameter (see Equation 4). Values
of i from 0O to 2 were searched, and the best fit was produced
with 2 = 0.57.

The r* from the optimized parameter values for NEMo.D
18 0.96, RMSD is 0.042, a reduction of ~50% from the value
produced by NEMo alone. It should be noted that because our
results cluster into two distinct groups, r> provides quite an
insensitive assay of goodness of fit. Based on Equation 5 and
the parameter values estimated for the best-fit model, over
the 10 Test blocks, various Lure probe pairs went through
NEMo 35.3-57.3% of the time on average; while Target pairs
took NEMo less frequently, 25.0-28.4%.

Table 4
Values of parameters for best-fitting models
NEMo NEMo.D

T 2.258 1.065
€Faces 0.427 0.535
ENames 1.063 0.838
Criterion 0.113 0.677
h - 0.571

As mentioned earlier, a critical success of the model
should be the ability to simulate similarity effect on
recognition responses for targets and for lures. As can be
seen in Figure 10’s lower row of graphs, the predicted p(Yes)

of the best-fit NEMo.D model closely matches the observed
data: the predicted p(Yes) for targets decreases with summed
similarity, while the predicted p(Yes) for Lures increases
with summed similarity.

To compare NEMo.D with a model in which NEMo
alone determines performance, we calculated the Bayesian
Information Criterion (BIC). This measure takes account of
differences in the number of parameters associated with the
competing models (Schwarz, 1978). Under the assumption
that model errors are normally distributed,

(7 BIC:n-ln(]Z&g) +k-In(n)

where k is the number of free parameters to be estimated,
n is the number of observations, and RSS is the residual
sum of squares from the estimated model. A better-fitting
model produces lower BIC values. Even after imposing a
penalty for the additional parameter NEMo.D significantly
improves the goodness-of-fit significantly relative to NEMo
(BIC = —99.50 and BIC = —87.74, respectively.)

As NEMo is nested within NEMo.D, we calculated
—2In) with NEMo.D and NEMo’s LLi. This statistic is
asymptotically distributed as 2, with degrees of freedom
equal to the difference in the models’ number of free
parameters (df =1). A y’ test confirms that NEMo.D is
significantly better than NEMo (LLi = —76.63 and LLi =
—105.05, respectively, p < 0.001).

Finally, Figure 11 is meant to provide a clearer intuition
of how the h parameter affects recognition. To generate
the results shown in the figure, NEMo.D was re-run twice,
using distinctly non-optimal values of the & parameter, one
higher than the optimal value, one lower. While 4 varied,
other parameter values were clamped at their respective
values from the best-fit model. As Equation 4 suggests,
the higher value of /4 caused more stimuli to be processed
through NEMo; the lower value of & caused fewer stimuli
to be processed through NEMo. As mentioned earlier, with
h = 0.57 (the estimated optimal value), p(NEMo) for Lure
stimuli ranged from 35-57%, and Target stimuli ranged from
25-28%. In contrast, when 2 = 0.17 (the value on which
Figure 11A is based), stimuli were far less likely to processed
via NEMo, namely 9-29 for Lures and 9-11% for Targets.
With & = 0.97 (the value on which Figure 11B is based),
stimuli were more likely to be processed via NEMo, 48— 69%
and 36-40%, for Lures and Targets, respectively. Comparing
the corresponding panels in Figure 11A and B confirms that,
as expected, the probability of processing a probe pair via
NEMo has a stronger effect on responses to Lure pairs than
on responses to Target pairs. This differential effect reflects
the fact that with the optimal value of h, Lure pairs are the
more likely to be processed via NEMo than Target pairs.
Finally, comparing the middle and rightmost panels shows
that variation in A has very nearly equal modulating effects
on the similarities of names and of faces. This result does not
mean, of course, that face and name similarity will always
operate in equal measure. Instead, these two sources of
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similarity probably had quite comparable effects because the
comparable similarity relationships among our face stimuli,
on one hand, and among our name stimuli, on the other (see
Figures S1 and S2).

