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This article addresses the relation between item recognition and associative (cued) recall. Going beyond
measures of performance on each task, the analysis focuses on the degree to which the contingency
between successful recognition and successful recall of a studied item reflects the commonality of
memory processes underlying the recognition and recall tasks. Specifically, 4 classes of distributed
memory models are assessed for their ability to account for the relatively invariant correlation (� .5)
between successive recognition and recall. Basic versions of each model either under- or overpredict the
intertask correlation. Introducing variability in goodness-of-encoding and response criteria, as well as
output encoding, enabled all 4 models to reproduce the moderate intertask correlation and the increase
in correlation observed in 2 mixed-list experiments. This model-based analysis provides a general
theoretical framework for interpreting contingencies between successive memory tests.
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This article addresses the relation between item recognition and
associative, or cued, recall. The item-recognition task asks subjects
to judge whether a target item was on a just-presented list; the
cued-recall task asks subjects to generate the target paired with a
given cue item. Recognition and recall are considered to be the two
canonical episodic memory tasks, with both tasks requiring that
subjects retain information about the item’s presence within a
temporally defined set (e.g., Tulving, 1983). Because a growing
number of memory models now provide a unified theoretical
framework for modeling both item recognition and associative
recall, we asked whether these models can account for data on the
contingency between successful recognition and successful recall
of a given studied item. More generally, we examine how item-
level correlations between successive memory tasks inform the
key assumptions governing the representation, storage, and re-
trieval of information in those tasks.

Strength theory provided the earliest account of the relation
between recognition and recall. According to this view, the study
of the items on a list strengthens associations between each of the
list items and some representation of the list itself. Outcomes of
both recognition and recall tests depend on the strength of this
item-to-list association. Consistent with the observation that rec-
ognition is usually easier than recall, this view held that the
essential difference between these tasks is that recognition could
be successfully performed with weaker associations than recall.

Despite its heuristic value, strength theory offered an overly
simplistic view of recognition–recall differences. This theory was
abandoned after researchers found that experimental variables had
opposing effects on recognition and recall. For example, as com-
pared with common words, rare words are easily recognized as
having been presented in a recent list but are more difficult to
recall (Gregg, 1976; Kinsbourne & George, 1974; MacLeod &
Kampe, 1996). Other examples of dissociations include the effects
of intentionality on memory encoding (Glenberg & Bradley, 1979;
Schwartz & Humphreys, 1974), the effects of context change on
memory retrieval, and the effects of damage to the medial-
temporal lobe (Hirst, 1986; Vargha-Khadem et al., 1997), at least
when interitem similarity is not high (Holdstock et al., 2002).

Generate–recognize theory provided an alternative conception
of the differences between recognition and recall (e.g., Bahrick,
1970). According to this view, recall involves two stages: subjects
first generate possible responses, and then apply a recognition test
to decide whether any of the generated responses were on the list.
The recognition task differs from recall in that the generate stage
is absent. A strong version of this model predicts that recallable
items will always be recognized. Contrary to this prediction,
Tulving and colleagues (e.g., Tulving, 1968; Tulving & Thomp-
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son, 1973) found that unrecognized items may often be subse-
quently recalled when prompted by an appropriate retrieval cue.

Contingency Analysis of the Recognition–Recall Relation

In studying the relation between recognition and recall, Tulving
and Thompson (1973) adopted the successive testing technique, a
technique that had been used previously to examine one-trial
associative learning and to assess the role of associative unlearning
(see Kahana, 2000, for a review). In Tulving and Thompson’s
procedure, subjects studied a list of A–B word pairs and were then
tested successively: first by item recognition and then by cued
recall. In the item-recognition test, subjects saw B items from each
of the studied pairs intermixed with nonlist items. Subjects re-
sponded “yes” to items if they remembered seeing them in the
study list. In the cued-recall test, subjects attempted to recall the B
items when given the A items as cues. In this manner, memory for
each of the B items was tested twice—first by recognition and then
later by recall. Tulving and colleagues observed that some items
that subjects failed to recognize as having been presented in the
study list were nonetheless correctly recalled on the cued-recall
test—a finding they referred to as the “recognition failure of
recallable words.”

Tulving and Wiseman (1975) measured the statistical contin-
gency (or association) between item recognition and cued recall at
the level of individual items. Their analysis revealed a simple
relation between the conditional probability of recognition given
recall, P(R�C), and the probability of recognition itself, P(R). This
relation, known as the Tulving–Wiseman function, describes a
moderate degree of dependency between item recognition and
cued recall. Expressed using Yule’s Q—a measure of association
for 2 � 2 contingency tables—one finds values ranging from .45
to .65 across a wide range of experimental conditions (Kahana,
2000; Nilsson & Gardiner, 1991).1 Although higher recognition–
recall dependencies have been observed as a result of shallow
encoding or semantic redundancy of study pairs (Nilsson &
Gardiner, 1993; Nilsson, Law, & Tulving, 1988), the basic finding
of moderate dependence is robust.

The moderate degree of dependence between recognition and
recall contrasts with other task comparisons, particularly those
involving comparisons of implicit and explicit memory tasks.
Independence (Q � 0) is typically observed when subjects perform
successive recognition and fragment completion or successive
fragment completion tasks given with implicit instructions on one
test and explicit instructions on the other (Hayman & Tulving,
1989a, 1989b; Tulving, Schacter, & Stark, 1982). These findings
of independence have led to very strong claims concerning the
existence of separate memory systems supporting implicit and
explicit memory (Tulving & Schacter, 1991).

Intertask correlations can also be very high, as in cases in which
the same information is probed on two successive tests. For ex-
ample, Kahana (2002) had subjects study a list of 12 A–B pairs.
All the studied pairs were then tested twice, once in each of two
test phases (designated as Test 1 and Test 2). On Test 1, half of the
studied pairs were cued in the forward order, and the other half
were cued in the backward order. On Test 2 (which was given after
a brief delay), half of the pairs were tested in the same order as in
Test 1 and half were tested in the reverse order. The correlation
between successful recall of pairs tested in an identical manner on

the two retrieval occasions was .99. More surprisingly, the corre-
lation was .97 for pairs tested in the forward order on one of the
tests and the backward order on the other (e.g., A–? on Test 1 and
?–B on Test 2). Kahana interpreted the similarity of these corre-
lations as evidence for the associative symmetry hypothesis (Asch
& Ebenholtz, 1962), which sees A–B associations as a holistic
conjunction of both A and B items rather than independent forward
and backward links (e.g., Wolford, 1971).

The preceding examples illustrate that the moderate correlation
between successive recognition and recall must say something
about the information processing underlying these two memory
tasks. Indeed, the moderate correlation between item recognition
and cued recall, coupled with numerous experimental dissociations
in which manipulated variables selectively influence either recog-
nition or recall, led theorists to advocate for a distinction between
item-specific and relational (or associative) information (Hum-
phreys, 1978; Murdock, 1974)—a distinction that became formal-
ized in a host of computational memory models (Gillund & Shif-
frin, 1984; Hintzman, 1988; Humphreys, Pike, Bain, & Tehan,
1989; Mensink & Raaijmakers, 1988; Metcalfe, 1985; Metcalfe,
1985; Murdock, 1982, 1997; Norman & O’Reilly, 2003). Although
these models have been used extensively to account for recogni-
tion and recall data individually, the basic assumptions about the
dependence or independence of the information supporting these
tasks have not been carefully evaluated. However, before one can
evaluate these assumptions, one must consider the complexities
involved in interpreting correlations between successive tests.

Our overarching goal is to provide a rigorous foundation for the
interpretation of intertask correlations and to use this approach to
help us understand how correlations between memory tasks can
help constrain models of those tasks. Our focus on the recognition–
recall correlation is fitting because recognition and recall are the
two most widely studied memory tasks, and because major mem-
ory models have been developed to provide a common theoretical
framework for their analysis. Furthermore, theories of recognition
and recall have been specified in sufficient detail that we can
derive explicit predictions about their correlation. Finally, there are
extensive data demonstrating the moderate correlation between
successive recognition and recall tasks, with these correlations
being consistent across studies that vary widely in their method-
ology and in the overall level of recognition and recall
performance.

This article is organized as follows. First, we present a statistical
analysis of factors that may influence the correlation between any
two successive memory tests. Next, we introduce four distributed
memory models (DMMs) that have been used to model item
recognition and associative (cued) recall. These models are of
particular interest because they make representational assumptions
that allow one to derive, analytically, the recognition–recall cor-
relation. These derivations are then presented for simplified ver-
sions of each of the four models. Using Monte Carlo methods, we
are able to simulate extended versions of each model and show that
variability at encoding and variability at retrieval play crucial roles
in determining intertask correlations. The latter part of the article
reports two experiments that test and confirm these predictions,

1 Yule’s Q can take on values ranging from �1.0 (perfect negative
correlation) to �1.0 (perfect positive correlation).
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thus demonstrating the important role played by variability in
modeling the correlation between successive memory tasks.

Factors Affecting the Correlation Between
Successive Tests

Because of problems noted in the graphical analysis of Tulving
and Wiseman (Hintzman, 1992), we approach the general problem
of intertask correlations by directly examining the 2 � 2 contin-
gency table. This can be done by fitting models to either (a) the
probabilities of successful outcomes on Tests 1 and 2 as well as the
correlation (Q) between these outcomes or (b) the probability of
success on Test 1, the probability of success on Test 2 conditional
on Test 1 success, and the probability of success on Test 2
conditional on Test 1 failure. We use the former approach; the
latter approach has been used effectively by Humphreys and
Bowyer (1980) and Batchelder and Riefer (1995).

Simpson’s paradox poses a challenge for the interpretation of
contingency tables. This paradox refers to the fact that collapsing
data across subjects or items can give rise to relations that were not
present in the precollapsed data (e.g., Hintzman, 1981; Hintzman
& Hartry, 1990). Consider for example what would happen if some
items attract a good deal of attention and are thus very well
encoded during the study phase, whereas other items attract little
attention and are thus very poorly encoded during the study phase.
Collapsing across these two classes of items could produce a high
correlation between recognition and recall even if the correlation
within each class of items was rather low. Although it could be
argued that such effects render the analysis of intertask correla-
tions meaningless, we show how these complications can be taken
into account in a model-based analysis of the correlations between
successive tasks.

