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relative spatial phase
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Discrimination studies suggest that two, and only two, channels encode relative spatial phase
shifts in compound gratings (Bennett & Banks, 1991 ; Field & Nachmias, 1384) . The more sensi-
tive channel consists of even-symmetric filters and responds best to cosine phase shifts (e .g.,
0°-180°); the other consists of odd-symmetric filters and responds best to sine phase shifts (e.g.,
90°-270°) . The present experiments investigated whether the two-channel model generalizes to
suprathreshold perceptual tasks. Experiment 1 examined classification learning ofcompound grat-
ings, consisting o£ a fundamental (f) and second harmonic 12f), that differed in 2fcontrast and
relative phase. Experiments 2 and 3 measured the perceived similarity of f+2f gratings . The
results of Experiment 1 were broadly consistent with the predictions of the two-channel model .
Specifically, the classification data were best explained by assumingthat classification was based
on the responses of differentially sensitive even- and odd-symmetric filters- In Experiments 2
and 3, two-dimensional multidimensional scaling solutions provided a good account for the simi-
larity judgments . In Experiment 2, Dimension 1 was strongly correlated with cosine phase, and
Dimension 2 was moderately correlated with sine phase . In Experiment 3, cosine phase was again
strongly rebated to Dimension 1, whereas the absolute value of sine phase was strongly related
to Dimension 2 . Overall, these results suggest that the two-channel model of phase discrimina-
tion provides a usefulframework for interpreting classification and similarityjudgments ofcom-
pound gratings .

A basic problem in understanding human vision is to
determine the information necessary to discriminate, iden-
tify, and categorize naturalistic images . There is consid-
erable evidence that the visual system sssitsally encodes
pattern information by performing spatial frequency anal-
yses on local patches ofthe retinal image (Wilson, Levi,
Maffei, Rovama, & DeValais, 1990). Such frequency
analyses must represent in some manner the contrast acrd
phase (defined in the following paragraph) of the local
frequency components because both are important far pat-
tern discrimination and recognition . For example, the
demonstrations of Oppenheim and Lim (1481) and Pi-
otrowski and Campbell (1982) suggest that much of the
information for discrimination and identification of cam-
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piex patterns is contained in their global phase spectra:
Image identification is severely disrupted by scrambling
the phase spectrum, but remains virtually unchanged after
scrambling the amplitude spectrum . Morgan, Ross, and
Hayes (1441) performed similar analyses at different spa-
tial scares within an image and showed that phase also
carries a significant amount of recognition information
about medium-sized image patches, although the ampli-
tude spectrum carries most of the information at the
smallest scales . Consistent with the results of these com-
putational studies, gsychophysical evidence also suggests
that the representation of spatial phase is crucial for pat-
tern discrimination and recognition . For example, it is
well known that observers often fail to discriminate easily
detectable patterns presented in the peripheral visual field,
and these discrimination failures are thoughtto be caused
by phase-encoding deficits that are also found in the pe-
riphery (e .g ., Bennett & hanks, 1991). Phase-encoding
anomalies may also underlie discrimination deficits com-
monly observed in the amblyapic fovea (Bennett, 1989)
and in young human infants (Bennett, 1989 ; Braddick,
Atkinson, & Wattam-Bell, 148b).
Figure 1 illustrates the construction of compound grat-

ings that differ in spatial phase . The bottom lines in each
panel represent the luminance profiles of two sine-wave
gratings with frequencies that differ by a factor of 2, and
the top line depicts the profile of the setrn ofthe two sine
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Figure 1. An illustration of the effects of relative phase shifts. In each panel, position and luminance are potted in srUitrary unit
nn the horizontal and vertical axes, respectively . The origin in each panel is indicated by the vertical line. The bottom carves in each
padshow the luminance profiles of two one-wave gratings with frequencies that differ by a factor of two. The phase of the higher
frequency varies across paned and is indicated in the legends . The top lice depicts the sum of the two sine wages and has been slsitted
vertically for clarity .

waves. Absolute spatialplease refers to the position of a
grating relative to some fixed origin . Relative spatial
phase refers to the positions of grating components rela-
tive to each other rather than, to some hued position in
space. In floe case of compound gratings composed of a
fundamental (f) and second harmonic (2f), relative spa-
tial phase refers to the position of2frelative to the peak
off. By convention, a sinusoidal grating whose peak is
lined up with the peak offis said to be in Q° phase (Fig-
ure lA) ; a grating whose trough is lined up with the peak
off is said to be in 180° phase (Figure 3C) . Gratings
whose zero-crossings are lined up with the peak off are
said to be in either 90° or 270° phase (Figures 1B aid
1D). Note that a 180° phase shift of an individual fre-
quency component corresponds to a contrast reversal of
that component.

Figure 1 also illustrates that relative phase shifts pro-
duce significant changes in the luminance profiles ofcom-
pound waveforms even when they are composed ofiden-
tical frequency components . For the waveforms shown
in the figure, a cosine phase shift (i .e., 0°-180°) results
in a change in the polarity of the most prominent bars in
the grating . A sine phase shift (i .e ., 90°-27Q°) alters tine
direction of the steepest luminance gradient . It is impor-
tant to note, however, that both cosine and sine phase (or
their correlates) must be represented in order to discrim-

inate and recognize most natural patterns, not just two-
component gratings (see OpQenheim & Lsm, 1981, for
details) .
One experimental approach that has yielded some in-

sight into the way phase is encoded is to measure discrim-
ination thresholds for 18Q° relative phase sifts in com-
pound gratings composed ofa fundamental {f} and second
harmonic (2f) (Bennett & Banks, 1987, 1991 ; Field &
Nachmias, 1984). In this procedure, thresholds are mea-
sured by fixing the contrast off at some suprathreshold
value and adjusting the contrast of 2f until the I8Q° shift
is discrimiinable . The advantage of using f+2f gratings
is that the overall contrast of these waveforms is not a)-
tered by a 18(1° relative phase shift and therefore cannot
be used as a discrimination cue.

Thresholds for various l80° shifts (e .g ., 0°-180°,
45°-225°, 90°-274°) of 2fare typically plotted as in Fig-
ure 2_ Each point in Figure 2 represents the discrimina-
tion threshold for a particular 1$4° shift . The contrast of
2fat discrimination threshold is represented by the dis-
tance from the point to the origin . The phase shift (e .g .,
0°-180°, 45°-225°, etc_ is represented by the angle be-
tween the point and the abscissa . Thus, threshold for a
a°-180° shift is represented by a point on the abscissa,
threshold for a 9Q°-270° shift is represented by a point
on the ordinate, and thresholds for other shifts lie in be-
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Figure 2. Examples of 1$0° relative phase discrimination
thresholds measured with f+2fgratings . Each point represents the
Zf contrast needed to discriminate a 180° shift of 2Yphase (e .g .,
0°-184°, 45°-225°, 90°-174°, Mc .). The2Yaontrast is represented
ac the length of a vector joining each point to the origns, -and the
phase is represented as the vector's able to the horizontal ands . The
rectangular coordinates of each point are the cosine and sine com-
ponents of 2TaY discrimination threshold . In this plot, all points on
avertical coataurhaveequalcosine values andall points on a hori-
zontal contour haveequal sine values. Notice that the thredtolds fall
along equal-cosine (vertical) and equal-sine (horixoakal) contours.
The solid tines sire the predictions of the two-channel model. Data
are from Bennett and Banks (198 .