General Discussion

We found that subjects’ memory for face-name pairs
depends systematically on the number of similar competitors
within the set of studied names and faces. When an
intact Target pair included either a face or a name that
was similar to other studied stimuli, this pair was less
confidently recognized as correctly paired. In contrast,
when a rearranged Lure pair included a face or a name
similar to other stimuli, it was more likely to be erroneously
endorsed as having been studied before. The parallel
results we observed for variation of visual similarity (for
faces) and phonological similarity (for names) suggests that
these findings reflect general similarity-based mechanisms
underlying recognition memory.

The difference in the pattern of results observed for target
and lures (see Figure 8) runs contrary to expectations of
summed similarity models of associative recognition. If
associative recognition were driven by the summed similarity
of the cue-target pair to the pairs stored in memory the curves
in both panels would increase with summed similarity.
Whereas that is surely the case for Lure trials, the opposite
pattern is observed on the Target trials.

This failure of summed-similarity theory suggests that
associative recognition of face-name pairs is not process
pure, and that something other than, or in addition to,
global matching is at work. To test this idea formally,
we implemented a dual-process model in which recognition
decisions are based on either a familiarity or a recollection
signal. We then fit this model to our experimental data. In
our NEMo.D model, a test probe can evoke recollection of a
specific previously studied pair and use the match between
the probe and retrieved information to make a recognition
judgment. Alternatively, if the similarity between the test
probe and the studied item is not sufficient to retrieve a
specific prior pair, the model basis its recognition decision
on the familiarity of the test probe, which is operationalized
as the summed-similarity between the probe and the contents
of memory, as specified in the noisy exemplar model (NEMo)
of perceptual item recognition (Kahana & Sekuler, 2002).
NEMo.D assumes that the summed similarity between the test
probe and the set of previously studied pairs determines the
likelihood that one of the pairs will be recollected. If the
total similarity is low, the model is more likely to base its
decision on summed similarity whereas if the total similarity
is high, the model is more likely to base its decision on the
recollection of a specific pair.

Without a recollection component, our summed similarity
model, NEMo, could not account for the similarity effects
observed in our associative recognition experiment. In
contrast, the dual-process implementation, NEMo.D, nicely
captured all of the trends we observed. Unlike most prior
dual process models of recognition memory, which are

bivariate generalizations of signal detection theory, often
with a high threshold or infinite signal on the recollection
dimension, NEMo.D assumes that both recollection and
familiarity processes depend on the similarity relations
between the probe item, or pair, and the memorial
representations of the studied items. As such, our model can
make specific predictions about how similarity should affect
associative recognition at the level of individual probe items
or pairs. In the case of familiarity, our model specifies where
the variability in memory “strength” comes: it arises from
the variable similarity relations between the probe and the
contents of memory. In the case of recollection, our model
specifies how subjects may “falsely” recollect an item or
pair if the item or pair are similar to the probe item. The
similarity-based familiarity and recollection mechanisms
in NEMo.D also provide a nice bridge between dual
process signal detection models of associative recognition
and more fully specified attribute-based models of recall
and recognition (e.g., Nosofsky et al., 2011; Dennis &
Humphreys, 2001; Howard & Kahana, 2002; Shiffrin &
Steyvers, 1997).

The summed-similarity mechanism used to model the
familiarity signal in traditional dual-process models may
also help to explain distinctiveness effects in name-face
learning. Distinctiveness can be operationalized in various
ways. For example, the distinctiveness of faces can be
operationalized as ones that subjects rate as easy to spot
in a crowd (Valentine, 1991; Valentine & Bruce, 1986;
Hancock, Burton, & Bruce, 1996; Hosie & Milne, 1996).
Valentine (1991) suggested a distinctive face is one that
is relatively isolated in faces’ multidimensional similarity
space. In quantitative terms, Loffler et al. (2005) defined a
face’s distinctiveness by its distance from the mean face in
face multidimensional space. It is important to recognize that
although distinctive faces will tend to have lower summed
similarity than more prototypical faces, the two measures are
quite different. The difference arises from the non-linearity
in the function relating similarity to distance (Equation 1).
This non-linearity implies that a face that is very close to a
small number of faces but far from the mean could have very
high similarity, whereas a face that was exactly equal to the
mean, but not close to any individual faces would have low
summed similarity.