Figure 1 shows a causal diagram depicting the effects of differ-
ent sources of variability on the observed correlation between item

recognition and cued recall. Consider the study episode: For a
given subject, each pair will be encoded in an unpredictable
manner. Fluctuations in attention, subject-specific coding of word
pairs, and differences in mnemonic strategies produce variability
that can be unique to each studied pair. This variability in goodness
of encoding, which is difficult to estimate or control (cf. Hintzman
& Hartry, 1990), can induce a positive correlation between suc-
cessive memory tasks (Flexser & Tulving, 1978; Hintzman, 1987;
Kahana, 2000). Consider what would happen if subjects, faced
with a very long list, chose to attend to the first few word pairs and
rehearse those pairs while ignoring the remaining list items. Be-
cause the first few pairs will be remembered very well and the
remaining (ignored) pairs will be neither recognized nor recalled,
we will find that Q � 1, even if the inherent correlation between
information driving recognition and recall is very small.

Variability in goodness of encoding is not the only factor that
can influence the correlation between successive tests. Because
retrieval is cue dependent, encoding of the cue item is also crucial
for memory performance. Consider the case of identical successive
memory tests (e.g., recall of B given A on two successive tests).
Suppose, further, that there is no learning in Test 1 and no
forgetting in the interval between Tests 1 and 2. One might expect
that items correctly remembered in Test 1 will also be correctly
remembered on Test 2; conversely, items that are not remembered
on Test 1 will not be remembered on Test 2. This assumes that the
cue item (Ai) is encoded identically on Test 1 and Test 2, and that
the criterion for responding is identical at both tests. However, if
the retrieval cue is encoded more effectively on Test 1 than on Test
2, or if the criterion for recall is lowered, items that are correctly
remembered on Test 1 may not be remembered on Test 2, thereby
reducing the intertask correlation. If two variables are correlated,
but independent sources of variability affect each one, their cor-
relation will be attenuated.

A final complication comes from the influence of Test 1 on Test
2. On each test trial, subjects store information about the test cue
and the information it retrieves (see Figure 1). We refer to this
storage as output encoding. Humphreys and Bowyer (1980) ex-
amined whether output encoding during item recognition facili-
tated subsequent cued recall. Subjects studied pairs of words and
then performed successive recognition and recall tasks. Some
items tested during recall were not presented during the prior
recognition test. Humphreys and Bowyer found higher cued-recall
performance for items that were previously tested as compared
with those that were not. This suggests that output encoding during
item recognition facilitates subsequent cued recall.

Humphreys and Bowyer (1980) hypothesized that output encod-
ing may alter the observed correlation between item recognition
and subsequent cued recall. If subjects store more relevant infor-
mation for recognized than for nonrecognized items, then recall
should be higher for recognized items, thus increasing the corre-
lation between successive tests. If output encoding is identical for
recognized and nonrecognized items, one would not expect to find
such an effect.

Humphreys and Bowyer (1980) presented evidence that al-
though recognition facilitates later recall even when an item is not
recognized (Begg, 1979; Donnelly, 1988), the boost to recall is
greater for recognized than for nonrecognized items. This en-
hanced output encoding for recognized items leads to an increase
in the correlation between recognition and subsequent recall. Some

Figure 1. Causal model illustrating the factors that can influence the
observed correlation between item recognition and cued recall.
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experiments (e.g., Wiseman & Tulving, 1976) fail to show signif-
icant output encoding but nonetheless yield moderate dependency
between item recognition and cued recall. This suggests that output
encoding only partially contributes to the observed correlation
between recognition and subsequent recall.

In summary, variability in storage should increase the correla-
tion between tasks so long as the tasks interrogate the same
episode in memory. Variability in the retrieval process will lower
the correlation. Output encoding can increase the correlation be-
tween tasks under specific assumptions about the nature of the
information being stored during Test 1. This analysis holds for any
pair of successive memory tasks, but we focus our attention on
successive item recognition and cued recall.

Model-based analyses that incorporate these factors can aid our
understanding of the recognition–recall relation. We apply distrib-
uted memory models to data on recognition, recall, and their
contingency relations. For simplified versions of these models, one
can derive analytic expressions for the base level of correlation
between recognition and recall. More complete versions of these
models will include other factors that can modulate these base
correlations, as shown in Figure 1. Monte Carlo techniques can
then be used to study the behavior of these more realistic, but less
analytically tractable, models.

Rather than focusing on a single model, we examine a portfolio
of four models that differ along two dimensions: (a) their associa-
tive mechanism and (b) the comparison process they use in item
recognition. The next section describes the basic machinery un-
derlying these models.

DMM

DMMs assume that the stream of incoming experience is parsed
into meaningful units. Each unit is then represented by a set of
abstract feature values; mathematically, this set describes a vector
in a high-dimensional feature space. These distributed representa-
tions are then stored in a single memory system (a composite
representation containing all of the stored items and associations).
There are many ways to store these representations. The three
basic types of storage used by the DMMs considered in this article
are autoassociation, heteroassociation, and direct storage.

An autoassociative mechanism binds features in such a way that
a part can be used to retrieve the whole (redintegration). A
heteroassociative mechanism binds features in such a way that one
activated pattern can be used to retrieve another. Two mathemat-
ical operations have been proposed to form autoassociative and
heteroassociative memory representations. In one approach
(Anderson, Silverstein, Ritz, & Jones, 1977; Pike, 1984) the asso-
ciation is formed by taking the outer product of two N-dimensional
vectors. The result of this operation is an N � N matrix (see
Jordan, 1986, for details). In a second approach (Murdock, 1979),
the association is formed by taking the vector convolution of two
N-dimensional vectors. The result of this operation is a 2N � 1
dimensional vector.2 In both cases, if the vectors being associated
are identical, the operation is autoassociation. If the vectors being
associated are different, the operation is heteroassociation. Once
these associative representations are formed, they can be added to
a single memory structure. The same structure can represent many
different associations.3

A different mechanism for storing information in memory,
termed direct storage, adds vectors representing units of informa-
tion directly to the memory structure—without forming any kind
of associations. Anderson (1973) demonstrated that a model based
on direct storage could account for a wide range of data on
single-item recognition. This type of storage, however, would not
allow for associative retrieval or pattern completion (Weber &
Murdock, 1989).

Murdock (1982) demonstrated how a single model combining
both direct storage and heteroassociative mechanisms could ac-
count for the data on item recognition and cued recall. Metcalfe
(1985) modeled item recognition and cued recall by combining
autoassociative and heteroassociative storage within a single
model. Murdock and Metcalfe’s models both use convolution as
the heteroassociative storage mechanism. Humphreys, Bain, and
Pike (1989) proposed a matrix model for both recognition and
recall. This model used direct storage for encoding items, and used
matrix multiplication as the heteroassociative mechanism.

Modeling Recognition and Recall

Our four DMMs represent a factorial combination of two kinds
of associative mechanisms (convolution and matrix multiplication)
and two approaches to modeling the recognition process (autoas-
sociation and direct storage). Because all four models use similar
recall mechanisms, we focus first on the two different approaches
used to model the recognition process.

Local- Versus Global-Match Recognition Models

For models using direct storage (summation), a simple compar-
ison or match of the probe item with the contents of memory
provides information about whether that item was present in the
list. This comparison is termed a global match because the value
or strength of the match reflects the contributions of all the list
items. Global-match models assume that the recognition decision
is based on the summed similarity of the probe item with all of the
traces stored in memory (see Clark & Gronlund, 1996, for a
review).

Autoassociative models (e.g., Metcalfe, 1985, 1991; Norman &
O’Reilly, 2003) approach the recognition problem in a different
way. During study, each list item is autoassociated and then these
autoassociations are stored in memory. Recognition is a two-stage
process. First, the probe item is used to retrieve the associated
information in memory. If the probe item was one of the items on
the list, the retrieved information will include the probe item. In
the second stage, the retrieved information is matched against the
probe item itself. If this local match exceeds a fixed criterion, the
model returns a positive response. We refer to this two-stage
model as a local-match model because the probe item is compared

2 The convolution of two vectors, f and g is defined by the equation
(f � g)m � ¥i figm�i, where m is the index to the elements in the convolution
vector and i indexes the elements in the item vectors f and g. The asterisk
(�) denotes the convolution operator.

3 Biologically inspired nonlinear networks can also perform autoasso-
ciation and heteroassociation (e.g., Chappell & Humphreys, 1994; Lisman,
Jensen, & Kahana, 2001). We analyze linear DMMs because analytic
expressions for their behavior can be easily obtained (Weber, 1988).
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with the retrieved information as opposed to the entire contents of
memory.

Recent work has highlighted the limitations of simple global-
and local-match models of recognition, advocating instead for a
dual-process approach in which local- and global-match processes
operate in tandem (Norman & O’Reilly, 2003). While recognizing
that such a hybrid approach is likely to provide a more successful
account of recognition memory phenomena, our goal of contrast-
ing distinct classes of models is served by setting up a strong
contrast. We have therefore chosen to analyze the process-pure
global- and local-match models separately. A hybrid model is
likely to generate predictions that fall between those of the
process-pure variants.

Modeling Cued Recall

In cued recall, subjects study a list of word pairs denoted F1–G1,
F2–G2, . . . , FL–GL, where L represents the number of pairs in the
list. At test, the experimenter cues with each F item for recall of the
corresponding G item. In the models, cued recall depends on the
storage of the heteroassociation of the vectors representing F and
G. Retrieval involves cuing the memory with the probe item and
applying an associative retrieval operation to the memory system.
In the matrix models, multiplying the probe with the memory
matrix yields the retrieved vector. In the convolution models,
correlating the probe item vector with the memory vector yields
the retrieved vector.4 The probability of retrieving a given target is
assumed to be proportional to the match of the retrieved vector
with the target vectors.5 In all of the models presented here, the
information used for both recognition and recall is assumed to
reside in a common episodic memory store.

Mathematical Characterization of the Models

Table 1 gives the storage equations for the four DMMs consid-
ered here. In each equation, bold lowercase characters represent
vectors and capital letters represent matrices (m denotes the mem-
ory vector in the convolution–correlation models, W denotes the
weight matrix in the matrix models), fk and gk represent the studied
items, the subscript k indexes the current pair being stored, a prime
is used to denote the transpose of a vector (e.g., f�), and r repre-
sents a fixed vector of unit length.

All four models will recognize an item, f, if the strength of the
information signaling the item’s presence in memory, R, exceeds a
decision criterion. In the global-match convolution–correlation
model, R � f � m (for a more sophisticated treatment of the
decision process, see Hockley & Murdock, 1987). In the local-
match convolution–correlation model, R � (f#m) � f. In the global-
match matrix model (e.g., Humphreys, Pike, et al., 1989, without

context), R � fr� � W. In the local-match matrix model, R � Wf �
f (cf. Rizzuto & Kahana, 2001). In all four models, recall perfor-
mance is proportional to the match between the retrieved and
desired information, denoted C. In the convolution–correlation
memory models, C � (f#m) � g, where g is the desired target item.
In the matrix memory models, C � Wf � g. See Appendix A for a
more detailed description of the four models.