tween . The Cartesian coordinates ofthe figure represent
the sine and cosine components of 2fat threshold . i Most
experiments find that discrimination thresholds for dif-
ferent 180° relative phase shifts fall along equal-cosine
and equal-sine contours (Bennett, 1993 ; Sennett & Basics,
1991 ; Burr, Monone, & Spineili, 1989 ; Field & Nach-
mias, 1984), thus indicating that 180° shifts are discrim-
inated when the change in either the cosine or the sine
component ofthe shift exceeds same criterion . This pat-
tern of results holds across a wide range of fundamental
frequency and contrast (Bennett & Banks, 1991) and for
different harmonic frequencies (Bennett, 1943) . One in-
terpretation ofthis result is that relative phase is encoded
by two spatial filters : Odd symmetric filters that are op-
timally sensitive to sine (i .e ., 90°-270°) phase shifts, and
even symmetric filters that are most sensitive to cosine
(i .e ., 0°-180°) shifts (Bennett & Banks, 1987 ; Burr et al .,
1989 ; Field & Nachmias, 1984) .
Ofcourse, discriminating very subtle differences in rel-

ative phase is only one small aspect ofphase perception .
It is important, therefore, to determine whether the two-
channel model provides a framework for understanding
howphase is encoded is more quotidian conditions . Al-
though the two-channel model provides a reasonable ac-
count of phase discrimination in compound gratings, it
is by no means certain that ix can be applied successfully
to suprathreshold perceptual tasks . As others have pointed
out (e .g ., Sadcock, 1984), relative phase shifts alter many
spatial features . Aphase shift in a two-component com-
pound grating, for instance, can alter peak-to-trough am-

plitude, luminance maxima and minima, luminance gra-
dients, and the widths of individual bars . Bennett (1993)
has argued that changes in these and other features do not
play a significant role in threshold tasks, best they may
greatly influence classification or perceived simziariry
among highly discriminab3e patterns . In the present ex-
periments, we examined the extent to which the two-
channel model of phase discrimination can account for
perceptual classification and similarity judgments.
We examined whether threenotable features ofthe two-

channel model of phase discrimination generalize to
suprathreShold classification learning and similarity judg-
ments, Fist, we tested whether two mechanisms-onethat
encodes cosine amplitude and another that encodes sine
amplitude-could account for classification and similar-
ity judgments. Second, we examined whether the greater
sensitivity of the cosine-sensitive mechanisms (e .g ., $en-
nett & Banks, 1987, 1991 ; Rentschler & Treutwein, 1985)
generalizes to the classification and similarity judgment
tasks. Third, we examined whether the independence of
these two mechanisms found in discrimination studies
generalizes to the classification and similarity judgment
tasks. In particular, does classification performance con-
form to a supremum metric (i .e ., whichever mechanism
gives the largest response is used by the system in mak-
ing the classification or discrimination judgments-, see Fig-
ure 2)? Classification and perceived similarity judgments
provide complementary paradigms to test the generality
of the discrimination findings .

EXPERIIVIEENT 1

Classification tasks provide an elegant link between dis-
crimination and identification/recognition paradigms .
While discrimination tasks generally involve stimuli that
are presented near threshold and in close temporal prox-
imity, classification tasks involve suprathreshold judg-
ments . Classification tasks also rely more heavily upon
cognitive processes involving memory and decision .
There have been numerous models proposed to explain

classification performance . Prominent among these are
prototype, exemplar, and decision bound models (Ashby
& Maddox, 1993) . Each type of model assumes that a
stimulus is represented by a point, or distribution of
points, in a multidimensional feature space . These models
differ from one another primarily in the manner in which
the relevant information is retrieved (see Ashby & Mad-
dox, 1993) . Prototype modes (e.g ., Nosofsky, 1986 ;
Reed, 1972) assume that a category is represented by the
average position (in space) of its constituent stimuli . A
probe stimulus is then classified in the category whose
prototype is closest in feature space . Exemplar models
(e .g ., Nosofclcy, 5986) propose that categories are not rep-
resented by a single point in feature space, but rather are
derived from the positions of their constituent members .
According to these models, the proximity of a target item
to all of the stored items is determined, and the item is
classified into the category whose items are most similar
to the probe . Finally, decision bound models (e .g ., Ashby
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& Perrin, 1988) assume that each stimulus is represented
by a distribution of points in feature space. These distri-
butions, usually assumed to be multivariate normal, reflect
perceptual noise in the system . A region in feature space
is associated with a particular categorical response . De-
cision bounds dividing response regions are determined
so as to maximize classification performance .

estimate response probabilities using the distance between
each stimulus and the prototype of the response category .
The PPM, like the GCM, uses Equation 1 to predict cat-
egory judgments, but the summation over exemplars is
replaced by the similarity of the probe stimulus (i ) to the
category prototype (J) . The probability of a stimulus i
being assigned to a category J is then given by

Models of Classification
Three models will be compared : Nosofsky's (1986,

1992) exemplar-based generalized context model, a
probabilistic prototype model (Nosofsky, 1987 ; Reed,
1972), and Ashby and Perrin's (1988) generalized rec-
ognition theory-a decision bound model .
Generalized context model (GC1V) . The exemplar-

based GCM (Nosofsky, 1986) is an extension of Medin
and Schaffer's (1978) context model of classification . Fol-
lowing Luce's (1963) similarity choice rule, the GCMas-
sumes that the probability of a stimulus i being assigned
to a category J is given by

RJ E 11 ij

_ 'E~/~~C'
L.+NK ~,, ?Iik~
K kECx

where 0 <_ /3, <_ 1 and Ero, = l . Here, 0, represents
the bias toward category J, and n;; represents the simi-
larity of exemplars i and j (see Nosofsky, 1986) . Simi-
larity is defined to be a monotonic transformation of dis-
tance in feature space. If one allows for differential
weighting ofthe dimensions in feature space, the formula
for the distance between two exemplars i and j that vary
along n dimensions is given by

f/ ~ ~1 Ur

dij - CI [,~ Wk I xik - xjk

/

I I s l
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where each dimension (k) is weighted by a factor wk such
that 0 <_ wk <_ 1 and Ek wk = 1 . A scaling parameter,
c, adjusts the overall distance scale . Summation between
dimensions is governed by the exponent ofthe Minkowski
metric, r. For example, if r = 2, and the dimensions are
equally weighted, then the distance corresponds to a sim-
ple Euclidean metric . Other popular metrics are the city-
block metric (r = 1) and the supremum metric (r = oo).
The similarity between two exemplars, 77 ;;, is often re-
lated to distance, d;;, by the power function (see Nosofsky,
1992)

P

(3)

