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Kahana and Sekuler (2002) adapted Sternberg’s (1966, 
1975) procedure to study episodic recognition memory for 
series of textures, which were created by linearly summing 
sinusoidal gratings. This adaptation made it possible to 
quantify and characterize interference in memory among 
successively presented stimuli. Unlike semantically rich 
stimuli, such as words or images of recognizable and name-
able objects, multidimensional textures are not burdened 
by the complexities of extralaboratory associations, and 
they resist symbolic coding (Della-Maggiore et al., 2000; 
Hwang et al., 2005). Because of their well-defined, natu-
ral metric representations in a low-dimensional space (Ka-
hana & Bennett, 1994), compound grating stimuli facili-
tate manipulation of interitem similarity relations, which 
are important determinants of visual episodic recognition 
(Kahana & Sekuler, 2002; Sekuler, Kahana, McLaughlin, 
Golomb, & Wingfield, 2005; Zhou, Kahana, & Sekuler, 
2004). The availability of a natural stimulus metric for 
defining similarity relations among items enables detailed 
mathematical accounts of recognition memory to be ap-
plied to results from individual stimulus lists. 

Using Nosofsky’s (1984, 1986) generalized context 
model (GCM) as our starting point, we developed NEMO, 
a noisy exemplar model, which combines core aspects of 

GCM with significant new assumptions. First, NEMO 
follows the tradition of multidimensional signal detec-
tion theory (e.g., Ashby & Maddox, 1998) in assuming 
that stimulus representations are coded in a noisy manner, 
with a different level of noise associated with each dimen-
sion. Second, NEMO augments the summed-similarity 
framework of item recognition (Brockdorff & Lamberts, 
2000; Clark & Gronlund, 1996; Humphreys, Pike, Bain, 
& Tehan, 1989; Lamberts, Brockdorff, & Heit, 2003; No-
sofsky, 1991, 1992) with the idea that within-list summed 
similarity (not just probe-to-list-item similarity) influ-
ences recognition decisions. In fitting NEMO to data from 
two experiments, Kahana and Sekuler (2002) found that 
subjects were more likely to say yes to lures following 
study of lists whose items had low interitem similarity 
than to lures following lists whose items had high inter-
item similarity. Subjects appear to interpret probe-to-list 
similarity in light of within-list similarity, with greater list 
homogeneity leading to a greater tendency to reject lures 
that are similar to one or more of the studied items. The 
impact of within-list similarity was confirmed by Nosof-
sky and Kantner (2006), using color patches as stimuli. 

In vision research, many studies focus on the individual 
performance of a small number of subjects. In contrast, 
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memory research tends to focus on performance averaged 
across subjects. The statistical advantage of averaging is 
obvious, but this advantage exacts a toll. It can introduce 
qualitative changes into the pattern of data, thereby distort-
ing the outcome of quantitative modeling (e.g., Maddox, 
1999). Although we subscribe to the goal of understanding 
the visual episodic recognition performance of individual 
subjects, previous data sets, including our own, were not 
large enough to support meaningful modeling of individ-
ual subjects’ data. Therefore, our model-driven analyses to 
date have all been done on averaged data. The experiment 
described below was designed to produce data sufficient to 
support modeling on an individual-subject level.

Our goal in this article is to compare the fits of a suite of 
NEMO variants to individual subjects’ data, where the lat-
ter are generated using the roving probe paradigm (Zhou 
et al., 2004). In the roving probe paradigm, subjects study 
a short list of stimuli that vary along one (or more) dimen-
sions for a subsequent recognition memory test. By ran-
domly selecting test probes from a uniform distribution 
along the same stimulus dimension as the studied items, 
the roving probe method can reveal the parametric rela-
tion between the probability of subjects’ yes responses and 
the metric properties of the probe stimulus. We first will 
present the experimental study that generated a data set 
suitable for model fits to individual subjects’ results. We 
then will describe the NEMO model in detail, including 
minor changes from our earlier implementation (Kahana 
& Sekuler, 2002). The third section of the article will pre
sent fits of four variants of NEMO to individual subjects’ 
data and will discuss the contributions of the various core 
modeling assumptions to obtaining a good quantitative fit. 
Finally, we will discuss the limitations of NEMO’s cur-
rent version and ways that the model could be extended 
to account for a broader range of important attributes of 
perceptual memory. 