Mathematical Analysis of the Recognition–Recall
Correlation

Our goal in this section is to use models of recognition and
recall to derive predictions for the correlation between these tasks
at the level of the individual items.6 With variables that represent
the quality of information driving item recognition, R, and cued
recall, C, the theoretical correlation between R and C is given by

�RC �
cov�R, C�

�var�R�var�C�
.

Table 2 gives the variance and covariance expressions used to
calculate the theoretical correlation between recognition and recall
in each of the four models (detailed model descriptions and deri-
vations of these expressions can be found in Appendix A). In
deriving these analytic expressions, we used base versions of each
model; versions that do not take account of variability in goodness
of encoding, variability in the retrieval process, output encoding,
or interitem similarity. In the next section, we examine these
complicating factors using Monte Carlo simulation methods, but
first let us consider the implications of these basic implementations
of each model.

In all four models, both the number of features, N, and the list
length, L, contribute to the variance of R and C. This is because
adding correlated features to the memory matrix or vector will
contribute to the variance of the matching values. Because N must
be relatively large to support recognition and recall performance,
the higher order terms do not contribute substantially to the cor-

4 Correlation is an approximate inverse of convolution. f correlated with
g is defined by the equation ( f #g)m � ¥i figm�i, where the pound sign (#)
denotes the correlation operator.

5 The mapping between retrieved and target vector, which is sometimes
called deblurring, can also be achieved using a more neurally plausible
dynamical rule (Anderson et al., 1977; Farrell & Lewandowsky, 2002).

6 Although it would be better to derive Q directly, this would entail
working with integrals of the normal distribution function, and thus would
not allow for closed form expressions for the correlation. As long as
sphericity is approximately satisfied by the contingency data, the product–
moment correlation, �, should be nearly equal to Q.

Table 1
Factorial Analysis of the Storage Processes in Four Classes of Distributed Memory Models

Recognition
process Matrix product Vector convolution

Local match Wk � Wk�1 � (fk � gk)(fk � gk)	
� Wk�1 � fkg	k � gkf	k � fkf	k � gkg	k

mk � mk�1 � (fk � gk) � (fk � gk)
� mk�1 � 2fk � gk � fk � fk � gk � gk

Global match Wk � Wk�1 � fkg	k � gkf	k � fkr	 � rg	k mk � mk�1 � fk � gk � fk � gk
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relation. For the most part, the ratio of the lowest order term in the
covariance to the geometric average of the equivalent order terms
in the variances will drive the recognition–recall correlation.

Figure 2 plots the correlation between R and C as a function of
L for each of the models. In both the global- and local-match
convolution models, the dominant terms in the variances and
covariance are of the order N�1. However, because L contributes
to the variance but not to the covariance, these models predict that
the correlation will go to zero as L grows large. This is shown in
the upper left and upper right panels of Figure 2. In the global-
match matrix model (lower left panel of Figure 2), the dominant
term in the covariance is 2, and the dominant term in the product
of the variances is 2L2. Here again, the correlation approaches zero
as L grows large.

In the local-match matrix model, the dominant terms in the
variances and covariances are all of the order N�1. However,
unlike the other models, this term does not depend on L in either
the covariance or the variance expressions. For this reason, this
model exhibits a high correlation even for large values of L (lower
right panel of Figure 2). For small N, the higher order terms in the
variance contribute to the correlation, and because these terms
depend on L, the correlation does decrease. For high N, however,
the local-match matrix model predicts very high correlations for all
values of L.

For typical experimental parameters, only the local-match ma-
trix model produces a substantial positive correlation between
recognition and recall. In the other three models, the positive
covariance between recognition and recall is a negligible fraction
of the variance. Consequently, these three models predict a near-
zero correlation between item recognition and cued recall for the
kinds of experiments that typically yield moderate correlations (Q
� .5).7

Simulating Encoding Variability and Output Encoding

In deriving the correlation between R and C, we made a number
of simplifying assumptions. First, we assumed that subjects store a
constant amount of information for each studied pair. Second, we
assumed that both the recognition and recall cues were coded
perfectly. Third, we assumed that both Test 1 and Test 2 assess the
information stored during the initial study phase. As discussed
previously, Test 2 assesses information stored during study as well
as any additional information encoded during Test 1 (see Figure 1).
In this section, we use Monte Carlo simulations to evaluate gen-
eralized versions of each of the four DMMs, considering in par-

ticular the effects of encoding variability and output encoding on
the recognition–recall correlation.

Simulation 1: Encoding Variability

Here we consider the effect of variability in goodness of encod-
ing on the recognition–recall correlation. Probabilistic encoding of
the constituent features of an item can be used to vary the quality
of encoding of items and associations (e.g., Murdock, 1997; Mur-
dock & Lamon, 1988; Shiffrin & Steyvers, 1997). Following this
approach, a single presentation of a stimulus results in a sample of
its features being encoded. Each feature is encoded with probabil-
ity p and not encoded (set to zero) with probability 1 � p. This
formalizes the notion of goodness of encoding: Better encoding
translates into higher p values, worse encoding translates into
lower p values.

Hockley and Cristi (1996) have shown that stressing item en-
coding does not facilitate memory for associations; however,
stressing associative encoding boosts both memory for item and
associative information. Because cued recall stresses associative
encoding, we limit our analysis to variability in the goodness of
encoding for the studied pair as a whole. Pairs that are encoded
well (i.e., p is large) will have a higher probability of recognition
and recall than pairs that are encoded poorly (i.e., p is small), and
variability in p will increase the correlation between successive
tasks. If the variance in p is large enough, the correlation between
recognition and recall should approach unity, even if item and
associative information are independent.

Method. We simulated the successive study and test of 32 pairs of
N-dimensional item vectors, denoted fi, gi, whose elements are independent
and identically distributed random variables, fi(k) � �(0, 
1/N). All of the
study items served as competitors in the recall phase. During study, items
were encoded probabilistically, with the value of p drawn separately for

7 Metcalfe (1991) suggested that local- but not global-match convolution
models can account for the moderate recognition–recall dependency. When
the two models simulated the study of three word pairs, Metcalfe found that
the local-match version produced a moderate correlation between item
recognition and cued recall, whereas the global-match version predicted
independence. As shown in Table 2 of the present article, the behavior of
these model depends on list length and vector dimensionality. When
simulating lists of just three pairs, and using vectors of low dimensionality,
as in Metcalfe, one observes a somewhat higher correlation for the local-
match model. Both models, however, predict near independence when list
length is increased to values used in experimental studies.

Table 2
Variance and Covariance of Matching Strengths Driving Item Recognition and Recall Performance

Model var(R) var(C) cov(R, C)

Global-match convolution (2.75L � 2)N�1 � N�2 � 0.25LN�3 (2.17L � 6.67)N�1 � 4N�2

� (0.83L � 0.33)N�3
3.75N�1 � N�2 � 0.25N

Local-match convolution 1⁄6 [(40L � 232)N�1 � (27L � 276)N�2

� (20L � 80)N�3 � (27L � 12)N�4]
1⁄3 [(10L � 38)N�1 � (3L � 18)N�2

� (5L � 73)N�3 � 3LN�4]
1⁄3 [50N�1 � (15L � 90)N�2

� (12L � 35)N�3 � (3L � 3)N�4]
Global-match matrix (L � 2)N � (L � 2) � (2L � 5)N�1

� (2L � 6)N�2
(2L � 6)N�1 � (2L � 18)N�2

� (2L � 6)N�3
2 � 4N�1 � 4N�2

Local-match matrix 12N�1 � (24L � 50)N�2

� (8L2 � 40 � 54)N�3
8N�1 � (12L � 22)N�2

� (4L2 � 12L � 22)N�3
8N�1 � (8L � 30)N�2

� (12L � 30)N�3
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each pair of items, p � �(�p, �p; the same value of p was used for the two
members of a given pair).

To examine the effect of variability in p on Q, we varied �p between 0
and .25. In both recognition and recall, the test probes were encoded
probabilistically (with values of .8, .9, and 1.0), but were not stored in
memory. Other parameters were �p, N, the resemblance criterion for
recognition, and the resemblance criterion for recall. These values were
adjusted to achieve a recall probability of approximately .35 and a hit rate
of approximately .75 for each of the four models. We examine the effect of
output encoding in the next simulation.

Results. As shown in Figure 3, Q rises as �p increases in each
of the four models and for all levels of the encoding of the test
probes. Variability in p raises the correlation between tasks be-
cause both tasks assess memory for the same study episode. As
indicated in the analytic solution for the correlation (Figure 2),
without variability in p, only the local-match matrix model predicts
a high correlation between recognition and recall.

Simulation 2: Output Encoding

Here we consider the effect of output encoding during recogni-
tion on subsequent recall. During a recognition test, information
evoked by a given test probe will depend on whether the probe is

recognized as an item experienced on the list. Subsequent cued
recall will benefit if the information stored during recognition is
correlated with the information tested in recall. Models that as-
sume independence of item recognition and cued recall should not
predict significant facilitation of recall. For models that assume
some correlation between recognition and recall, facilitation of
recall should occur only if the storage of information used in recall
is greater for items recognized as members of the study list. In this
case, one would also predict an increase in the correlation between
successive tests.

We simulated the effect of output encoding on the recognition–
recall relation in each of our four models. Local- and global-match
models fundamentally differ in their implementation of the recog-
nition process. The local-match models first use the recognition
probe to retrieve the contents of memory. They judge an item as
“old” if the retrieved information matches the probe. For local-
match models, recognizing an item as old should lead to the
encoding of the retrieved item and associative information. Global-
match models base recognition judgments solely on the match of
the probe item with the contents of memory. For these models,
judging an item as old should just lead to the encoding of the probe

Figure 2. Theoretical correlation between recognition and recall for four
distributed memory models: local- and global-match models that use either
convolution or matrix operations to associate item vectors. In each of the
models, the derived correlation depends on the number of pairs stored in
memory. The dimensionality of the item vectors (N) was set to 1,000.
TODAM � theory of distributed associative memory; CHARM � com-
posite holographic associative recall model.

Figure 3. Effect of variability in the goodness of encoding on the depen-
dency between item recognition and cued recall. Each panel shows results
for a different distributed memory model. Q is plotted as a function of the
standard deviation of the probabilistic encoding parameter, p, for the A–B
pairs (0 � p � 1). The solid line represents a probabilistic encoding level
of .8; dotted line, .9; and dot-dashed line, 1.0. Error bars represent standard
error. See text for details. TODAM � theory of distributed associative
memory; CHARM � composite holographic associative recall model.
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item. Because cued recall depends principally on associative in-
formation, we expected output encoding to influence the correla-
tion between recognition and recall for the local- but not for the
global-match models.