When the similarity exponent (p) equals 1, Equation 3
is Shepard's (1987) exponential decay model of general-
ization .
Probabilistic prototype model (PPM). The PPM

(Nosofsky, 1987 ; Reed, 1972) is essentially a distance-
based model of classification . Unlike exemplar models,
prototype models assume that a category is represented
by a single point in feature space representing the aver-
age value of all ofthe category exemplars on each of the
dimensions (e .g ., Reed, 1972) . As such, prototype models

P(R, I Si) _
O.r?1ij

where 0 s (3, <_ 1 and Er/3, = 1 . As with the exem-
plar model, ,Q, represents the bias toward category J and
77;, represents the similarity of exemplar i to the proto-
type of category J. Similarity is defined exactly as in the
GCM (see Equations 2 and 3) . Although this model is sim-
ilar to the GCM, it is still possible to distinguish between
them . Nosofsky (1992), in a detailed comparison of ex-
emplar and prototype models, concluded that across a
wide range of tasks, the exemplar-based GCM provided
a better fit to the data than did the PPM .
Generalized recognition theory (GRT). GRT is the

multidimensional extension of signal detection theory de-
veloped by Ashby and his colleagues (e .g ., Ashby& Gott,
1988 ; Ashby & Perrin, 1988) . In GRT, stimuli are rep-
resented by distributions of points in feature space and
categories are associated with regions within feature
space. Decision bounds separating these regions deter-
mine the probability with which a stimulus is classified
in a given category . Although GRT is an extremely gen-
eral model that can be shown to subsume some distance-
based models as special cases, we will be working with
a simple version of GRT that contains a relatively small
number of free parameters .

In GRT, a physical stimulus may give rise to different
representations on different trials due to encoding vari-
ability. This variability is typically assumed to be mul-
tivariate normal . A probe stimulus is assigned to a given
category if it falls within a region in feature space as-
sociated with that category . Classification errors may re-
sult from the representational variability of the stimuli.

In contrast to the exemplar and prototype models, GRT
assumes a deterministic process of response selection. De-
cision bounds-estimated from the data-separate the
regions of perceptual space associated with each response,
and a stimulus is always classified according to the region
in feature space in which it falls. In this paper, we adopt
two simplifying assumptions that typically are used when
working with GRT-namely, that the decision bounds are
linear and stable across trials .

Classification of Compound Gratings
That Differ in Relative Phase
The two-channel model predicts that a classification

model utilizing a two-dimensional space corresponding
to the cosine and sine components of the phase-shifted
harmonic should provide a reasonably good account of
the data . Also, discrimination studies show that observers
are generally less sensitive at discriminating 90°-270° rel-
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ative phase shifts than they are at discriminating 0°-180°
relative phase shifts . Therefore, the two-channel model
predicts that subjects should make more errors along the
sine dimension than along the cosine dimension. Because
classification models can account for these differences by
differentially weighting the dimensions (in the GCMand
the PPM) or by assuming differential variability along
dimensions (inn GRT), the classification models should
assign a lower weight or greater variability to the sine
dimension than to the cosine dimension. Finally, the dis-
crimination data suggest that there is lithe summation
between the two phase-encoding channels and therefore
predict that the exponent of the Minkowski metric should
be significantly greater than 2. Contrary to these predic-
tions, Caelli, Rentschler, and 5cheidter (1987) proposed
a nonweighted Euclidean distance model to account for
the classification off+3f gratings differing in relative
phase. The following experiment examines whether the
two-channel model ofphase discrimination generalizes to
classification off}2f compound gratings .

Method
Subjects . Sixteen subjects, all introductory psychology students

at the University ofTomato, participated in the experiment for op-
tional course credit .

Stimtili. Stimuli consisted ofa set of20f+2fgratings segregated
into four classes- These classes were defined by the relative phase

Figure 3. Examples of the prototypical patterns used in Experi-
ments 1 and 2. The 2f phase is indicated next to each compound
grating . Gratings on top ofone another (e.g., 135° and 2Z5° . A5°
and 3l5°) differ only along the sine dimension, whereas gratings
that are new to one another (e.g., 135° and 45°, 225° and 315°)
differ only a`loag the cosine dimension. In the actual experiments,
the patterns were displayed in a circular aperture that showed ap-
proximately four cycles of the fundamental . The reproduction pro-
cess has altered the contrast of the patterns.
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Figure A. The stimuli used in Experiments z and 2. Each point
represents thecosine and sine components of2f in anf+ugrating .
Tin contrast and phase of 2f are represented as the length of the
vector joining each point to the origin and the angle of the vector,
respectively. The four classesof stimuliin Experiment I correspond
to thefour quadrants in the figure. Fiery, thecosine and sine values
of all the stimuli are listed in Table I.

and contrast of the 2fcomponent . Luminance profiles for these stim-
uli are given by the following equation:

L(x,Y) = L~,.s(l t A, cos (2xfx) + Ax cos(2a2fx

where f is spatial frequency in cycles per degree, A, and A, are
Michelson contrasts, and ¢ is relative phase. Fundamental frequency
(f) and contrast (A)) were 1 .75 cycles per degree (cpd) and 0.2 .
respectively . The mean contrast (A,) for the 2fcomponent was 0.1 .
Average luminance (L,v6) was 14 cdlm'_ The four classes of stim-
uli were centered aroundphases (,0) of 45', 135°, 225°, and 315°
Figure 3 illustrates the prototypeofeachcategory . The five exem-
plars within each class were generated by adding Gaussian noise
to the prototypical phase angle and contrast . The sine and cosine
amplitudes of the 2fcomponent of the stimuli are shown in Figure 4.

Stimuli were presented on an Apple color monitor. Display size
was 5411 x 480 pixels (72 peels per inch). The frame rate was
67 Hz, noninterlaced. Luminance was linearized with lookup ta-
bles, and the entire 8-bit range produced a maximum Michelson
contrast of0.5 . Stimuli were presented individually within a circu-
lar aperture that was centered within the display and subtended6.8°.
Goth the stimulus and the uniform background surrounding it had
the same average luminance and chromaticiry .
Procedure. Each subject was given 10 study-test blocks to learn

the classification scheme far the stimuli in Figure 4 In both the
study and the test phase within a block, the subjects were shown
each of the 20 gratings for I sec. During the study phase, a num-
ber indicating class membership was shown prior to each grating .
To facilitate Icammg, the subjects were instructed to type the number
afterviewing each stimulus During the test phase, the gratings were
shown without then doss numbers, and the subjects pressed a key
indicating the stimulus class . After each response, a high-frequency
tone indicated a correctclassification, whereas alow-frequency tone
indicated an incorrect classification . Feedback was also provided
during the study trials to ensure that the subjects were pressing the
right buttons
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Table 1
Classification Data From Experiment I