Method
Subjects. The subjects were 5 male and 5 female volunteers 

whose ages ranged from 19 to 30 years. They had normal or 
corrected-to-normal visual acuity, as measured with Snellen targets, 
and normal contrast sensitivity, as measured with Pelli–Robson 
charts (Pelli, Robson, & Wilkins, 1988). 

Apparatus. Stimuli were generated and displayed using 
MATLAB 5 and extensions from the Psychophysics and Video 
Toolboxes (Brainard, 1997; Pelli, 1997). The stimuli were presented 
on a 14-in. CRT computer monitor with a refresh rate of 95 Hz and 
a screen resolution of 800  600 pixels. Routines from the Video 
Toolbox were used to calibrate and linearize the display. Mean 
screen luminance was maintained at 36 cd/m2.

Stimuli. On each trial, three compound gratings, s1, s2, and p, were 
presented sequentially. At the start of each trial, a fixation point was 
centered on the screen for 750 msec. The fixation point was followed 
by a 750-msec period of uniform luminance. This was followed by 
s1 and then s2, each for 1,000 msec, separated by an interstimulus in-
terval (ISI) of 1,000 msec. During the ISI, the display area was filled 
with uniform luminance (36 cd/m2). Finally, 1,000 msec after s2, 
p was presented and remained visible until the observer responded. 
p disappeared 1,000 msec after its onset if the observer did not re-
spond in such a period. A sample trial is schematized in Figure 1. 

In each stimulus, one vertical and one horizontal sinusoidal lu-
minance grating were superimposed, which generated a luminance 
profile, Lx,y, given by
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where Lavg is the mean luminance, f is the spatial frequency of the 
stimulus’ vertical component (vertical frequency) in cycles per de-
gree, g is the frequency of the horizontal component (horizontal fre-
quency), and A1 and A2, the Michelson contrasts for the two compo-
nents, were set to 0.4, a value well above the threshold for detection. 
Each grating subtended 6º of visual angle at a viewing distance of 
82 cm. To minimize edges, the stimuli were windowed by a circular 
2‑D Gaussian function with a space constant of 1º of visual angle.

Prior to memory testing, each subject’s spatial frequency dis-
crimination was measured with an up–down-transformed response 
procedure (Wetherill & Levitt, 1965). On each trial, a subject viewed 
two gratings, each presented for 750 msec, with a 1,000-msec ISI 
(note that this was the same timing as would be used in the memory 
experiment). The spatial frequency of one grating on each trial was 
drawn randomly from the set 1, 2, 3, 4, and 5 cycles/deg, which 
spanned the range of frequencies that would be used in the memory 
experiment. With equal probability, the second grating on each trial 
was either fractionally higher or lower in spatial frequency than the 
first. The subject judged which of the two gratings had higher spatial 
frequency, judging only vertical frequency.

This adaptive psychophysical procedure yielded the spatial fre-
quency difference that produced 70.7% correct discrimination be-
tween gratings. The subjects’ Weber fractions ranged from 0.073 to 
0.189. Each subject’s own Weber fraction was used to standardize the 
stimuli with which that subject’s recognition memory was measured. 
The spatial frequency of the stimuli can be expressed in just notice-

Figure 1. A schematized example of a trial. The events, whose durations are indicated on the 
timeline at the bottom of the figure, begin with a fixation point, which is then succeeded by s1, s2, 
and p. In this example, p is a lure, differing from both s1 and s2. The correct response, therefore, 
would be no. 
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able difference (JND) units, which is the product of spatial frequency 
and the individual’s Weber fraction. This stimulus standardization, 
which was introduced by Zhou et al. (2004), minimized visual encod-
ing as a source of individual differences in performance. 