Method. Methods generally followed those use in Simulation 1. Dur-
ing study, each item was probabilistically encoded with p � �(�p, 0) and
then stored according to the equations given in Table 1. We did not
introduce variability in p for this simulation. The values of �p, N, and the
resemblance criterion for recognition and for recall were set at the same
levels as those in Simulation 1. The probe items themselves were perfectly
encoded for cuing memory (i.e., p � 1.0), but were not perfectly stored.

For both local-match models we assumed that recognizing an item as old
leads to the storage of the retrieved information (both members of the pair),
using poe. In contrast, judging an item as “new” results in either (a) no
output encoding or (b) storage of the probe item itself, also using poe. In the
case of the local-match matrix model, we stored (f̃ � g̃)(f̃ � g̃)	 if an item
was recognized and either nothing or g̃g̃� if the item was not recognized
(the tilde symbol designates the probabilistically encoded version of each
item).

The global-match models do not use associative information in making
item recognition judgments. Therefore, recognizing an item as old leads to
the storage of the probe item itself using poe. In contrast, judging an item
as new results in either (a) no output encoding or (b) storage of the probe
item itself.

Results. As shown in Figure 4, output encoding of recognized
items increases the observed correlation for the local-match con-
volution model and to a much lesser degree for the local-match
matrix model. Output encoding has no effect on the global-match
models. The reason for the increased correlation in the local-match
models is that successful recognition of an item is based on the
retrieval of the associates of that item (viz., both words in the pair).
The output encoding of this associative information strengthens
the same information used in cued recall, leading to an increase
in �.

Summary of Simulations 1 and 2

The correlation between successive memory tasks does not
merely reflect the degree to which those tasks tap the same
information, structures, or processes in memory. Variability in the
encoding of study pairs increases the correlation between succes-
sive recognition and recall (Figure 3). Output encoding increases
the recognition–recall correlation for the local-match models be-
cause these models assume that an associative retrieval process
underlies item recognition. There is no effect of output encoding
on the global-match models because the strengthening of item
information has a negligible effect on the associative information
tested in recall (Figure 4).

The global-match models, which do not use associative infor-
mation in item recognition, both predict near independence of
recognition and recall for all but the shortest list lengths (see
Figure 2). The local-match models both use associative informa-
tion in item recognition. In the case of the matrix model, this leads
to a high correlation between item recognition and cued recall. In
the convolution models, however, the largest terms contributing to
the variance in the recognition and recall processes increase with
list length, while the covariance term does not. This leads the
models to predict near independence of recognition and recall for
lists of more than 20 pairs.

In summary, these simulations demonstrate that with substantial

variability in goodness of encoding, all of the models can produce
high correlations between recognition and recall. Similarly, output
encoding can increase the observed correlations in the local-match
models.

Empirical Tests of Encoding Variability

Whereas the foregoing analyses suggest that variability in good-
ness of encoding can significantly alter the predicted correlation
between recognition and recall, the question of whether this factor
can actually play a role in experimental studies remains unknown.
Variability in goodness of encoding is always present in list
learning experiments, but its magnitude can be altered. We there-
fore designed two experiments that manipulated the variability in
goodness of encoding in an effort to determine whether, and to
what extent, this variability influences the correlation between
successive recognition and recall. Of critical interest was whether
generalized versions of our four models that incorporated variabil-
ity in goodness of encoding, variability in response criteria, output
encoding, and interstimulus similarity could fit the data from these
two experiments.

We manipulated goodness of encoding by varying either pre-
sentation rate (Experiment 1) or number of spaced repetitions
(Experiment 2) in a mixed-list/pure-list design. Word pairs pre-
sented for longer durations or more repetitions are designated
strong, whereas those presented for shorter durations or fewer
repetitions are designated weak. In Experiment 1, strong pairs were
presented for 8 s and weak pairs were presented for 2 s. In
Experiment 2, strong pairs were presented four times and weak
pairs were presented only once. In the mixed-list (high variability)
condition, subjects studied lists consisting of strong and weak pairs
randomly intermixed. Two pure-list conditions served as controls.
In these lists, all word pairs were either strong or weak. According
to the variability hypothesis, the recognition–recall correlation
should be higher in the mixed list than in either of the pure lists.
However, this prediction must hold in the high variability condi-
tion assuming that the strength manipulations are effective. Our
interest, therefore, is in the magnitude of this effect, not its pres-
ence. In addition to testing the effect of variability on the corre-
lation between recognition and recall, Experiment 1 also measured
the magnitude of output encoding effects (Humphreys & Bowyer,
1980; Shimamura, 1985). Half of the study items did not appear on
the item-recognition test, but were included in the cued-recall test.
The extent that cued recall is higher for items present in the
recognition test reflects some effect of Test 1 on the responses
given in Test 2. As discussed earlier, the presence of such output
encoding may induce further dependency between successive
memory tasks.

Experiment 1

Method

Subjects. Thirty-four undergraduate students who were both English
speakers and touch typists participated for payment.

Procedure. The experiment consisted of 10 study-test lists, with test-
ing split over two sessions. The first study-test list was a practice list while
the remaining 9 lists were divided into three replications of the three list
types (pure weak, mixed, and pure strong). Lists were composed of words
randomly selected without replacement from the Toronto Word Pool
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(Friendly, Franklin, Hoffman, & Rubin, 1982). The word pool and order of
trials were randomized at the start of the first session. None of the words
presented in Session 1 appeared in Session 2.

Each list consisted of a study phase in which 40 word pairs (designated
A–B) were presented for varying durations. In the pure-weak lists, all pairs
were shown for 2 s; in the pure-strong lists, all pairs were shown for 8 s;
and in the mixed lists, half were shown for 2 s and half for 8 s. The final
4 word pairs in the study list served as a recency buffer; they were not
tested later in the experiment.

A yes–no recognition test immediately followed presentation of the
study list. Of the 36 study pairs tested for recall, only 18 were tested for
recognition (in the mixed list, half of these items were from strong pairs

and the other half were from weak pairs). Old items, chosen equally often
as either the A or the B member of these 18 pairs, were intermixed with 18
distractor items. Subjects were instructed to press the y key for old items
and the n key for new items.

After completing the recognition test, subjects were given a cued-recall
test on all of the word pairs in the study list. If the B member of a pair was
tested in recognition, recall was tested in the forward direction (i.e., A–?);
if the A member of a pair was tested in recognition, recall was tested in the
backward direction (i.e., B–?). In this way, recall of a word was always
compared with recognition of the same word. For those pairs not present in
the recognition test, half were tested in the forward and half in the
backward direction. Subjects were given a maximum of 20 s to type their

Figure 4. Effect of output encoding on the dependency between item recognition and cued recall. Each panel
shows results for a different distributed memory model. Q is plotted as a function of output encoding ( poe) under
two different assumptions. Solid lines indicate equal output encoding for both recognized and nonrecognized
items; dotted lines indicate encoding for recognized items only. Error bars represent standard error. TODAM �
theory of distributed associative memory; CHARM � composite holographic associative recall model.
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responses on a computer keyboard (pressing Enter advanced to the next
probe).

Results

As shown in Table 3, list composition had a significant effect on
recall and recognition performance. Lengthening the presentation
rate increased recall probability and hit rates while lowering false-
alarm rates. Furthermore, mixed-list performance fell between that
of the pure-strong and the pure-weak lists. A comparison of recall
rates for items that were and were not tested in the earlier recog-
nition test revealed a significant advantage for recalling tested
items. This result replicates the findings of Humphreys and Bow-
yer (1980). Supporting these observations, an analysis of variance
(ANOVA) on recall accuracy revealed a significant main effect of
list type, F(2, 68) � 43.59, MSE � 0.014, p � .001, and of prior
recognition test, F(1, 34) � 48.90, MSE � 0.004, p � .001, but no
significant interaction (F � 1). The d	 also varied significantly
with presentation rate, F(2, 68) � 3.77, MSE � 0.178, p � .028).

Although all three conditions exhibited moderate dependence
between recognition and cued recall (Table 3), list composition did
have a statistically significant effect on Q, F(2, 68) � 3.41, MSE �
0.079, p � .05. Tukey’s honestly significant difference (HSD)
tests revealed that the mixed condition produced the highest de-
pendencies, Q (mixed) � Q (pure weak), p � .02; Q (mixed) � Q
(pure strong), p � .05. The difference between Q in the two pure
lists did not approach significance.

One may ask whether mixing strong and weak items within a list
exaggerates or attenuates the effect of item strength. In associative
recall and recognition tasks, such mixing of strong and weak items
results in better memory for strong items and worse memory for
weaker items, when compared with pure-strong and pure-weak
lists (Ratcliff, Clark, & Shiffrin, 1990; Tulving & Hastie, 1972;
Verde & Rotello, 2004). However, this so-called list-strength
effect (LSE) is notably absent in item-recognition tasks (Murdock
& Kahana, 1993; Ratcliff et al., 1990), except under special
conditions (Diana & Reder, in press; Norman, 2002). Although it
was not central to the goals of our study, we examined the LSE in
our item-recognition and cued-recall data. To measure the LSE, we
computed the ratio of the performance measure for strong to weak
items in a mixed list by the same ratio in the pure lists. If this ratio
of ratios (ROR) is significantly greater than 1.0, this indicates a
positive LSE. As expected, there was no LSE in recognition

(ROR � 1.12, p � .10). There was, however, a substantial LSE in
cued recall (ROR � 1.42, p � .05). It should be noted, however,
that our experiment did not specifically control for the mean
study-test lag of strong and weak items in mixed versus pure lists.
Not controlling for this factor could increase the magnitude of the
LSE because weak items in mixed lists would be tested at a longer
average lag than weak items in pure lists (Murnane & Shiffrin,
1991).

Experiment 2

In Experiment 1, variability in presentation rate produced a
modest but significant increase in the recognition–recall depen-
dency. Experiment 2 examined the effect of variable repetitions on
the recognition–recall relation. In this study, pairs designated as
weak appeared just once; whereas pairs designated as strong
appeared four times in a spaced fashion. We also switched to a
single-session, between-subject design. Several other refinements
in our procedures are noted in the Method section.

Method

Subjects. One hundred seventy-five undergraduate students, all En-
glish speakers, participated for course credit. We assigned 42 subjects to
each of the pure-strong and mixed conditions, and 91 subjects to the
pure-weak condition. This increased sample size in the pure-weak condi-
tion was used because the low levels of recall led to large standard errors
in the determination of Test 1–Test 2 contingencies.