The idea that summed similarity underlies familiarity
is also supported by findings that the shape of the
receiver-operating characteristic (ROC) curve for visual
textures is influenced by summed similarity (Yotsumoto,
Kahana, McLaughlin, & Sekuler, 2008). Because NEMo.D
assumes that both familiarity and recollection are determined
by the similarity relations among the probe and the contents
of memory, the model offers a clear explanation for the
variability in performance across different items (Gold,
Murray, Sekuler, Bennett, & Sekuler, 2005; Huang &
Sekuler, 2010).  Although we have not attempted to
measure directly the noise associated with individual stimuli,
techniques for such measurements are available and could
be exploited in future work (Pelli & Farell, 1999; Ahumada,
2002).



FACE-NAME ASSOCIATION 1 5

h=0.17
A 0.8 0.8
=095 -\gf/' e g
0.8 ] F--8--4q B--a-_
— ® 06 | o6
8
e 0.6 = -
3 S04 1 Lo4
c T Z
o 0.4 A/A\A
° o2 0.2 1 0.2
0.2 A__~A—~—A A_#-A--A
0 0 ‘ : - 0
0 0.2 0.4 0.6 0.8 1 Low Med ) I.-||g.h Low Med High
Predicted P(Yes) Face summed-similarity Name summed-—similarity
h=0.97
B 1 0.8 = 0.8
8--—10 - —g- _
P=0.95
0.8
0.6 0.6
8 ®
& 0.6 - o N _ L .
8 2 04 _ © 04 -
2 T I 2 I
8 o
6 ® 0.2 —— observed Targets | 0.2
02 —&— observed Lures
— B — predicted Targets
0 . . . . 0 — & — predicted Lures 0
0 02 04 06 08 1 Low Med High Low Med High

Predicted P(Yes)

Figure 11.

Face summed-similarity

Name summed-similarity

Fits to data with non-optimized values of the / parameter in NEMo.D. Panel A: h=0.17; Panel B: #/=0.97. For both cases,

parameters other than & were fixed to their respective values from the best-fitting model. Note that for both name and face components of a
pair, variation in & changes predictions for Lure pairs (A) far more than it does for Target pairs (OJ).

Lessons and limitations

An important future direction will be to extend NEMo.D
to multi-trial learning effects such as the ones represented
in Figure 7. Unfortunately, Experiment Two’s design would
present inherent obstacles to such an effort. The first obstacle
lay in the fact that all subjects shared the same sequence
of faces and names during successive study blocks (see
Figure 5B); the second obstacle arose from the fact that
successive test blocks differed in the specific items with
which subjects were tested (see Figure 6). The first of these
obstacles sharply limited our ability to generalize from this
particular sequence of learning opportunities to statements
about face-name learning with other sequences; the second
of the obstacles made it difficult to compare performance on
successive test blocks —as the test items differed from one
block of trials to another. Clearly, any study whose primarily
focus was on learning must avoid both these obstacles. Many
previous studies have examined face-name learning, but few
have examined the effects of similarity, and fewer still have
derived their measurements of learning from an associative
recognition task.

Given the extensive psychological evidence supporting
the distinction between item and associative information

(Murdock, 1974; Malmberg & Xu, 2007; Kahana, 2012)
it is not too surprising that modeling similarity effects in
associative recognition required that both summed-similarity
and associative recognition mechanisms. Indeed, neural
evidence from both human and animals also strongly
supports this distinction (Diana, Yonelinas, & Ranganath,
2010; Davachi, 2006; Song, Jeneson, & Squire, 2011;
Squire, Wixted, & Clark, 2007). By exploiting as
stimuli names and faces whose similarity-relations were well
quantified, our experimental analysis of recognition memory
for name-face associations revealed a pattern that violated
predictions of well-established summed similarity models.
We show that these similarity effects are neatly accounted for
by NEMo.D, a dual-process model of associative recognition
that combines a summed-similarity familiarity process with
a probabilistic similarity-based recall process. Although our
first step was to apply NEMo.D to memory for name-face
associations, our model can be easily applied to any stimulus
domain for which the similarities among items can be
quantified, including simple visual forms, complex scenes,
and even words. In all of these cases, NEMo.D will
make predictions about the variation in performance across
individual probe items.