On each trial, the same spatial frequency was used for the horizon-
tal component of all three gratings, s1, s2, and p; differences among 
the items were generated only by variation in their vertical frequen-
cies. Between trials, the horizontal frequency varied randomly be-
tween 0 (no luminance variation along the horizontal dimension) 
and 3 cycles/deg. The vertical frequency is determined by both an 
individual subject’s JND and interstimulus configuration. The geo-
metric mean spatial frequency of the two study gratings was 7 JNDs 
above a minimum reference value ranging from 1 to 2 cycles/deg, 
which was labeled as 1 on the abscissa in Figure 2. The difference 
between the study gratings’ vertical frequencies, |s1 2 s2|, was either 
2 or 8 JNDs. These two values occurred randomly but equally often. 
On half the trials, s1’s vertical spatial frequency was lower than s2’s; 
on the remaining trials, the reverse was true. In 29 steps of half a 
JND, p’s frequency ranged from 0 to 14 JNDs above the lowest ref-
erence value. As is customary in Sternberg-type experiments, on 
half the trials, p matched one of the two study items (we designate 
such ps targets). On the remaining trials, p matched neither of the 
study items (we designate such ps lures). Because a target probe was 

equally likely to replicate either one of the study items, the observers 
had to attend to both.

To minimize the subjects’ ability to base judgments exclusively 
on local, retinotopic matches, the absolute phases of horizontal and 
vertical components were varied randomly from stimulus to stimu-
lus within each trial.

To determine whether the subjects’ performance with variable 
interitem similarity differed from that with constant interitem simi-
larity, for 5 subjects, |s1 2 s2| values were randomly mixed in a ses-
sion; these subjects comprised the mixed group. For the remaining 
subjects, in the blocked group, |s1 2 s2| values were held constant 
during blocks of trials within a session. 

Procedure. The subjects served in 10 sessions, which were sepa-
rated by 24–72 h. During testing, the subjects sat with head supported 
by a chin-and-forehead rest, viewing the computer display binocu-
larly from a distance of 82 cm. A trial was initiated by the press of 
a key on the computer keyboard. The subjects were instructed to 
respond as accurately and quickly as possible. By pressing computer 
keys representing yes and no, the subjects signaled their judgment as 
to whether p was identical to one of the study items, either s1 or s2, or 
different from both study items. The computer generated brief, dis-
tinctly different tones after correct and incorrect responses, provid-
ing the subjects with trialwise knowledge of the results. Throughout 

Figure 2. Mnemometric functions: Probabilities of yes responses as proved along the spatial frequency 
dimension. Solid lines indicate the blocked group data, and dashed lines indicate the mixed group data. 
The minimum spatial frequency of p is normalized to 1. The normalized spatial frequencies of s1 and s2 are 
indicated by gray bars. The upper panels show data from the near conditions (|s1 2 s2| 5 2 just noticeable 
difference [JND] units); the lower panels show data for the far conditions (|s1 2 s2| 5 8 JND units). The 
panels on the left show data from the conditions in which s1 had the lower spatial frequency of the two study 
items; the panels on the right show data from the conditions in which s1 had the higher spatial frequency. 
Error bars represent 61 standard error of the mean. 
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each session, a webcam broadcast a video feed of the subject’s face 
over the laboratory’s local area network, allowing the experimenter 
to monitor subject compliance. 

Results 
Zhou et al. (2004) introduced the term mnemometric 

function to describe the relation, in a recognition experi-
ment, between the proportion of yes responses and the 
metric properties of a probe stimulus. In their experiment, 
as the probe item roved or varied in spatial frequency, the 
roving probe sampled memory strength at various points 
along the spatial frequency continuum, sweeping out a 
probability function that afforded a snapshot of the distri-
bution of memory strength. 

Figure 2 shows the average mnemometric functions for 
the four different conditions in the present experiment. The 
upper panels show data from the conditions in which the 
difference between the study gratings’ vertical frequencies 
|s1 2 s2| was 2 JNDs (the near condition); the lower panels 
show data from the conditions in which the difference was 
8 JNDs (the far condition). The panels on the left show 
data from the conditions in which s1 had a lower spatial 
frequency; the panels on the right show data from the con-
ditions in which s1 had the higher spatial frequency. 