Procedure. Over the course of a 1-hr session, each subject studied and
was tested on three different lists. Each list consisted of 32 word pairs,
randomly selected from the Toronto Word Pool. In the pure-weak lists,
each pair was presented once; in the pure-strong lists, each pair was
presented four times; and in the mixed list, half of the pairs were presented
once and half of the pairs were presented four times. Presentation order was
randomized subject to the constraint that each repeated pair was separated
by at least two different pairs.

A 1-min arithmetic distractor task immediately followed the presentation
of the study list. Subjects viewed equations of the form A � B � C � D.
They pressed y if the equation was correct and n if it was incorrect (for half
of the equations, the value of D was off by two). The experimenter stressed
accuracy in the instructions, but subjects had to respond to each equation
within 2 s. After each trial, a computer-generated tone (high pitch for
correct, low pitch for incorrect) provided feedback.

Following the distractor task, subjects made yes–no recognition judg-
ments on the 32 B items intermixed with an equal number of lures. The

Table 3
Descriptive Statistics for Experiments 1 and 2

Condition P(Ct) HR FAR d	 Q P(Cu)

Experiment 1
Pure weak .26 (.03) .76 (.02) .17 (.02) 1.84 (0.11) .49 (.05) .20 (0.02)
Mixed .35 (.03) .77 (.01) .15 (.02) 1.86 (0.09) .66 (.05) .29 (0.03)
Pure strong .45 (.04) .81 (.02) .14 (.02) 2.09 (0.13) .54 (.04) .39 (0.03)

Experiment 2
Pure weak .26 (.01) .70 (.01) .18 (.01) 1.60 (0.05) .52 (.02)
Mixed .42 (.03) .75 (.02) .11 (.01) 2.01 (0.08) .63 (.03)
Pure strong .54 (.04) .83 (.02) .08 (.01) 2.80 (0.17) .49 (.04)

Note. Numbers in parentheses are standard errors of the mean. Yule’s Q was determined separately for each
subject. P(Ct) � probability of cued recall for items that were tested in the recognition phase; HR � hit rate;
FAR � false-alarm rate; P(Cu) � probability of cued recall for untested items.
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cued-recall task was administered immediately following this recognition
task. For each A–B pair, the A item was displayed and subjects were
instructed to speak the B item8 into a microphone. If subjects did not
remember the target item, they were to say “pass.” The computer digitally
recorded subjects’ responses for later scoring of response accuracy and
latency.

Results

As shown in Table 3, both recognition and recall performance
increased with repetition. An ANOVA revealed a significant main
effect of list type on recall probability, F(2, 172) � 44.50, MSE �
0.027, p � .001 (Tukey’s HSD tests confirmed that each of the
differences among conditions was highly significant, p � .01).
Repetition also influenced d	, F(2, 172) � 42.80, MSE � 0.48,
p � .001, with HSD tests confirming significant differences on all
of the comparisons ( p � .01). As in Experiment 1, we examined
the LSE in both our item-recognition and cued-recall data. Once
again, we found no significant LSE in item recognition (ROR �
0.88, p � .10), but a significant positive LSE in cued recall
(ROR � 1.34, p � .05).

As in Experiment 1, we expected to find the highest
recognition–recall dependencies in the mixed-list condition. As
shown in Table 3, Q differed significantly across the three list
types, F(2, 172) � 5.10, MSE � 0.045, p � .01. Tukey’s HSD
tests revealed that Q in the mixed condition was significantly
higher than in either the pure-weak ( p � .02) or pure-strong
conditions ( p � .01). As is clear from the means, there was almost
no difference in Q between pure-strong and pure-weak lists ( p �
.5). Despite the powerful repetition manipulation used in this
study, the absolute magnitude of the increase in dependency in the
mixed condition was quite modest, as it was in Experiment 1.

Model Fits

As shown in the two reported experiments, increasing variability
in either number of presentations or presentation rate produced a
reliable increase in the correlation between successive recognition
and recall tasks. Whereas the pure lists replicated the classic � .5
correlation between item recognition and cued recall, the correla-
tion increased to � .6 under conditions of experimentally induced
encoding variability. Also, pairs that were not tested in the recog-
nition phase (a manipulation in Experiment 1) were less likely to
be recalled than those pairs that were tested.

The base versions of our four DMMs cannot even account for
the classic moderate correlation between recognition and subse-
quent recall. They either over- or underpredict the recognition–
recall correlation. Only the local-match matrix model predicts a
strong positive intertask correlation, but this predicted correlation
is far too high. The other three DMMs predict near independence
between recognition and recall. However, our formal analysis of
intertask correlations revealed that a number of factors not con-
sidered in the base versions of the models can strongly modulate
the recognition–recall correlation. In particular, variability in
goodness of encoding can increase the correlation in all four
models, and output encoding can increase the correlation in the
local-match models. Variability in the retrieval process can de-
crease the correlation between successive tasks because the re-
trieval events represent independent sources of variation. We

therefore asked whether generalized versions of the four DMMs
can fit the data from Experiments 1 and 2.

Method

Each of the four models was simultaneously fit9 to the full-contingency
tables in the pure-weak, pure-strong, and mixed conditions as these aspects
of the data were central to our theoretical analysis.10 For each parameter
set, the study and test of 36 pairs of list items (32 for Experiment 2) were
simulated 200 times for each condition. In both experiments, we simulated
strength using the probabilistic encoding mechanism common to all four
models. For each strong word pair, the proportion of elements stored, p,
was drawn from a truncated normal distribution with mean �ps

and vari-
ance �ps

2 ; for weak pairs, the mean and variance parameters were �pw
and

�pw

2 . These parameters were the same regardless of list composition (mixed
vs. pure). Note that this empirical approach to modeling strength does not
address the complicated question of how repetitions affect learning (see
Rizzuto & Kahana, 2001, for a discussion of modeling learning in DMMs).

We varied 10 parameters to optimize the goodness of fit in each of the
four models: mean and standard deviation of probabilistic encoding for
strong lists (�ps

, �ps
) and for weak lists (�pw

, �pw
), output encoding for

recognized items ( poe), interitem similarity, and the mean and standard
deviation of the resemblance criteria for recognition and for recall.

Results

Table 4 shows each of the model’s fit to data from Experiment
1. Each of the four models can produce a moderate correlation
between recognition and recall (� .5) in pure lists while simulta-
neously providing good fits to the hit rate and the overall level of
recall. Each of the models also predicts a somewhat higher corre-
lation in the mixed condition, as found in the experiment. Only the
local-match models, however, could account for the higher recall
of items tested in the recognition phase. This effect was predicted
because output encoding stores associative information during the
recognition phase for the local-match models, but only stores
item-specific information, which does not help much with recall,
for the global-match models.

8 To keep these procedures consistent with those used in previous
successive testing experiments, we tested memory for the B member of
each A–B pair both in recognition and in recall.

9 An evolutionary algorithm (Mitchell, 1996) with an initial population
of 256 points (that were uniformly distributed in the parameter space)
evolved until the best fitness (smallest value of ¥i [(observedi � expect-
edi)/�observedi

)]2) did not change from one generation to the next. At the end
of each generation, 10% of the top parameter vectors were saved, 40%
were copies of the top 10% with Gaussian point mutations, 30% were
recombinations of the top 10%, and the remaining 20% were randomly
generated parameter vectors. The models converged to a reliable parameter
set after approximately 10 generations.

10 We did not fit other aspects of the data, such as the recognition
false-alarm rate or the intrusion rate in cued recall. The values of N needed
to achieve the observed levels of recall would necessarily predict d	 values
that are far higher than those observed in the data, especially in the
global-match models. This problem may be solved by adding a temporal
context term to the storage equation (e.g., Dennis & Humphreys, 2001;
Howard & Kahana, 2002; Murdock, 1997) and implementing a continuous
model in which the memory vector/matrix is not reset at the start of each
list (Murdock & Kahana, 1993). Such extensions might be fruitful direc-
tions for future work.
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Table 5 gives the best fitting parameter values for each of the
four models. To fit these data, all of the models required some
level of variability in goodness of encoding, as reflected in the
�p-parameter values for strong and weak pairs. This factor, which
will increase the correlation between recognition and recall, is
essential for the two global-match models that predict near inde-
pendence of recognition and recall for the simplified model deri-
vations shown in Figure 1. The local-match models both assume
that recognized items are weakly stored, as indicated by the small
positive values of parameter poe. This parameter enables these
models to account for the enhanced recall of items that were tested
during the recognition phase.11 The potency of output encoding for
the local-match models is approximately half of the potency of a
single presentation during study (e.g., a weak pair). Larger values
of this parameter would have predicted a larger effect of the
recognition test on subsequent recall than observed in the data.

Several other parameters turned out to be important in fitting
these data. Variability in the recognition and recall criteria served
to decrease the correlation between recognition and recall. This
factor was used heavily by the local-match matrix model that
predicts a very high correlation between item recognition and cued
recall in the derivations shown in Figure 1. Interitem similarity was
called into play by both of the local-match models. This factor acts
to increase the correlation between recognition and recall by
increasing the number of overlapping terms in the covariance.

Table 6 shows each of the model’s fit to data from Experiment
2. As with Experiment 1, each of the four models accounted for the
moderate correlation between recognition and recall (� .5) in the
pure-list conditions while simultaneously providing good fits to
the hit rate and the overall level of recall. Each of the models also
predicted a higher correlation in the mixed condition, as found in
the experiment.

Table 7 gives the best fitting parameter values for each of the
four DMMs. The overall fit, while somewhat worse than the fit to
Experiment 1, was nonetheless reasonably good. The best fitting
parameter values obtained in these fits was in fairly good agree-
ment with those from the fits to Experiment 1. The global-match
models assume a significant degree of variability in goodness of
encoding to account for the moderate correlation between recog-
nition and recall. As in the previous simulation, both of the
local-match models make significant use of output encoding as
reflected in the poe parameter. All of the models assume some
degree of variability in the recognition and recall criteria. Vari-

ability in the recognition criterion was higher for the two local-
match models than for the global-match models. Interitem simi-
larity was called into play by both of the local-match models and
also by the global-match convolution model.

Summary of Model Fits

Whereas base versions of the four DMMs cannot reproduce the
moderate observed correlation between recognition and recall,
generalized versions that take account of variability during storage
and retrieval, output encoding, and interitem similarity were all
able to qualitatively capture the complex pattern of experimental
results. Each model did so by relying more or less heavily on
parameters that tend to increase or decrease the predicted correla-
tion between tasks. For example, had we turned off the variability
in the recognition and recall decisions, the local-match matrix
model would have predicted a significantly higher correlation
between recognition and recall. Similarly, without variability in
goodness of encoding, the global-match matrix model would have
predicted a significantly lower correlation between recognition and
recall. Although the architecture of the models determines a base
level of correlation, as derived in Table 2, more realistic models of
recognition and recall should include other factors that can mod-
ulate this correlation. As illustrated in Figure 2, any factor that
increases common variance will tend to raise the correlation, and
any factor that increases unique variance will tend to decrease the
correlation. Here we see the manifestation of this statistical truism
in the detailed execution of the four DMMs.