Stimulus
Stimulus Stimulus Probability of Classtfy mg Stimulus m Category Coordinates
Category - Code Category 1 Category 2 Category 3 Category 4 z v

l A 0.556 0 106 0 144 0 194 0 065 0_079
1 B 0.600 0.131 0 113 0 156 0 037 0.049
1 C 0.556 0.144 0 .038 0263 0 044 0.035
1 D 0.575 0.050 0 113 0.263 0.104 0.065
1 E 0.594 0.113 0 056 0138 0.097 0.057
2 F 0.088 0.675 0 169 0.069 -0.053 4 080
2 G 0.088 0706 0 175 0.031 -0.073 0 067
2 H 0.169 0.619 0 150 0.063 -0.059 0.052
2 1 0.113 0.656 0 169 0.063 -0.055 0.092
2 I 0.150 0.613 0 163 0.675 -0-088 0.069
3 K 0.119 4.156 0 563 0.163 -0 .021 -0.096
3 L 0.088 0306 0556 0 050 -0.039 -0.063
3 M 0.119 0.213 0 569 0.100 -0 .041 -0.121
3 N 0.063 0.313 0 569 0.056 -0.094 -0.071
3 0 0.088 0.238 0 575 0.100 -U55 -0.061
4 P 4.238 0.069 0.106 0.588 0.089 -0.076
4 Q 0.244 0.038 0 150 0.569 0.121 -0.093
4 R 0.213 4.094 0069 0.625 0.094 --0.080
4 S 0.181 0.081 0.188 0.550 0.056 -0093
4 T 0.181 0.113 0 225 4.481 0.024 -0.062

Note-Each value represents the proportion of orals that a given stimulus was assigned to a given class
The data were averaged across all trials and subjects

All testing was done with the room lights off. Viewing wasbinocu-
lar through natural pupils . Viewing distance was 1 m. Head posi-
tion was stabilized with a chin/forehead rest.

Results and Discussion
'fable 1 lists the probability of a given stimulus being

classified in each of the four classes . Because stimuli
within a class are clustered close to each outer and are
very far tram the exemplars of other categories (see Fig-
ure 4), most of the variance in classification performance
is between-class variance . Therefore, a correlation be-
tween distance and classification accuracy will be driven
by the mean difference between correct and incorrect clas-
sifications . In other words, the correlation just tells us
that subjects are capable of doing the task. To properly
evaluate various classification models, it is necessary to
measure the goodness of fit, rather than the correlation,
between the model's predictions and the classification
probabilities for each stimulus . We have done this in two
ways: For data pooled across subjects, we minimized the
chi-square statistic, whereas in fitting the models to data
from individual subjects, we minimized the root-mean-
square (RM5) difference scores . Chi-square tests allow
for the comparison of two models when one model is a
generalization ofthe other. In contrast, by obtaining RMS
scores for each subject, one can make direct statistical
comparisons between completely different models . In ad-
dition, fitting the models to data from individual subjects
takes into account the possibility that subjects differ on
the model parameters .

Classification Models
Three different classification models are compared : the

exemplar-based GCM, the PPM, and GRT.

647

Generalized context model (GC11) . The GCM pro-
vides a reasonably good fit to the data from Experiment 1 .
Figure SA shows the predicted and observed classifica-
tion probabilities for all response types to each ofthe slim
uli . The predicted values here are based on the data aver-
aged across subjects . A chi-square test showed that the
deviations from the predictions werejust statistically sig-
nificant (XI = 92.20, df = 72, p = .OS), suggesting that
GCM does not account for all of the observed variance .
In fitting GCM separately tothe data from individual sub-
jects, the average RMS value was 0.11 . Considering the
high levels of variability in individual subject data (each
response probability represents only 10 responses), the
RM5 values obtained were quite goad .

Best-fitting parameter values for the averaged data are
shown in Table 2, and mean parameter values for the
model fits to individual subject data are shown in Table 3.
Some constraints were placed on the parameter values in
fitting the data : The sine and cosine weights could range
from 0.01 to 0.99, the value of the Minkowski metric

Table 2
Parameter Estimates for the Generalized Context Model (GCN)

and the Probabilistic Prototype Model (PPM) Applied so
Averaged Classification data From Experiment I

Parameters GCM PPM

Minkowski exponent (r) 2.0 1.9
Similarity exponent (p) 1 .0 1 0
Scaling parameter (c) [3 .2 12 .4
Bias 0, 4.25 026
Bias 01 0.27 026
Bias 0, 0.25 0.24
Bias g, 0 .23 024
CoslSin Ratio 33 2.7



648 KAHANA AND BENNETT

could range from 1 to 20, and the similarity exponent
could range from 1 to4. These constraints were employed
to keep the model within bounds so that a solution could
be obtained . Function minimization was accomplished
using a downhill simplex method (Nelder&Mead, 1965).
Atolerance of0.01 on RMS values and 0.1 on chi-square
values was used to terminate the simplex routine .

The cosine dimension was consistently weighted more
heavily than the sine dimension . For the averaged data,
the ratio of the cosine to sine weights was 3 .3 . For the
individual subject data, the ratio of the mean cosine to
sine weights was 2.6, with all but 2 of the 16 subjects
weighting the cosine dimension more heavily than the sine
dimension . These results indicate that the subjects were
more sensitive to changes in cosine amplitude . They also
show that this aspect of the discrimination data general-
izes to classification tasks . The best-fitting Minkowski
metric was nearly Euclidean (r = 2.0, for averaged data;
r = 2.52, for fits to individual subjects), suggesting that,
unlike the discrimination data, summation ofsine and co-
sine information was taking place . In all of the fits, the
response bias parameters were nearly equal, indicating
that they were not critical in fitting the data .

Probabilistic prototype model (PP1Vn . ThePPMalso
provides a reasonably good fit to the data . Figure SB
shows the correspondence between the observed and pre-
dicted classification probabilities for the PPM. Parame-
ter values for the averaged data are shown in Table 2,
and the mean parameter values for the fits to individual
subjects data are shown in Table 3. Overall, these results
are quite similar to those obtained by the GCM . The co-
sine dimension was weighted between two and three times
as heavily as the sine dimension, the best-fitting metric
was nearly Euclidean, and the bias parameters were nearby
equal. On the basis of the chi-square tests, the PPM fit
the data marginally better than did the GCM; however,
the mean RMSvalues were identical for the two models .
Again, the deviations from the model predictions were
quite small, though nearly significant (xr = 88 .6, df =
72, p = .09) . Overall, both the PPM and the GGM pro-
vided reasonably good fits to the classification data .

Table 3
Mesas and Standard Errors of Parameter Estimates for the
Generalized Context Model (GCNV and the Probabilistic
Prototype Model (PPM) Applied to Individual Subject

Classification Data From Experiment 1

Parameters

GCM

hf SE

PPM

M SE

Mmkowslu exponent (r) 2.52 0.74 239 0.57
Similarity exponent (p) 1.44 0.25 1 .57 0.26
Scaling parameter (c) 15 .06 2.41 13 .44 1 .92
Bias ~, 0.24 002 0.26 0.02
Sins 0, 0.27 0.02 0.26 0.02
Bias 33 0.27 0.03 0.24 0.02
Bias R. 0,23 002 024 002
Cosuie weight (0-1) 0.72 006 0.68 0.06
Sine weight (U-1) 0.28 006 0.32 0.06

[CMS 0.11 001 0.11 002

un

08

0.6

v

t) a

U

a.z
r
0

OU

o. s
GCtiI

06 -

() [

a.S2

A

PPM

s

0.8

0.6

oa

02

DO

GRT 0
0

°oo

0

0
0

o° ~

-°"8

0
I~" e ~ ~ I
00 02 0.4 0 .6 0 .8

Predicted Classification Rate

Figure 5. Relationship between observed and predicted classifi-
cation rates. Fits are shownfor the GCM(panel A), PPM (panel B),
andGRT(peel L7. F.acd point represents the proportion of trials
in which a stimulus wasclassified into a gives category . The model
accounts for the data to the extent that the points fall along the di-
agonal line.