As was revealed by multiple t tests, only 5 of 116 data 
points on the mnemometric functions differ significantly 
between the mixed and the blocked groups. In two cases, 
P(yes) of the mixed group is significantly higher than that 
of the blocked group ( p , .05 without family-wise error 
adjustment). The two groups performed similarly overall. 
The small, unsystematic differences between groups will 
not be considered further. 

As is shown in all four panels, false alarms increased 
as the spatial frequency of a lure approached that of one 
of the two studied items. When the spatial frequencies of 
the studied items were separated by just 2 JNDs, the high-
est false alarm rates were observed when the lure’s fre-
quency lay between those of the two studied items. When 
the studied items were separated by 8 JNDs, however, the 
false alarm rate decreased as the lure’s spatial frequency 
deviated from that of either of the two studied items. False 
alarms also exhibited a recency effect insofar as they were 
greater when the lure was similar to the more recently 
studied test item.

NEMO: A Noisy Exemplar Model 
Building on exemplar models of classification and rec-

ognition (McKinley & Nosofsky, 1996; Nosofsky, 1986), 
we assume that as each stimulus is presented, its feature 
space coordinates are stored in memory and that judg-
ments are based largely on the summed similarity between 
the probe item and these stored representations. In par-
ticular, summed similarity refers to the sum of pairwise 
similarity measures between the probe, on one hand, and 
the representations of each of the study items, on the other. 
Borrowing ideas from decision-bound models of human 
classification (Ashby & Maddox, 1998; Ennis, Palen, & 
Mullen, 1988; Maddox & Ashby, 1996), NEMO repre-
sents each stimulus as a multivariate normal distribution 
in feature space and uses a deterministic response rule, re-

sponding yes if the summed similarity crosses a decision 
bound (criterion) that separates targets and lures.

The basic computation underlying recognition perfor-
mance is the summed pairwise similarity between each 
item’s noisy representation and the relatively noiseless 
representation of the probe. If stimuli are randomly se-
lected from a multidimensional space, the summed simi-
larity of a target to the contents of memory will typically 
exceed the summed similarity for a lure. This provides a 
basis for modeling two-alternative forced choice recogni-
tion. However, for yes–no recognition, as in the Sternberg 
(1966) procedure used here, the summed similarity value 
cannot be used directly but must be compared with some 
experience-based threshold value that distinguishes be-
tween targets and lures. 

We assume that a subject uses an optimal decision cri-
terion to decide whether the summed similarity is more 
likely to have come from the presentation of a lure or from 
the reappearance, as a probe item, of a stimulus that was 
in the list. Presumably, experience enables subjects to ad-
just their criteria so as to suit the context (e.g., Petzold 
& Haubensak, 2004; Treisman & Williams, 1984). Mor-
gan, Watamaniuk, and McKee (2000) provided a strik-
ing demonstration of the ease and flexibility with which 
such adjustments in criterion can be made from one trial 
to the next. Their demonstration is supported by the pres-
ent study’s finding of small, nonsystematic differences in 
performance between subjects who made up the mixed 
and the blocked groups. 

As in Nosofsky (1986), we define the similarity, ηsi,sj
, 

among two representations, si and sj, as given by

	 η τ
s s ei j

d s s
i j, ,
,( ) = − ( ) 	 (2)

where d is the weighted distance between the two stimulus 
vectors and t determines the steepness of the exponential 
generalization gradient (Chater & Vitányi, 2003; Shepard, 
1987). Increasing the value of t causes similarity to de-
crease more rapidly with increasing distance. The distance 
along each dimension |si(k) 2 sj(k)| is weighted by a fac-
tor wk , to ensure (1) that the measurement is not sensitive 
to absolute variations in the scale of the dimensions and 
(2) that the model can capture global differences in the 
attention that each dimension attracts. In fitting data from 
the present experiment, in which stimuli varied along just 
one dimension, we set the weighting parameter to 1.