Whereas the two reported experiments manipulated variability
in goodness of encoding and output encoding, we did not manip-
ulate other factors, such as retrieval variability, that would likely
have placed tighter constraints on the four models. Indeed, such
data might have enabled us to demonstrate that some (or all) of the
models cannot fit the pattern of intertask correlations. This remains
an open target for future research.

11 As would be expected, the small value of poe has no effect on cued
recall for this model. It may be that nonzero value is an artifact of the
optimization method because the likelihood surface is very insensitive to
the value of this parameter.

Table 4
Observed and Predicted Values for Each of the Four Models Fit to Experiment 1

Model

Pure strong Pure weak Mixed

P(Ct) P(Cu) HR Q P(Ct) P(Cu) HR Q P(Ct) P(Cu) HR Q

Observed .45 .39 .81 .54 .26 .20 .76 .49 .35 .29 .77 .66
GM conv. .39 .38 .79 .53 .21 .21 .76 .60 .30 .30 .78 .62
LM conv. .45 .40 .79 .49 .26 .20 .76 .56 .37 .32 .77 .70
GM matrix .43 .43 .79 .46 .20 .19 .78 .45 .32 .31 .76 .61
LM matrix .43 .36 .80 .57 .27 .21 .76 .55 .34 .29 .77 .63

Note. We simultaneously fit each of the models to probability of cued recall for tested, P(Ct), and for untested,
P(Cu), items, hit rate (HR), and Yule’s Q for each of the following list types: pure strong, pure weak, and mixed.
GM � global match; conv. � convolution; LM � local match.
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General Discussion

Recognition and recall serve as the two standard measures of
episodic memory. Although both tasks measure intentional re-
trieval of previously experienced events, they could not be more
different. Numerous experimental manipulations differentially af-
fect recognition and recall. Examples of these dissociations include
the word frequency effect (Gregg, 1976; Kinsbourne & George,
1974; MacLeod & Kampe, 1996), list strength effect (Ratcliff et
al., 1990), intentional encoding effects (Glenberg & Bradley,
1979; Schwartz & Humphreys, 1974), associative interference
(Dyne, Humphreys, Bain, & Pike, 1990), context effects (Godden
& Baddeley, 1975, 1980), subject age (Craik & McDowd, 1987),
and damage to the medial-temporal lobe (Hirst, 1986; Vargha-
Khadem et al., 1997). These dissociations, in turn, have led theo-
rists to advocate for a distinction between item-specific and rela-
tional information (Humphreys, 1978; Murdock, 1974), with
familiarity-based retrieval of item-specific information and recol-
lection of relational information (Yonelinas, 1997; Yonelinas,
Kroll, Dobbins, Lazzara, & Knight, 1998).

Analyzing the Recognition–Recall Relation

Our approach has been to use computational models of memory
to help understand the relation between recognition and recall. We
selected four DMMs for detailed analyses. The four models differ
along two critical dimensions: the mechanism of association and
the processes underlying recognition. We refer to the four models
as (a) global-match convolution, (b) local-match convolution, (c)
global-match matrix, and (d) local-match matrix. The convolution
models use the mathematical operation of convolution to form
associations; the matrix models use matrix operations (Hebbian
learning) to store and retrieve associations. The global-match
models represent dual-process models with completely separate
recognition and recall mechanisms. The local-match models as-
sume that the same machinery underlies both recognition and
recall. The global-match convolution model is a version of Mur-
dock’s (1982) model. The global-match matrix model is a version
of the Humphreys, Bain, and Pike (1989) matrix model (without
context).12 The local-match convolution model is a version of
Metcalfe’s (1985) model. Finally, the local-match matrix model is
a variant of the models presented in Rizzuto and Kahana (2001)
and Kahana (2002). Each of the chosen models represents items as
vectors of features, and assumes that item and associative infor-
mation is stored in a common distributed memory system. Each
model uses probabilistic encoding to model the effects of repeti-
tion on learning.

Although these types of DMMs have been used extensively to
account for recognition and recall data (Humphreys, Bain, & Pike,
1989; Metcalfe, 1985; Murdock, 1982), the basic assumptions
about the dependence or independence of the information support-
ing these tasks had not been carefully evaluated. We thus began
our analysis by analytically deriving the correlation between rec-
ognition and recall in each of the models. This exercise revealed an
interesting pattern, with the local-match matrix model predicting a
high level of dependency, and the other models predicting a
moderate level of dependency for short lists, but tending toward
independence for lists consisting of 20 or more pairs of items. The
moderate dependency predicted for short lists was a consequence
of the assumption that memory was set to zero at the start of
learning. With a more reasonable continuous memory assumption
(e.g., Murdock & Kahana, 1993), one would expect these models
to predict low correlations even for shorter lists.

To test these assumptions about the relation between recognition
and recall, we turned to an extensive body of literature on succes-
sive recognition and recall tests. In these studies, the correlation
between recognition and recall at the level of individual A–B pairs
is measured by testing recognition of the B items in a first test
phase, and then giving a subsequent cued-recall test, with each A
item serving as the cue for its mate. Tabulating subjects’ Test 1 and
Test 2 responses in a 2 � 2 contingency table reveals a moderate
level of dependency between item recognition and cued recall.
That is, whether an item was recognized on the first test is
moderately predictive of whether it will be recalled in the second
test. Quantified using a measure such as Yule’s Q, the correlation
between recognition and recall is about .5.13

Interpreting the Recognition–Recall Relation

The mapping between theory and data is problematized by
factors that can influence the correlation between any two mea-

12 We did not implement list context in the four DMMs because only
some of these models have been formulated to include a representation of
contextual features. If one were to extend the implementation of context in
Murdock (1997) or Humphreys, Bain, and Pike (1989) to the other models,
the result would be an increase in interitem similarity or featural overlap
between all list items. In simulations of the effect of similarity on the
recognition–recall correlation, we found that interitem similarity increased
the predicted correlation between recognition and recall for the local-match
models, but decreased the correlation for the global-match models.

13 If the recall test is given first, then the B items that are recalled would
have received an extra opportunity for encoding, thus boosting later rec-
ognition performance and the correlation between tasks.

Table 5
Best Fitting Parameter Values for Each of the Four Models Fit to Experiment 1

Model Pair sim.

Strong Weak

poe

Recall
criteria

Recall
sigma

Recognition
criteria

Recognition
sigma�p �p �p �p

GM conv. .00 .57 .16 .44 .17 .07 .39 .20 �1.10 .20
LM conv. .27 .53 .08 .33 .08 .16 .23 .20 �0.82 .16
GM matrix .00 .77 .20 .50 .13 .00 .31 .04 �0.75 .11
LM matrix .10 .63 .10 .48 .08 .23 .24 .35 �1.20 .32

Note. sim. � similarity; GM � global match; conv. � convolution; LM � local match.
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surements. Correlations between successive tests are produced by
variability. Common sources of variance increase the correlation,
and separate sources of variance decrease the correlation. In the
successive testing paradigm, encoding conditions will be common
to the storage of information supporting both recognition and
recall, and may thus boost the correlation between tasks. With
recognition and recall phases of the task being widely separated in
time, retrieval conditions can introduce unique variance and thus
lower the correlation. Furthermore, output encoding will raise the
correlation between successive tests under certain conditions.

We considered such factors in modeling recognition and recall
data from successive tests. For all four models considered in this
article, variability in goodness of encoding predicted an increase in
the correlation between recognition and recall. Output encoding
also predicted an increase in the correlation for the local-match but
not for the global-match models. This is because only the local-
match models assume that recognition involves a retrieval and
restorage of the associations as well as the items. Variability in the
encoding of the test probes, or the decision process, decreased the
correlation between recognition and recall in all of the models.

Experiments 1 and 2 confirmed that at least one of these factors,
variability in goodness of encoding, can be manipulated to increase
the correlation between recognition and recall, as predicted for all
four models. The effect was modest, increasing the recognition–
recall dependency by about 20% (from Q � .5 to Q � .6).
Although future research will be needed to pin down the effects of
other variables on the recognition–recall relation, these initial
results led us to examine whether the four models, when given the
flexibility to vary these factors, could mimic the observed pattern
of results.

In fitting the data from Experiments 1 and 2, all four classes of
models could predict the moderate level of dependency observed
experimentally and its modest increase when strong and weak
items were mixed in a given list. The local-match models were also
able to explain the increase in recall associated with testing an item
during recognition. Thus, both those models that assume indepen-
dence of the underlying information supporting recognition and
recall, and those that assume a very high correlation, can account
for the moderate correlations observed experimentally.

Contingency Analyses and the Classification of Memory

Researchers have used the method of successive tests, and
contingency analyses, to investigate problems in human memory
other than the recognition–recall relation. In what may be consid-
ered the earliest example of this work, Estes (1960) demonstrated
an extremely high correlation between the outcomes of successive
learning trials. Such an effect was viewed as consistent with the
view that individual pairs of items were learned in a single trial,
and that once such pairs were learned they were seldom forgotten.
Later, researchers used contingency analyses to examine the
source of associative interference in the Barnes and Underwood
(1959) “unlearning” paradigm. In these studies, subjects learn a list
of A–B pairs to a performance criterion. Then they study a list of
A–C pairs, in which the previously studied A items are each paired
with a new item. (The degree of A–C learning is an experimental
parameter in these studies.) Finally, subjects are probed with each
A item to recall both B and C in any order. According to the
Melton–Underwood unlearning-recovery hypothesis, the decrease
in B recall following A–C learning results from specific unlearning

Table 6
Observed and Predicted Values for Each of the Four Models Fit to Experiment 2

Model

Pure strong Pure weak Mixed

P(C) HR Q P(C) HR Q P(C) HR Q

Observed .54 .83 .49 .26 .71 .53 .42 .75 .63
GM conv. .62 .81 .58 .26 .71 .47 .46 .76 .64
LM conv. .44 .80 .48 .25 .74 .53 .39 .76 .73
GM matrix .48 .74 .38 .28 .72 .59 .38 .73 .60
LM matrix .48 .78 .58 .26 .73 .53 .38 .76 .62

Note. We simultaneously fit each of the models to probability of cued recall, P(C), hit rate (HR), and Yule’s
Q for each of the following list types: pure strong, pure weak, and mixed. GM � global match; conv. �
convolution; LM � local match.

Table 7
Best Fitting Parameter Values for Each of the Four Models Fit to Experiment 2

Model Pair sim.