Generalized recognition theory (GRT). A simplified
version of GRT was used to fit these data . Equal covari-
ance matrices for each exemplar and linear decision
bounds with no criteria] noise were assumed. This ver-
sion of GRT has the same number of free parameters
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Table 4
Parameter Estimates for Generalized Recognition Theory (GR1)

Applied to Claaification Qata From Experiment 1

Parameters GRT

cc., 00071
Qs- 00. 135
Correlation p 00 .006
Vertical bound orientation 86 3'
Vertical board x intercept -0 .01
Horizontal bound orientation 7 .4°
Horizontal bound Y intercept -002
6s,n/ore. 1 .9

(seven) as the GCM and the PPM, thus providing a basis
for comparisons among these models . Under these con-
straints, GRT did not fare as well as the distance-based
models (see Figure SC)_ For the best-fitting parameter fits
to the averaged data (see Table 4), the model deviated
substantially from the data (XI = 154, df = 72, p --
.001) . In contrast, for the individual subject fits, the model
did not do as poorly (mean RM5 = 0.12) . As in signal
detection theory, GRT may be particularly sensitive to
changes in the decision contour from subject to subject .
for this reason, it is particularly important to fit the data
separately for each subject. Parameter values for these
its are shown in Table 5 .

In GRT, differences in observers' sensitivity to each
dimension are modeled by the variability parameter as-
sociated with each dimension. In fitting the model to the
averaged classification data, the variability ofthe sine di-
mension was nearly twice that of the cosine dimension,
and there was essentially no covariance between the two
dimensions . Similar results were obtained in fitting the
GCM to individual subject data .

Evaluation
in order to statistically compare the relative predictions

of these different models, an analysis of variance
(ANOVA) was conducted on the RM5 values for each
subject. The ANOVArevealed a reliable difference in the

Table 5
Means and Standard Errors of Parameter Estimates for

Generalized Recognition Theory (GR'I) Applied to
Individual Subject Classification Data

From Experiment 1
Parameters _ M 5E

ucos 008 O.OI
os~n 0.11 0 .01
Correlation Q 0.04 0.01
Vertical bound orientation 83 .1' 2.6
Vertical bound x intercept 001 0.00
Horizontal bound orientation 12 .1' 3.7
Horizontal bound N intercept -0.02 0.01
as,.lacos 1.92 0.28

RMS 012 OAl

model fits [F(2,15) = 2$.8,p C .00 1], Fisher's least sig-
nificant difference test was used to test the significance
ofthe individual comparisons . This test is appropriate for
comparisons among three variables (Howell, I992) . Re-
sults indicated that both the GCM and the PPM model
provided a better fit to the classification data than did the
version ofGRT that assumes linear bounds, equal covari-
ance matrices for all stimuli, and no criterial noise (p c
.0Q1) . No significant difference in the fits ofthe PPM and
GCM models was detected . Because GRT is a very power-
ful model, it is possible that a more general version of
GRT would at least match, ifnot improve an, the predic-
tions of the GCM and PPM models . Nonetheless, the
GCM and PPM models capture some essential charac-
teristics of the classification data . Under more special-
ized experimental conditions, it may be possible to dis-
sociate these different models more clearly .
To demonstrate that the quality of the fit ofeach of the

models is largely due to the differential noise or weight-
ing of the cosine and sine dimensions, we tested a ver-
sion of each model in which thedimensions were treated
identically while allowing all other parameters to vary .
With this constraint, none of the models adequately fit
the classification data (XccM = 221 .I ; XZPPm = 201.2 ;
X'GRT = 293.5). For all ofthe models, weighting the sine
and cosine dimensions equally resulted in a significantly
worse fit to the data (p C .001). These results are in
qualitative agreement with previous phase discrimination
studies that found that highly practiced observers are two
to three times more sensitive to cosine (0°-180°) than to
sine (90°-270°) phase shifts (Bennett & Banks, 1991) .

A'~DC Model and the Principle of
uVirtual PrDt41ypCS»

Caelli et al . (1987) studied classification performance
of subjects usingf+3jgratings . They suggested that a sim-
ple prototype model (called the minimum distance classi-
fier, or MDC) provides a good fit to their classification
data . In this section, we examine Caelli et al .'s MDC
model and a recent extension that employs -virtual proto-
types" (Rentschler &Caelli, 1990). Unlike the more gen-
eral classification models reviewed here, the MDC model
does not allow for differential weighting of stimulus di-
mensions (an important aspect of the data) and assumes
a reciprocal relationship between similarity and Euclid-
ean distance . According to the MDC, the probability of
a stimulus i being assigned to a category J is given by

P(R, I S.) = ,~r . X,
K

where n,, represents the similarity of exemplar i to the
prototype ofcategory J, and r1,x represents the similarity
of exemplar i to the prototype of category K. Similarity
is defined as the reciprocal of distance in an unweighted
Euclidean space (e.g ., Equation 2, with r = 1, r = 2,
and no weighting parameters) . When appliedto our clas-
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sification data, the MDC model did not provide an ade-
quate fit (x' = 277, df = 80, p C .001).'

Rentschler and Caelli (1990) proposed an extension of
their MDC model in which virtual prototypes rather than
physical prototypes are used to determine class member-
ship . In this version oftheir model, distance is computed
between the exemplar and the category's virtual proto-
type- Vim+al prototypes are computed by manipulating
the coordinates of the physical prototype so as to mini-
mize the error of the model. The MDC virtual prototype
model was still unable to provide an adequate account for
our data (7' = 217, df = 72, p C .0Q1). Nonetheless,
the difference in goodness of fit between the virtual pro-
totype MDC model and the regular MDCmodel was sta-
tistically significant (Ax2 = 60, tldf = $, p c .00I).
There are several possible reasons why both the MDC

and the virtual prototype MDC models fare poorly when
compared with the PPM. First, it may be that the differ-
ential weighting of the dimensions is critical . This would
account for the failure of the MDC mode, but not for
the failure ofthe virtual prototype MDCmodel. With vir-
tual prototypes, the dimensions can be stretched to reflect
the differential sensitivity ofthe sine- and cosine-sensitive
mechanisms . Another factor that may account for the dif-
ference between the models is the variable Minkowski
metric in the PPMand GCM. This, however, cannot ex-
plain the difference because the best-fitting versions of
PPM and GCM result in a Euclidean metric (r = 2),
Finally, it could be that the transformation from distance
to similarity is what distinguishes these models . In the
MDC, the function is simply the reciprocal of distance,
whereas in the PPM it is an exponential function (Equa-
tion 3) . To test this hypothesis, we evaluated the virtual
prototype MDC model with an exponential decay func-
tion relating similarity and distance (Equation 3, with
p = 1) . This version of the virtual prototype model pro-
vided an excellent fit to the data (X2 = 76, df = 71, p >
.SD), suggesting that the transformation between distance
and similarity is a particularly important part of a clas-
sification model.