We assume that each stimulus is stored imperfectly in 
memory. To the stored representation of each item, we add 
a noise vector, ε, whose components are zero-mean Gauss-
ian variables whose variance depends on the stimulus di-
mensions comprising that item and on the recency of that 
item’s occurrence. Variability in subjects’ responses from 
one occurrence of an item to another are modeled by the 
sampling of each item from its noisy representation. We 
use two mechanisms to simulate forgetting: (1) We assume 
that the most recent stimulus contributes the most to the 
summed similarity and that earlier items contribute less (the 
a parameter in Equation 3, below), and (2) we assume that 
the stimulus coordinates of older representations are coded 
with greater degrees of noise (i.e., larger variance of ε).
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NEMO’s most important innovation is the introduc-
tion of an interstimulus similarity term into the summed-
similarity computation (see Kahana & Sekuler, 2002, for 
a detailed discussion of the importance of this parameter). 
Given a list of items, s1 . . . sL , and a probe item, p, NEMO 
will respond yes if

	

α η εi i i
i

L

p s, +( )
=
∑

1

Summed probe item similarity
  
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Mean interitem similarity
  

,	 (3)

exceeds a threshold value, C. If b 5 0, the model reduces 
to a close variant of Nosofsky’s GCM model. If b , 0, a 
given lure will be more tempting when s1 and s2 are widely 
separated; conversely, if b . 0, a lure will be less tempting 
when s1 and s2 are widely separated. 

The a and ε terms in Equation 3 determine the rate of 
forgetting. For the most recent item, a 5 1, but for earlier 
items, a is allowed to take on smaller values. In simulating 
memory for a list comprising just two stimuli, a single a 
parameter would determine the contribution of the older 
item to the summed-similarity calculation. Forgetting is 
also modeled by allowing the variance–covariance ma-
trix of ε to change as a function of stimulus recency. Ka-
hana and Sekuler (2002) fit NEMO to data from lists of 
four items that varied along three relevant dimensions. 
The number of items and critical dimensions meant that 
a full estimation of the variance–covariance matrices for 
each serial position would have required estimating 24 
parameters. Kahana and Sekuler therefore assumed that 
the covariances were zero and that the noise was fixed 
across serial position. In the present application to stimuli 
that vary along just a single critical dimension, we con-
sider the consequences of allowing the variance to change 
across serial position. This entails estimation of separate 
variance parameters for each serial position. 

In the next section, we will consider the consequences 
of replacing the exponential similarity distance function 
with a binary function in which similarity falls from 1 to 
0 when the distance exceeds a critical threshold, D (this 
relation is characterized by a Heaviside function). Our 
motivation for considering such a binary relation between 
similarity and distance comes from Zhou et al.’s (2004) re-
port that a signal detection model in which only the near-
est item contributes to the recognition decision provided 
a reasonably good qualitative account of the mnemomet-
ric functions obtained using the roving probe technique.1 
In comparing these two variants of NEMO, we hope to 
determine whether an exponential or a binary summed-
similarity model provides a better account of observers’ 
visual recognition memory performance. 

Fitting NEMO to Mnemometric Functions 
We fit four different versions of NEMO to each sub-

ject’s mnemometric functions by finding the parameters’ 
values that minimized the root-mean-squared differ-

ence (RMSD) between observed and predicted values.2 
The four versions represent factorial combinations of 
(1) whether interstimulus similarity was or was not al-
lowed to influence the response and (2) whether similarity 
fell exponentially with physical distance or whether simi-
larity was forced to be binary, falling from 1 to 0, when 
the probe item distance exceeded some critical threshold. 
(As was mentioned earlier, this binary relation is char-
acterized by a Heaviside function.) We label these four 
variants NEMObE, NEMObH, NEMOE, and NEMOH, as 
defined in Table 1.

Because they possess an additional free parameter 
(b), NEMObE and NEMObH have an inherent advantage 
over NEMOE and NEMOH. To compare all four models 
on a more equal footing, we computed Schwarz’s (1978) 
Bayesian information criterion (BIC) for each model and 
subject. Under the simplifying assumption of normally 
distributed error terms, BIC is simply 

	 BIC
RSS= +







k n n
n

ln( ) ln ,	 (4)

where k is the number of free parameters, n is the number 
of observations, and RSS is the residual sum of squares. 
Better-fitting models will have lower BIC values. 