Strong Weak

poe

Recall
criteria

Recall
sigma

Recognition
criteria

Recognition
sigma�p �p �p �p

GM conv. .19 .68 .19 .41 .12 .00 .19 .19 �1.00 .14
LM conv. .33 .62 .00 .39 .00 .21 .10 .19 �0.87 .20
GM matrix .01 .81 .19 .57 .20 .00 .29 .19 �0.56 .12
LM matrix .15 .61 .00 .44 .00 .08 .21 .15 �1.00 .21

Note. sim. � similarity; GM � global match; conv. � convolution; LM � local match.
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of the individual A–B associations, thus predicting a negative
contingency between recall of B and C items. Dapolito (1967)
found that contrary to these predictions, recall of B and C is nearly
independent across a wide range of experiments (see Kahana,
2000, for a review). These findings played a key role in the demise
of the classic associative unlearning theory of forgetting.

More recently, Kahana and colleagues (Kahana, 2002; Rizzuto
& Kahana, 2001) used the successive testing method to test the
independent associations hypothesis (Wolford, 1971)—the view
that forward and backward associations are formed independently.
This view predicts that the correlation between forward recall and
subsequent backward recall of the same pair should be signifi-
cantly lower than the correlation between pairs tested in the same
direction. Contingency analyses revealed that contrary to this
view, forward and backward recall was almost perfectly correlated
and was as highly correlated as pairs tested in the same direction.
This finding was taken to support the associative symmetry hy-
pothesis (Asch & Ebenholtz, 1962; Kahana, 2002), which sees
associations as a holistic conjunction of both A and B items.
Caplan, Glaholt, and McIntosh (2005) replicated Kahana’s finding
of symmetric recall of pairs, but showed that for recall of triples
and serial lists the correlation between forward and backward
probes was significantly reduced.

Finally, contingency analyses have been applied widely in the
study of the relation between implicit and explicit memory.
Whereas explicit memory tasks, such as recognition and recall,
directly probe subjects’ memory for a studied event, implicit tasks
measure memory without reference to a particular study episode.
As reviewed previously, performance on successive explicit mem-
ory tasks is moderately to highly correlated. In contrast, when one
task is implicit (e.g., fragment completion) and the other is explicit
(e.g., recognition), the correlations are often near zero (Hayman &
Tulving, 1989a; Tulving & Hayman, 1995; Tulving et al., 1982,
but see also Ostergaard, 1992). This independence is also found
when a fragment completion task is administered twice, first with
implicit memory instructions (e.g., no reference to the study epi-
sode) and then later with explicit memory instructions (Hayman &
Tulving, 1989a, 1989b). Such findings of independence between
implicit and explicit memory tests have been taken as strong
support for a memory systems view in which explicit tasks probe
information in an episodic memory system and implicit tasks
access information in a functionally and anatomically independent
perceptual representation system (Tulving & Schacter, 1991).

The analysis presented here suggests an alternative account of
these findings. In the fragment completion task, which is the
source of much data on implicit memory, subjects can complete
the fragment without reference to information stored in the original
study episode. Variability in completion is thus a function of
independent variation in item difficulty for different fragments or
nonoverlapping fragments of the same word. Without focusing
retrieval on a studied episode, the relative contribution of test
variability will be greater than that of variability in storage (which
produces priming). As shown by our modeling of the recognition–
recall relation, test variability lowers the correlation between tasks.
As demonstrated by Experiments 1 and 2, and by our modeling
work, variability in the goodness of encoding raises the correlation
between tasks. Consequently, the factors that could produce cor-
relations between explicit tasks (viz., variability in the goodness of
encoding) will have little impact on implicit tasks (which depend

largely on the difficulty of completion for a given fragment).
According to this account, there is need for only one memory
system; the information that produces priming comes from the
same memory system that enables explicit recognition and recall.
The only time when significant dependencies would be observed
between implicit and explicit tasks is when the size of the priming
effect is large relative to the overall fragment completion rates.
Even then, the obtained dependency would be less than one would
find in successive explicit memory tasks.

The successive testing paradigm is complex and unforgiving.
The correlation between information tested in successive tasks is
only one of several factors that contribute to the observed intertask
dependency. If one can experimentally estimate the values of
encoding and test variability, as well as the effects of output
encoding, then dependencies between successive tasks will pro-
vide important constraints on memory models. The present work
represents a first step in this direction.

The models examined in this article are in many ways too
simple. More sophisticated models that incorporate temporal or
positional context (e.g., Brown, Preece, & Hulme, 2000; Davelaar,
Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005; Dennis
& Humphreys, 2001; Howard & Kahana, 2002; Murdock, 1997),
and/or that allow for dual-process mechanisms in recognition (e.g.,
Norman & O’Reilly, 2003; Reder et al., 2000; Yonelinas, 1996),
may make different predictions concerning recognition–recall de-
pendencies. As our analyses illustrate, application of such models
to the recognition–recall relation, or the relation between any pair
of memory tasks, will first require explicit assumptions about
variability and output encoding—factors that have been largely
ignored in the memory modeling literature. Furthermore, addi-
tional data on the effects of these factors will be needed before data
on intertask correlations can help us to accept or reject specific
models or modeling assumptions.
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Appendix A

Solving for the Correlation Between Recognition and Recall

This appendix derives expressions for the theoretical correlation be-
tween item recognition and cued recall in the global- and local-match
variants of the convolution–correlation and matrix memory models. These
derivations rely on component level variance and covariance expressions
presented in Appendix B.

Global-Match Convolution–Correlation Model

Following Murdock (1982), the memory vector sums the item and
heteroassociative information for all of the word pairs in the list. Assum-
ing, as is common, that memory is reset at the start of each list yields the
following storage equation for a list of L word pairs:

m � �
i�1

L

�fi � gi � fi � gi�.

Cued recall is achieved by probing the memory vector with either f or g
for retrieval of its mate.

fj#m � fj#fj � fj#gj � fj#fj � gj � �
ij

L

�fj#fi � fj#gi � fj#fi � gi�.

The correlation of an item with itself (e.g., fj#fj) yields the vector � �
(. . . , x, 1, x, . . .) with E(x) � 0 and V(x) � 1/N. For large N, � � (. . . , 0,
1, 0, . . .). Similarly, the correlation of two different random vectors (e.g.,
fj#gj) is a vector whose elements all have an expected value of zero.
Consequently, for large N, fj#m � fj#fj � gj � � � gj � gj. Thus, regardless
of the number of associations stored in the memory vector, an approximate
representation of the target item can be recovered. To retrieve the desired
item, the noisy retrieved information must be cleaned up. Automatic
deblurring is not a feature of the linear DMMs considered here. Nonethe-
less, one can compute recall probabilities by comparing the retrieved
information with a lexicon of possible target items. The most similar item
(as measured by the dot product) that falls within a region around the
expected value of the target item is chosen as the retrieved item.

Recognition decisions are based on the resemblance of a probe item with
the memory vector. For instance, if g is a probe item, the dot product g �

m provides a measure of the “strength” of item g. This strength can serve
as input to a decision system for recognition judgments (e.g., Hockley &
Murdock, 1987). Although the expected dot product of vectors represent-
ing items (f or g), heteroassociations (f � g), and autoassociations (f � f) is
zero (i.e., E[(f � f) � (f � g)] � E[f � (f � g)] � E[f � (f � f)] � 0), this does
not imply independence of recognition and recall (contrary to Murdock,
1982).

The correlation between recall and recognition is given by

� �
cov�g � m, �f#m� � g�

�var�g � m�var��f#m� � g�
�

cov�g � m, �f � g� � m�

�var�g � m�var��f � g� � m�
.

This simplification is achieved by using the recognition–recall identity for
convolution models (Murdock, 1992). To determine this correlation, vari-
ance and covariance expressions are derived. To compute the total covari-
ance, we break it down into components. Those components that result in
nonzero covariances are shown in Table A1.

The values for A1 and A2 are derived in Appendix B. The total covari-
ance is given by cov[(fj � gj) � m, gj � m] � 3.75N�1 � N�2 � 0.25N�3.
The variance of the recognition term and recall terms, calculated using
expressions derived in Weber (1988), are given in Table 2.

In this and subsequent models, interitem similarity is modeled by gen-
erating random vectors that have a correlation, �, to a hidden prototype
vector. If z denotes the prototype vector and exemplars f � �z �

1 � �2u, and g � �z � 
1 � �2v, then E[f � g] � �2 (for details, see
Murdock, 1995). In several of the simulations reported in the body of the
text, interitem similarity was modeled according to these equations. The
derivations presented in this appendix do not consider interitem similarity.

Local-Match Convolution–Correlation Model

Following Metcalfe (1985), the memory vector sums the autoassociative
and heteroassociative information for all of the word pairs in the list. The
storage equation is given by

m � �
i�1

L

�fi � fi � gi � gi � 2fi � gi� � �
i�1

L

�fi � gi�
�2.

Cued recall is achieved by probing the memory vector with either f or g
for retrieval of its mate: fj#m � fj � 2gj � noise. Because autoassociative
information is stored in memory, the retrieved information consists of both
the probe and the target items. Response probability is proportional to the
resemblance of the retrieved information to the target item: (f#m) � g �
(f � g) � m.

Recognition decisions are based on a two-stage process: First, the probe
is correlated with the memory vector to retrieve the associated information,
r � gj#m � 2fj � gj � noise. Next, the retrieved information is matched
against the probe item, r � gj. If its resemblance to the retrieved information
exceeds some criterion, the probe is recognized.

This recognition process is referred to as a local-match process because
only the recovered information enters the memory comparison. In contrast,
a global-match process, compares the probe item with all of the items
stored in the memory trace.

Table A1
Covariance Terms for the Global-Match Convolution Model

Term f � (f � g) g � (f � g) (f � g) � (f � g) u � (f � g) (f � g) � (u � u)

f � f 0 0 A1 0 0
f � g 0 0 0 0 0
f � (f � g) A2 0 0 0 0
f � u 0 0 0 0 0
f � (u � v) 0 0 0 0 0

Note. Nonzero terms are derived in Appendix B.
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Using the recognition–recall identity (Murdock, 1992), the correlation
coefficient between item recognition and cued recall is given by

� �
cov��fj � fj� � m, (fj � gj� � m]

�var��fj � fj� � m�var��fj � gj� � m�
. (A1)

The total covariance is obtained by summing all pairwise covariances.
Each nonzero pairwise covariance is indicated in Table A2.

The values for B1–B6 are derived in Appendix B. The variance terms,
calculated using expressions derived in Weber (1988), are given in Table
2. Substituting the variance and covariance expressions into Equation A1
then gives the correlation between item recognition and cued recall.