Consider how the virtual prototype model with an expo-
nential function relating similarity to distance might ac-
count for our data . The solid squares in Figure 6 depict
the prototypes-defined as the average of the five exem-
plars-for the four categories in our study. The virtual
prototype model shifts the cosine and sine coordinates of
each prototype to account for the classification perfor-
mance. The virtual prototypes that provide the best fit to
tine data are indicated by the open symbols in Figure b.
Note that the major difference between the physical and
virtual prototypes is the contraction along tie sine dimen-
sion : The sine dimension is contracted 2.06 times rela-
tive to the cosine dimension. Thus, the virtual prototype
model ends up being very similar to the general classifi-
cation models (GCM, PPM, GRT) in so far as it weights
the cosine dimension more than tie sine dimension.

The Effects of Learning
In their paper on virtual prototypes, Renischier and

Caelli (1990) attributed the differential scaling of the sine
and cosine dimensions to the effects of perceptual [earn-
ing. Specifically, they argued that learning improves sen-
sitivity to changes along the sine dimension more than
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along the cosine dimension (see also Rentschler, 1990,
cited in Shapley, Caelli, Grossberg, Morgan, & Rentschler,
1990) . We examined the hypothesis that the differential
weighting of the cosine and sine dimensions obtained in
the present experiment was due to the inability ofthe sub-
jects to attend to the sine dimension during early stages
of learning . The average proportions of three different
types of errors within each study-test block are shown
in Figure 7 . A sine error is a confusion between classes
that differ only in sine amplitude (e .g ., Classes I and IV
in Figure 4) . A cosine error is a confusion between classes
that differ only in cosine amplitude (e.g ., Classes III and
N in Figure 4) . Finally, a compound error was defined as
a confusion between classes that differ in both cosine and
sine amplitude (e.g ., Classes 1 and III in Figure 4) . Fig-
ure 7 shaves that sine errors were more prevalent than co-
sine errors in all study-test blocks . In fact, the difference
between cosine and sine sensitivity appears to increase
slightly during the course of the experiment . These re-
sults are inconsistent with the learning hypothesis . Of
course, one could argue that the differential weighting of
cosine and sine would disappear with sufficient learning .
However, the results of discrimination studies suggest that
this hypothesis is probably incorrect : Differential sensitiv-
ity to cosine and sine phase shifts persists even after many
thousands of practice trials (Bennett & Banks, 1991) .
The best-fitting Minkowski exponent for both theGCM

and the PPM model was approximately 2 (see Tables 2
and 3) . Furthermore, the subjects were able to combine
sine and cosine information throughout the experiment,
as indicated by the low classification error rates when the
stimuli differed along both dimensions simultaneously (see
Figure 7) . Both of these results indicate that the subjects
were able to integrate sine and cosine information in our
classification task . In contrast, discrimination studies show
that there is little summation between sine and cosine di-
mensions : At least when averaged across subjects, the
Minkowski exponent is significantly greater than 2 (Ben-
nett, 1993) . The present findings suggest that summation
between cosine and sine channels increases at supra-
threshold levels of 2f contrast .

EXPERIMENT 2

Although subjects are differentially sensitive to sine and
cosine information, Experiment 1 demonstrated that they
are capable ofutilizing both types of information to clas-
sify stimuli. Nevertheless, subjects often report that the
sine dimension is much less salient than the cosine dimen-
sion . Indeed, informal examination ofthe stimuli used in
Experiment 1 reveals that stimuli that differ only along
the sine dimension (45° vs . 315° in Figure 3) look simi-
lar, despite the fact that they are clearly discriminable.
Such informal and introspective reports suggest that al-
though the magnitude of the sine component can be used,
when necessary, to make discriminations, it does not
greatly influence perceived similarity (see Rentschler &
Caelli, 1990, for a similar proposal). It is quite possible,
for example, that similarity betweenf+2fgratings is based

on features or dimensions that are only indirectly related
to the sine and cosine dimensions . One might expect,
therefore, that similarity judgments measured in a con-
text devoid of external reinforcement for attending to spe-
cific sine and cosine dimensions would not be strongly
related to those dimensions . In Experiment 2, we exam-
ined the judged similarity of compound sinusoidal
gratings .

Method
Stimuli . The stimuli consisted of the same 20f+2fgratings used

in the classification experiment. The sine and cosine components
of these stimuli are depicted in Figure 4. The patterns were pre-
sented on a high-resolution SuperMac 21-in. Monochrome Display
(Model MM2136ASM) . Display size was 1,000 X 1,000 pixels
(77 pixels per inch). The frame rate was 77 Hz, noninterlaced . Three
stimuli were presented in a triangular configuration on each trial .
Each stimulus was presented within a circular aperture that sub-
tended 4.4° . The entire display subtended 17° . The average lu-
minance (14 cd/mz) and chromaticity of the stimulus patches and
surrounding uniform field were identical .
Procedure. The subjects made similarity judgments on all pos-

sible combinations of three stimuli chosen from the total stimulus
sample . The order in which the stimuli within a triad were exam-
ined and the duration of looking devoted to individual stimuli were
not controlled . Therefore, we obtained similarity judgments for only
one spatial configuration of each triad, rather than obtaining judg-
ments for ail six spatial configurations . For each triad, the subjects
were asked to select the "odd one out." This procedure, known
as the triangular method oftriads (Ennis, Mullen, Frijters, & Tin-
dall, 1989), requires only a single judgment per triad-namely, sub-
jects are told to select the stimulus that they perceive to be most
different from the other two (e .g ., Romney, Brewer,&Batchelder,
1993 ; Welter & Romney, 1990 ; Wexler & Romney, 1972). Each
possible stimulus pair (A,B) is presented with every other stimulus
(C). A similarity matrix is then constructed by counting the num-
ber of limas the stimulus C is selected as the "odd one out" in
the triad (A, B, C) . If stimulus C is always selected as the "odd
one out," then stimuli Aand B are deemed highly similar . On the
other hand, if stimulus C is never selected, then AandBare highly
dissimilar .
All testing was done with the room lights off. Viewing was binocu-

lar through natural pupils . Viewing distance was 1 m. Head posi-
tion was stabilized with a chin/forehead rest . The subjects made
their selections by clicking on the chosen item with a mouse and
indicated that they were satisfied with their selection by clicking
on a button drawn in the center of the display. No time limit was
placed on the responses, but a typical trial lasted only several
seconds.
Subjects . Five subjects made similarity judgments on the 1,140

stimulus triads .3 The subjects, who were researchers working in
the lab, were naive to the specifics of this experiment . A single
session took approximately 3 h .