The left column of Figure 3 shows the difference 
between observed and predicted values for the fits of 
NEMObE and NEMOE to the average subject data; the 
middle and right columns show fits to two representative 
subjects. Later, we will present formal analyses of each 
model’s fit to each of the 10 individual subjects. Figure 4 
shows the differences between observed and predicted 
values for the fits of NEMObH and NEMOH.

Inspection of these graphs shows that NEMObE (expo-
nential, interstimulus similarity) provided the best fit to the 
average data (RMSD 5 0.070, BIC 5 2635). The other 
models generated RMSDs ranging from 0.087 to 0.089 
and BIC values ranging from 2534 to 2551. Whereas 
the inclusion of interstimulus similarity substantially im-
proved the fit of the exponential summed-similarity mod-
els, it had little effect on the fit of the Heaviside models 
(see Figure 4). 

Figures 3 and 4 also reveal systematic deviations be-
tween the model and the data for all four NEMO variants. 
In the near condition, the probability of making a yes re-
sponse drops too slowly as the probe moves away from s1 
and s2; this is observed in the peaks around JND 5 4 and 
JND 5 12 in panels A and B. In the far condition, there 
appears to be some systematic bias in the data that is not 

Table 1 
Factorial Arrangement of the Four Variants of  

NEMO Fit to Experimental Data

Interstimulus Similarity–Distance Function 

 Similarity  Exponential  Heaviside  

Yes NEMObE NEMObH
No NEMOE NEMOH

Note—In model designations, the subscripts E and H denote exponential 
and Heaviside similarity–distance functions, respectively; the subscript 
b denotes the inclusion of an interitem similarity term.
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captured by the model. Although the residuals are much 
larger in the individual-subject fits, one can see many of 
the same trends as are present in the model fits to the aver-
age data. 

Separately fitting the four NEMO variants to each of 
the 10 subjects’ data yielded a distribution of best-fitting 
parameter values across subjects. This analysis allowed 
us to generate between-subjects confidence intervals for 
each of the parameter values and, thereby, assess the varia-
tion in model parameters across subjects. Table 2 reports 

the mean and standard error of the best-fitting parameter 
values for each of the four NEMO variants for the indi-
vidual data. 

By fitting all four model variants to individual subjects, 
we can quantitatively assess the differences in the BIC 
goodness-of-fit statistic for the candidate models. Table 3 
shows the BIC values obtained for each subject and model. 
As can be seen, NEMObE achieves the smallest BIC in 8 
out of the 10 subjects. The advantage of NEMObE over the 
other models proved significant ( p , .05 by a permuta-

Figure 3. Difference between predicted and observed mnemometric functions for exponential variants of NEMO with 
and without an adjustment for interstimulus similarity (i.e., NEMOb E, solid lines; NEMOE, dashed lines). Residuals in 
the left-hand column are based on averaged data, and those in the middle and right-hand rows are based on individual 
subjects’ data. The normalized spatial frequencies of s1 and s2 are indicated by gray bars. The panels in the upper two 
rows show data from the near conditions (|s1 2 s2| 5 2 just noticeable difference [JND] units); the panels in the lower two 
rows show data for the far conditions (|s1 2 s2| 5 8 JNDs). 
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Table 2 
Best-Fitting Parameter Values for NEMO’s Fits to Results 

NEMObE NEMObH NEMOE NEMOH

Parameter  M  SEM  M  SEM  M  SEM  M  SEM

s1 2.109 0.166 2.346 0.200 2.299 0.239 2.364 0.218
s2 1.459 0.115 1.507 0.103 1.524 0.085 1.503 0.104
a 0.908 0.043 0.976 0.016 0.973 0.028 0.986 0.012
b 20.755 0.117 20.949 0.159
t 0.688 0.051 0.898 0.038
D 1.897 0.099 1.773 0.075

Criterion 0.276 0.020 0.357 0.062 0.229 0.012 0.314 0.073

RMSD  0.113  0.005  0.121  0.005  0.129  0.005  0.125  0.005



1228        Kahana, Zhou, Geller, and Sekuler

tion test, corrected for multiple comparisons). The other 
model comparisons did not attain statistical significance. 