16 HUANG, KAHANA & SEKULER

References

Ahumada, A. J, Jr. (2002). Classification image weights and
internal noise level estimation. Journal of Vision, 2(1), 121-131.

Borg, 1., & Groenen, P. J. E. (2005). Modern multidimensional
scaling: Theory and application (2nd ed.). New York: Springer.

Bower, G. H., Thompson-Schill, S., & Tulving, E. (1994).
Reducing retroactive interference: An interference analysis.
Journal of Experimental Psychology: Learning, Memory, &
Cognition, 20, 51-66.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision,
10, 443-446.

Clark, S. E., & Gronlund, S. D. (1996). Global matching
models of recognition memory: How the models match the data.
Psychonomic Bulletin & Review, 3, 37-60.

Davachi, L. (2006). Item, context and relational episodic encoding
in humans. Current Opinion in Neurobiology, 16, 693-700.
Deese, J. (1959). On the prediction of occurrence of particular
verbal intrusions in immediate recall. Journal of Experimental

Psychology, 58, 17-22.

Dennis, S., & Humphreys, M. S. (2001). A context noise
model of episodic word recognition. Psychological Review, 108,
452-4717.

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2010).
Medial temporal lobe activity during source retrieval reflects
information type, not memory strength. Journal of Cognitive
Neuroscience, 22(8), 1808-1818.

Fisher, R. A., & Yates, F. (1963).  Statistical tables for
biological, agricultural, and medical research (6th ed., revised
and enlarged). New York: Hafner Publishiong Co.

Fraas, M., Lockwood, J., Neils-Strunjas, J., Shidler, M., Krikorian,
R., & Weiler, E. (2002). *What’s his name?’ A comparison of
elderly participants’ and undergraduate students’ misnamings.
Archives of Gerontology & Geriatrics, 34, 155-165.

Galster, M., Kahana, M. J.,, Wilson, H. R., & Sekuler, R.
(2009). Processing of facial identity and emotion: Perception
and memory use similar structures. Cognitive, Affective &
Behavioral Neuroscience, 9, 412—426.

Gold, J. M., Murray, R. F,, Sekuler, A. B., Bennett, P. J., & Sekuler,
R. (2005). Visual memory decay is deterministic. Psychological
Science, 16(10), 769-774.

Hancock, P. J. B., Burton, A. M., & Bruce, V. (1996).
Face processing: human perception and principal components
analysis. Memory & Cognition, 24(1), 26—40.

Hosie, J., & Milne, A. B. (1996). The effect of experimental
design on memory for typical and distinctive faces. Memory,
4(2), 175-197.

Howard, M., & Kahana, M. J. (2002). A distributed representation
of temporal context. Journal of Mathematical Psychology, 46,
269-299.

Huang, J., & Sekuler, R. (2010). Distortions in recall from visual
memory: two classes of attractors at work. Journal of Vision,
10, 24.1-217.

Isaacowitz, D. M., Wadlinger, H. A., Goren, D., & Wilson, H. R.
(2006).  Selective preference in visual fixation away from
negative images in old age? an eye-tracking study. Psychology
& Aging, 21(1), 40-48.

Kahana, M. J. (2012). Foundations of human memory. Oxford:
Oxford University Press.

Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns:
a noisy exemplar approach. Vision Research, 42, 2177-2192.

Lea, M. A., Thomas, R. D., Lamkin, N. A., & Bell, A. (2007). Who
do you look like? evidence of facial stereotypes for male names.
Psychonomic Bulletin & Review, 14(5), 901-907.

Loffler, G., Yourganov, G., Wilkinson, F., & Wilson, H. R. (2005).
fMRI evidence for the neural representation of faces. Nature
Neuroscience, 8, 1386—1390.

Luce, R. D. (1959/2005). Individual choice behavior: A theoretical
analysis. New York: Wiley (reprinted by Dover Publications).

Macmillan, N. A., & Creelman, C. D. (2005). Detection theory:
A user’s guide (2nd ed.). Mahwah, N.J.: Lawrence Erlbaum
Associates.

Malmberg, K. J. (2008). Recognition memory: a review of
the critical findings and an integrated theory for relating them.
Cognitive Psychology, 57, 335-384.