Results and Discussion
The proximity matrix derived from the triadic judg-

ments is shown in Table 6. Summary statistics for the
multidimensional scaling (MDS) solutions are shown in
Table 7. To determine the appropriate number of dimen-
sions to accept in the MDS solution, we adopted
Schwarz's (1978) Bayesian information criterion (BIC) .°
Using the BIC statistic addresses the problem ofoveresti-
mation that occurs when using amaximumlikelihood cri-
terion : Maximum likelihood estimation will always prefer
the largest number of dimensions that the data will per-
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Table 6
Proximity Matrix for Experiment 2

A B C D E F G H 1 1 K L M N O P Q ii 5 T

A
B 0.64 -
C 066 069 -
D 0 88 0.56 086 -
E 0.88 0.66 093 0.87
F 0 13 0.17 0.09 4.10 0.12 -
6 0 12 0.12 0 11 0.08 0.11 0.89 -
H 0 12 0.22 0.17 0.10 0.12 0.73 0.86 -
1 019 0.18 0.07 0.09 0.10 0.89 0.81 0.63 -
7 012 0.04 0.l1 0.09 0.13 0.84 0.88 0.79 0.82
K 0.08 O1! 0.06 0.00 0.01 0.51 038 0.40 0.59 037 -
L 000 0 1 ! 006 001 004 052 050 0.56 0.38 051 0.84 -
M 0.04 003 003 0.02 001 0 .51 0.44 037 0.53 0.49 0.90 0.57 -
N 0.00 0.04 0.04 0.04 006 047 0.53 053 0.43 067 0.62 0.79 0.69 -
0 0.01 006 0.08 0.02 004 0.42 0.52 063 0.43 057 0.64 0.94 0.62 0.90 --
P 0.59 040 0.46 0.62 056 0.03 0.01 0.00 0.07 000 O.14 0.10 0.13 0.10 008 -
Q 0.46 0 18 0.37 0.54 049 0.02 000 0.00 0.07 001 0.13 4.11 0.12 0.10 011 0.84
R 0.58 0.37 0.46 067 0.52 0.43 0.00 0.00 0.07 0.00 0.14 0.08 013 4.09 0.10 090 0.88 -
5 0.53 040 0.34 047 037 0.01 0.00 0.00 0.03 000 033 0.12 032 0.10 0.11 0.89 0.83 0.91 -
T 0.37 068 0.24 026 0.24 0.09 0.02 0.03 0.09 0.03 0.51 0.34 030 0.12 0.38 0.63 4 41 0.64 0.84 -

mit, whereas the BIC statistic penalizes models that em-
ploy an excessive number of free parameters . Formally,
the BIC is given by

BIC = logL -
klogn
2 '

(which is related to sine amplitude) . These data provide
evidence that the cosine dimension is more salient than
the sine dimension injudging the similarity ofcompound
gratings .

EXPERIMENT 3
where k is the number of dimensions of the model, n is
the number of observations, and L is the log likelihood
for the total sample (see Ramsay, 1991, for details) .
The two-dimensional solution minimized the BIC sta-

tistic and accounted for significantly greater variance than
the one-dimensions! solution. Although adding a third di-
mension significantly improved the fit (AX' = 60, df =
17, p c .001), the BIC statistic increased, suggesting that
the improvement in fit was due to an excessive number
of free parameters . The two-dimensional MDS solution
with a Euclidean metric (r = 2 in Equation 1) is shown
in Figure $ .

Linear multiple-regression analyses were conducted to
detemune to what extent the MDS dimensions mapped
onto the physical dimensions of sine and cosine compo-
nents of 2f. For the two-dimensional solution, MDS Di-
mension l was significantly related to cosine amplitude
(adjusted R1 = 0.88, t = -11 .83, p c .001)5 and MDS
Dimension2 was significantly related to sine amplitude
(adjusted R2 = 0 .38, r = 3.69, p c .O1) . There was no
ant of a relationship between Dimension 1 and sine am-
plitude (t = -0.62) or Dimension 2 and cosine ampli-
tude (t = 0.01) . The relation between Dimension 1 and
cosine amplitude and the relation between Dimension 2
and sine amplitude are shown in Figure 9 .
The cosine advantage typically observed in discrimi-

nation studies, and also exhibited in our classification data,
seems to generalize to the present similarity study. As is
shown in the MDS solution in Figure S, the stimuli are
stretched out along Dimension 1 (which is highly corre-
lated with cosine amplitude) but not along Dimension 2

Although the results of Experiment 2 seem to conform
to the predictions of the two-channel model, the stimuli
used here were segregated into distinct categories . One
might argue that the categorical structure of the stimuli
suggested the dimensions to be used in making similarity
judgments. To test the generality of these results, we con-
ducted a third experiment using stimuli that varied con-
tinuously along the sine and cosine dimensions .

Method
Stimuli. Stimuli were 16 compoundf+2fgratings_ The frequency

and contrast off were the same as in aperunents 1 and 2_ The
phase of2fwas generated by randomly selectinga phaseangle from
a uniform distribution ranging from 0° to 360° . The contrasts of
2fwere selected from a Gaussian distribution with a mean of 0 .05
and a standard deviation of0.016 . The sine and cosine components
of these stimuli aredepicted in Figure 10 . Note that the stimuli were
more evenly distributed in phase space than were those used in Ex-
periment 2.
Procedure. The procedure in this experiment was identical with

that ofExperiment 2. Each subject viewed all 560 unique combi-

Table 7
115Results for Similarity Judgments Collected

in Experiment 2

1-9 $[C Number of
Analysts _ Likelihood Statistic _- Parameters

One dimensional -925 2,057 32
Two dimensional -767 1 .855 50
Three dimensional -737 1 . 904 67
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Figure 8. The WEDS solution for the similarity judgments ofEx-
periment 2. The letters are the stimulus labels (see Figure 4).

nations of three stimuli . As in the previous experintent, weohtained
similarity judgments for one spatial configuration of each triad,
rather than obtainingjudgments for all six spatial configurations .
Subjects- The subjects were 7 psychology graduate students . Each

subject was paid $15 (Canadian) for participating in the experiment .
Each session [riled approximately 1 .5 h~

Results and Discussion
The proximity matrix derived from the triadic judg-

ments is shown in Table S. Summary statistics for the fit
ofone- through three-dimensional solutions are shown in
Table 9_ As in experiment 2, the two-dimensional solu-
tion minimized the BIC statistic and accounted for sig-
nificantly greater variance than did the one-dimensional
solution . Again, the three-dimensional solution signifi-
cantly improved the fit (aXI = 70, df = 13, p c .001) ;
however, the BIC statistic favored the two-dimensional
solution (shown in Figure 11) .