Global-Match Matrix Model

The matrix model of Humphreys, Bain, and Pike (1989) extends the
formalism proposed by Anderson (1970) to a full-fledged model of item
and associative recognition, cued recall, fragment cued recall, and a variety
of other tasks. The matrix model is structurally similar to Murdock’s
(1982) global-match convolution model. The major difference is that the
Humphreys et al. model uses context-to-item associations to model the
distinction between episodic and semantic memory. To facilitate compar-
ison across the four models, we implement a version of the matrix model
that does not incorporate context. We therefore write the storage equation
as

W � �
i�1

L

�fig	i � gif	i � fir	i � rig	i�.

Probability of successfully recognizing item g is proportional to the
match of g with the memory matrix; symbolically, (rg	p) � W, where the dot
notation is used to take a dot circle product of matrices.

For cued recall, the probe is multiplied with the memory matrix to get an
approximate representation of the target item. The match of the retrieved
item with the memory information (Wfp) � g	p then determines the proba-
bility of successful cued recall. Expanding at the component level reveals
an associative recognition–cued recall identity for the matrix model:

Wfp � g	p � �
k�1

N � �
j�1

N �
i�1

L

( f j
igk

i � gj
i f k

i � f j
i � gk

i )f k
p�gj

p

� �
k�1

N �
j�1

N

Wjk f k
pgj

p � gpf	p � W.

Consequently, the correlation between item recognition and cued recall
can be written as follows:

� �
cov�Wfp � g	p, W � rg	p�

�var�Wfp � g	p�var�W � rg	p�
�

cov�W � gpf	p, W � rg	p�

�var�W � gpf	p�var�W � rg	p�
.

Local-Match Matrix Model

Matrix products can be used to support either autoassociation or het-
eroassociation. Following Rizzuto and Kahana (2001), we consider a
matrix model that uses the autoassociation of a sum of items to store both
autoassociative and heteroassociative information. This shares the property
of associative symmetry (Kahana, 2002; Rizzuto & Kahana, 2001) with the
convolution models. That is, the F–G association will be just as strong as
the G–F association. The storage equation for this model is given by

W � �
i�1

L

�fi � gi��fi � gi�	.

As in the local-match convolution model, recognition decisions are
based on a two-stage process: First, the cue item retrieves the stored trace.
Second, this retrieved information is matched against the cue Wgp � gp. If
the item was successfully stored, the retrieved information should be
similar to the probe item. The information supporting item recognition
performance is proportional to

�
j�1

N �
k�1

N �
i�1

L

� f j
igk

i gj
pgk

p � gj
i f k

i gj
pgk

p � f j
i f k

i gj
pgk

p � gj
igk

i gj
pgk

p�

Cued recall works exactly as it does in the global-match matrix model—
the probe is multiplied with the memory matrix to get an approximate
representation of the target item. The match of the retrieved item with the
memory information then determines the probability of successful cued
recall. The information supporting cued-recall performance is proportional
to

�
j�1

N �
k�1

N �
i�1

L

� f j
igk

i f j
pgk

p � gj
i f k

i f j
pgk

p � f j
i f k

i f j
pgk

p � gj
igk

i f j
pgk

p�.

The variance and covariance terms for the local-match matrix model are
derived in Appendix B.

(Appendixes continue)

Table A2
Covariance Terms for the Local-Match Convolution Model

Term (f � g) � (f � f) (f � g) � (g � g) (f � g) � (f � g) (f � g) � (u � v) (f � g) � (u � v)

(f � f) � (f � f) 0 0 B1 0 0
(f � f) � (g � g) 0 0 B2 0 0
(f � f) � (f � g) B3 B4 0 B5 0
(f � f) � (u � u) 0 0 B6 0 0
(f � f) � (u � v) 0 0 0 0 0

Note. Nonzero terms are derived in Appendix B.
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Appendix B

Variance and Covariance Derivations

This appendix derives variance and covariance components of item and asso-
ciative information supporting recognition and recall. W, X, Y, and Z � �(0, 1/N)
denote independent and identically distributed random variables. Boldfaced sym-
bols f, g, u, and v denote vectors, L denotes list length (in pairs), m is a memory
vector, W is a memory/weight matrix, and f� denotes the transpose of f.

Using the moment-generating function, Mx(�) � e(1/2)�2�2
, one can

derive the expectations for any power of a Gaussian random variable.
Expanding this function as a Taylor series and then differentiating at zero
yields the following: E(X2n�1) � 0 and E(X2n) � �2n(2n)!/2nn!, n � Z.
Expectations of even powers of X are given by E(X2) � �2, E(X4) � 3�4,
E(X6) � 15�6; for odd powers of X the expectation is zero.

In counting terms, the total number of terms in (f � g) � (u � v) is given
by (2N3 � 4N2 � N)/3. For the means and variances of the convolution–
correlation models, component terms have already been derived by Weber
(1988) and are not given here.

cov��f � g� � �f � g�, f � f� � N2cov�X2Y2, X2� �
2

N

cov��f � g� � f, �f � g� � f� � Ncov�X2Y, X2Y�

� �N2 � N�cov�X2Y, Z2Y�

� �0.75N2 � N�cov�XYZ, XYZ�

�
7N2 � 4N � 1

4N3

cov��f � f� � �f � f�, �f � g� � �f � g�� � N2cov�X4, X2Y2�

� 2N�N2 � N�2cov�X2Y2, X2Z2� � 8N�1 � 4N�2

cov��f � f� � �g � g�, �f � g� � �f � g�� � Ncov�X2Y2, X2Y2�

� 2�N2 � N�cov�X2Y2, X2Z2� � 4�N2 � N�cov�XYZW, XYZW� � 8N�2

cov��f � g� � �f � f�, �f � g� � �f � f��

� Ncov�X3Y, X3Y� � 4�N2 � N�cov�X3Y, Z2XY�

� �4(N2 � N) �
(N � 1)2

2 � cov�X2YZ, X2YZ�

� 4�N2 � N��N � 2�cov�X2YZ, W2YZ�

�
4N3 � 7N2 � 14N � 3

12
cov�WXYZ, WXYZ�

�
32N3 � 67N2 � 92N � 3

6N4

cov��f � g� � �f � f�, �f � g� � �g � g��

� Ncov�X3Y, Y3X� � 4�N2 � N�cov�X3Y, XYZ2�

� 4�N2 � N��N � 1�cov�X2YZ, W2YZ�

�
�N � 1�2

2
cov�X2YZ, W2YZ� �

8N3 � 9N2 � 1

2N4

cov��f � g� � �u � u�, �f � g� � �f � f��

� Ncov�X3Y, W2XY� � �N2 � N�2cov�X2YZ, W2YZ�

�
�N � 1�2

2
cov�X2YZ, W2YZ� �

5N2 � 1

2N4

cov��f � f� � �u � u�, �f � g� � �f � g��

� Ncov�X2Y2, X2Z2� � �N2 � N�cov�X2Y2, X2Z2� � 2N�2

cov�W � �gpf	p�, W � �rg	p��

� cov� �
k�1

N �
j�1

N

Wjkgj
p f k

p, �
k�1

N �
j�1

N

Wjkgk
p �

� cov� �
k�1

N �
j�1

N �
i�1

L

( f j
igk

i � gj
i f k

i � f j
i � gk

i )gj
p f k

p,

�
k	�1

N �
j	�1

N �
i	�1

L

( f j	
i	gk	

i	 � gj	
i	f k	

i	 � f j	
i	 � gk	

i	 )gk	
p �

� 2 � 4N�1 � 4N�2

var�W � �g	pf	p��

� var� �
k�1

N �
j�1

N �
i�1

L

( f j
igk

i � gj
i f k

i � f j
i � gk

i )gj
p f k

p, 	

� cov� �
k�1

N �
j�1

N �
i�1

L

( f j
igk

i � gj
i f k

i � f j
i � gk

i )gj
p f k

p,

�
k	�1

N �
j	�1

N �
i	�1

L

( f j	
i	gk	

i	 � gj	
i	 f k	

i	 � f j	
i	 � gk	

i	 )gj	
p	f k	

p	 �
� �2L � 6�N�1 � �2L � 18�N�2 � �2L � 6�N�3

var�W � rg	p� � var� �
k�1

N �
j�1

N �
i�1

L

( f j
igk

i � gj
i f k

i � f j
i � gk

i )gk
p	

� cov� �
k�1

N �
j�1

N �
i�1

L

( f j
igk

i � gj
i f k

i � f j
i � gk

i )gk
p,

�
k	�1

N �
j	�1

N �
i	�1

L

( f j	
i	gk	

i	 � gj	
i	f k	

i	 � f j	
i	 � gk	

i	 )gk	
p �

� �L � 2�N � �L � 2� � �2L � 5�N�1 � �2L � 6�N�2

cov��Wfp� � gp, �Wgp� � gp�

� cov
 �
k�1

N �
j�1

N �
i�1

L

f j
igk

i f k
pgj

p � gj
i f k

i f k
pgj

p � f j
i f k

i f k
pgj

p � gj
igk

i f k
pgj

p,

�
k	�1

N �
j	�1

N �
i	�1

L

f j	
i	gk	

i	gk	
p gj	

p � gj	
i	f k	

i	gk	
p gj	

p � f j	
i	 f k	

i	gk	
p gj	

p � gj	
i	gk	

i	gk	
p gj	

p �
� 8N�1 � �8L � 30�N�2 � �12L � 30�N�3
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var��Wfp� � gp�

� cov
 �
k�1

N �
j�1

N �
i�1

L

f j
igk

i f k
pgj

p � gj
i f k

i f k
pgj

p � f j
i f k

i f k
pgj

p � gj
igk

i f k
pgj

p,

�
k�1

N �
j�1

N �
i�1

L

f j	
i	gk	

i	 f k	
p gj	

p � gj	
i	f k	

i	 f k	
p gj	

p � f j	
i	f k	

i	 f k	
p gj	

p � gj	
i	gk	

i	 f k	
p gj	

p �
� 8N�1 � �12L � 22�N�2 � �4L2 � 12L � 22�N�3

var��Wgp� � gp�

� cov
 �
k�1

N �
j�1

N �
i�1

L

f j
igk

i gk
pgj

p � gj
i f k

i gk
pgj

p � f j
i f k

i gk
pgj

p � gj
igk

i gk
pgj

p,

�
k	�1

N �
j	�1

N �
i	�1

L

f j	
i	gk	

i	gk	
p gj	

p � gj	
i	f k	

i	gk	
p gj	

p � f j	
i	f k	

i	gk	
p gj	

p � gj	
i	gk	

i	gk	
p gj	

p �
� 12N�1 � �24L � 50�N�2 � �8L2 � 40 � 54�N�3.
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