Malmberg, K. J., & Xu, J. (2007). On the flexibility and the
fallibility of associative memory. Memory & Cognition, 35,
545-556.

Murdock, B. B., Jr. (1974). Human memory: Theory and data.
Potomac, MD: Erlbaum Associates.

Nelson, D. L., Bajo, M., McEvoy, C. L., & Schreiber, T. A.
(1989).  Prior knowledge: The effects of natural category
size on memory for implicitly encoded concepts. Journal of

Experimental Psychology: Learning, Memory, & Cognition, 15,
957-967.

Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M.
(2011). Short-term memory scanning viewed as exemplar-based
categorization. Psychological Review, 118(2), 280-315.

Pantelis, P. C., Vugt, M. K. van, Sekuler, R., Wilson, H. R.,
& Kahana, M. J. (2008). Why are some people’s names
easier to learn than others? the effects of face similarity on
memory for face-name associations. Memory & Cognition,
36(6), 1182-1195.

Pelli, D. G., & Farell, B. (1999). Why use noise? Journal of
the Optical Society of America. A, Optics, Image Science, and
Vision, 16, 647-653.

Roediger, r., H L, & McDermott, K. B.  (1995). Creating
false memories: Remembering words not presented in lists.
Journal of Experimental Psychology: Learning, Memory, &
Cognition(803-814).

Schwarz, G. (1978). Estimating the dimension of a model. Annals
of Statistics, 6, 461-464.

Sekuler, R., & Kahana, M. J. (2007). A stimulus-oriented approach
to memory. Current Directions in Psychological Science, 16(6),
305-310.

Shen, X. (1989). Toward a register approach in teaching Mandarin

tones. Journal of Chinese Language Teachers Association, 24,
27-47.

Shiffrin, R. M., & Steyvers, M. (1997). A model
for recognition memory: REM: Retrieving effectively from
memory. Psychological Bulletin & Review, 4, 145-166.

Song, Z., Jeneson, A., & Squire, L. R. (2011). Medial temporal
lobe function and recognition memory: a novel approach
to separating the contribution of recollection and familiarity.
Journal of Neuroscience, 31, 16026-16032.

Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition
memory and the medial temporal lobe: a new perspective.
Nature Reviews Neuroscience, 8, 872—-883.

Torgerson, W. S. (1958). Theory and methods of scaling. New
York: J Wiley & Sons.



FACE-NAME ASSOCIATION

Valentine, T. (1991). A unified account of the effects of
distinctiveness, inversion and race in face recognition. Quarterly
Journal of Experimental Psychology, 43A, 161-204.

Valentine, T., & Bruce, V. (1986). Recognising familiar faces:
The role of distinctivenss and familiarity. Canadian Journal of
Psychology, 40, 300-305.

Weller, S. C., & Romney, A. K. (1988). Systematic data collection
(Vol. 10). Newbury Park, CA: Sage Publications.

Wilson, H. R., Loffler, G., & Wilkinson, F. (2002). Synthetic faces,
face cubes, and the geometry of face space. Vision Research, 42,
2909-2923.

Yotsumoto, Y., Kahana, M. J., McLaughlin, C., & Sekuler, R.
(2008).  Recognition and position information in working
memory for visual textures. Memory & Cognition, 36, 282-294.

Yotsumoto, Y., Kahana, M. J., Wilson, H. R., & Sekuler, R. (2007).
Recognition memory for realistic synthetic faces. Memory &
Cognition, 35, 1233-1244.

17



18

HUANG, KAHANA & SEKULER

Supplementary Material

MDS-generated three-dimensional similarity spaces for faces and names.

Dimension 3
[}
Fi

Dimension 2 - Dimension 1

Figure 1. Experiment One’s faces displayed in their three-dimensional similarity space. Dimension 1 was associated with head and chin

shape; Dimension 2 with nose length and width; and Dimension 3 with mouth width and thickness of the upper lip.

Dimension 3

Dimension 2 2 o Dimension 1

Figure 2. Experiment One’s names plotted in their three-dimensional similarity space. Dimension 1 correlates with the phonological

combination of the initial the component “i” in the final; Dimension 2 correlates with the phonological characteristics of the initial in the
name; and Dimension 3 correlates with the phonological characteristics of the name’s final, particularly the component “n”.