Linear multiple-regression analyses were conducted to
determine to what extent the MDS dimensions mapped
onto the sine and cosine components of 2f. For the two-
dimensional solution, MDS Dimension 1 was significantly
correlated only with cosine amplitude (adjusted R' =
0.94, t = 15.68,p c .00I); however, MDS Dimension 2
was not correlated with either sine or cosine amplitude
(adjusted R2 = 0.0(?) . Although sine amplitude was not
linearly correlated with Dimension Z, inspection of the
data suggested that the subjects perceived stimuli with
positive and negative sine amplitude as being similar to
one another but different from stimuli with sine ampli-
tudes near zero . To test for this possibility, wecorrelated
the absolute value ofthe sine amplitude with Dimension 2
and found a substantial correlation (R2 = 0.68, F = 30.25,
p < .001) . This suggests that subjects are sensitive to the
presence of sine contrast, but not to its sign. For exam-
pIe, gratings in 45° and 3l5° phase (see Figure 3) are
judged as similar to one another but different from prat-

ings at Q° phase . The relation between Dimension I and
cosine amplitude and the relation between Dimension 2
and the absolute value of the sine amplitude are shown
in Figure 12 .

This experiment extended the results of Experiment 2
by demonstrating that even when stimuli vary continu-
ously along the sine and cosine dimensions, a two-
dimensional solution provides a reasonable account for
perceived similarity judgments. Nonetheless, the results
were not entirely consistent across these experiments . In
Experiment 2, similarity judgments were linearly corre-
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A S C D

Table S
Probmity Matrix for Experiment 3

E F G H I J K
-

L M N d P
^ - -

B 066 --
C 065 0.3E -
D 064 0.47 053 -
E 042 0.18 059 0.56 -
F 0.21 0.61 0.13 0.21 0.04
G 078 4.41 0.56 0.72 0.52 0.15 -
H 022 0.10 0.43 0.27 0 .72 0.02 0.30
1 070 0.64 0.80 0.62 038 436 0.54 4.12 --
J 0.12 0.33 0.04 014 002 0.74 0.12 0.08 0.15 -
K 4.24 051 007 0.22 0.02 0.83 0.15 007 0.23 0.80 -
L 029 O.09 044 0.31 0.69 0.01 0.34 0.84 0.20 0.06 0.01 -
M 0.26 0.04 0.36 0.14 0.57 0.41 0.19 0.90 0.14 0.06 4.06 4.83 -
N 047 0.12 0.61 0.36 0.69 004 0.62 0.65 035 0.05 0.05 0.71 0.64 -
0 0.04 0.35 0.04 009 0,01 0.69 O.10 0.10 0.11 0.87 0.78 0.06 0.08 0.02 -
P 0.02 030 0.03 0.07 0.61 0.71 0.06 0.09 0.07 0.83 0.69 0.05 0.09 0.02 0.89 -
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lated with sine amplitude, whereas in the present experi-
ment, the subjects seemed to judge similarity according
to the absolute value ofthe sine amplitude and not its sign.
There are two possible explanations for this discrepancy .
In order to make differences in sine and cosine ampli-
tude more subtle in this experiment, the average contrast
of 2fwas only half that of Experiment 2. Consequently,
one might reason that the subjects were simply unable to
discriminate the sign of the sine component, This expla-
nation is unlikely, because Sennett and Banks (1991) have
shown that when patterns are viewed in the fovea (as in
our experiments), one can discriminate phase shifts as
soon as 2f is detected . An alternative explanation seems
more plausible. In Experiment 2, stimuli were clustered
around prototypes in phase space. In order to judge the
four categories as distinct, the subjects had to attend to
the sign ofthe sine and cosine amplitudes . For example,
stimuli in Categories I and N (see Figure 4) differed
primarily in the directionality rather thaw the absolute
value of their sine amplitude. In contrast, stimuli en Ex-
periment 3 (see Figure 10) varied continuously and did
not conform to any obvious categorical structure . In this
case, the subjects could ignore the directionality of the
sine amplitude if its absolute value were more salient.

-015 -010 -0.05 000 005 019 015
Cosine Amplitude

Figure !0. The stimuli used in Experiment 3. The figure conven-
tions are the same as those for Figure 4,
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Figure 11 . TheMDSsolution for the similarity judgments of Ex-

periment 3. The letters are the stimulus labels (see Fgure 10).

GENERAL CONCLUSIONS

These experiments investigated whether models of
phase discrimination would generalize to suprathreshold
phase perception in classification and similarityjudgment
tasks. In Experiment 1, classification performance was
consistent with the predictions ofthe two-channel model
of phase discrimination (Bennett & Banks, 1991 ; Field
&Nachmias, 1984). The subjects were more sensitive to
the cosine than to the sine information, and classification
models that base judgments on interstimulus similarities
along independent sine and cosine dimensions provided
a good fit to tie data. Prototype and exemplar models pro-
vided nearly identical fits to the data, whereas a some-
what impoverished version of generalized recognition the-
ory (matched to the other models in the number of free
parameters) provided a slightly worse fit to the data .
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Table 9
gyms xesialts coy s+-aairicy Judwients; Collected

in Experiment 3
Log SIC Number of

Analysis Likelihood Statistic Parameters
One dunen5;onal -t,o14 2,251 34
Two dimensional -873 2,060 48
Three dimensional -838 2,075 61 --
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Feguse 12. Timresatiun betwecucanna amffitude andADSDimea-
sion 1 (Paned A) sad the relation between the absolute value ofthe
Sine amplitudeand MD5Dimemoon Z (peed B). Tbedimensions am
theresults of the two-bimensioaalN1D5 sWation for Experiment 3.

In Experiments 2 and 3, a two-dimensional MDSsolu-
tion provided an adequate characterization of the data .
Higher dimensional solutions were rejected on the basis
of the Bayesian information criterion (Schwarz, 197$).
In both experiments, perceived similarity of compound
gratings was influenced primarily by differences in co-
sine phase. Sine phase was also correlated with the multi-
dimensional scaling solutions, but less strongly . Overall,
these results suggest that the two-channel model of phase
discrimination provides a useful framework far interpret-
ing classification aid similarity judgments of compound
gratings .
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NOTES

1 And combination of amplitude (A)and phase (0) ran be expressed
as a sum of cosine and sine components using the trigonometric identity

A cos (x - 0) -- A icos(o)cos(z) + sin(O)sin(x) },

[f A represents thetlurestEOld amplitude needed to discriminate a 180°
phase shift, then tie x and y coordinates m Figure 2 correspond to A
cos(O) and A sin(), respectively .
2. Despite the model's poor fit to the data, the correlation between

predicted and observed values was 0.96. This is consistent with Caelh
et al .'s finding ofahigh correlation between the MDC mode! and their
classification data.
3. The number of unique combinations of r stimuli chosen from a

set of n is even by n!lr?(n-r)' . Since the total sample has 20 stimuli
and each mad consists of 3, the number of combinations is 1,140.
4. The Bayesian information criterion is somewhat more conserva-

tive than Akaike's information criterion (,4kaike, 1974) in that it prefers
models of lower dunensionality .
5. Adjusted R= = R' - (p-Vn-p)(1 -Rl), where n is the number

of cases and p is the number of predictors, including the constant (see
Systat. Statistics, p, 176, for detour) .
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