NEMObE’s fit indicated that interstimulus similarity 
moderated the effect of summed similarity on decisions. 
This phenomenon is seen in the significantly negative 
value of the b parameter (20.7660.12), indicating that 
subjects are less likely to say yes when interstimulus simi-
larity is high than when it is low. This extends previous 
findings of Kahana and Sekuler (2002) and Nosofsky and 
Kantner (2006) to an experimental paradigm in which only 
a single stimulus dimension (either horizontal or vertical 
frequency) varied. 

NEMO has two mechanisms that enable it to fit the ob-
served recency effects. First, NEMO can adopt different 
values for the standard deviation of ε for s1 (denoted s1) 
and for s2 (denoted s2). In fitting our data, NEMO con-
sistently chose a smaller standard deviation for the me-
morial noise of the more recent stimulus (see Table 2). 
Borrowing from the literature on global-matching mod-
els of recognition memory (Murdock & Kahana, 1993b; 
Murdock & Lamon, 1988), we also allow NEMO to 
differentially weight the contribution of s1 and s2 in the 
summed-similarity calculation (this is done via the mod-

el’s α parameter). This increased weighting of recently ex-
perienced items may be viewed either as a decay process 
or as a mechanism of strategic control. In the latter inter-
pretation, subjects may focus their memory comparison 
on more recently presented information, downweighting 
the signals from older traces. In fitting our data, NEMO 
consistently chose to assign a greater weight to s2 than to 
s1 (see Table 2). One could easily imagine that the model 

Figure 4. Difference between predicted and observed mnemometric functions for the Heaviside variants of NEMO 
with and without an adjustment for interstimulus similarity (i.e., NEMOb H and NEMOH). Residuals in the left-hand 
column are based on averaged data, and those in the middle and right-hand rows are based on individual subjects’ 
data. The normalized spatial frequencies of s1 and s2 are indicated by gray bars. The panels in the upper two rows show 
data from the near conditions (|s1 2 s2| 5 2 JNDs); the panels in the lower two rows show data for the far conditions  
(|s1 2­ s2| 5 8 JNDs). 
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Table 3 
Values of the Bayesian Information Criterion (BIC) for  

Each Subject and Model

Subject  NEMObE  NEMObH  NEMOE  NEMOH

  1 2460.138 2408.299 2395.327 2398.468
  2 2448.709 2429.838 2457.024 2435.387
  3 2428.123 2419.197 2418.838 2424.400
  4 2424.155 2395.422 2411.456 2403.301
  5 2505.869 2485.721 2455.823 2473.885
  6 2468.497 2453.988 2465.594 2458.012
  7 2494.123 2480.834 2467.319 2484.200
  8 2457.325 2450.624 2434.903 2447.940
  9 2426.251 2422.282 2422.250 2427.311
10  2493.830  2442.971  2403.944  2420.087
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would pick one of these two mechanisms over the other, 
at least for individual subjects. Yet both mechanisms ap-
peared to play a role in accounting for the observed serial 
position effects. Given that the older stimulus is encoded 
with greater noise, it would be rational to assign it less 
weight in the summed-similarity computation. 

Three factors conspire to determine how the proxi-
mal and distal stimuli (i.e., stimuli that were nearer to 
the probe on the spatial frequency dimension or further 
from the probe on that dimension) contribute to the over-
all summed-similarity calculation: (1) the form of the 
similarity–distance function as defined in Equation 2, 
(2) the noise added to the stored stimulus representa-
tions, and (3) the differential weighting of more and less 
recent items, as determined by a. When p’s spatial fre-
quency is close to those of both s1 and s2, the ratio of the 
summed-similarity contributions of proximal and distal 
items should approach one. However, when p’s spatial 
frequency is much nearer to one of the studied items, the 

proximal item’s contribution to summed similarity will 
be far greater than that of the distal item. Figure 5 shows 
how the ratio of the proximal and distal items’ contribu-
tions to summed similarity changes as a function of p’s 
spatial frequency in each of the four experimental condi-
tions. Here, one can see that the relative contribution of 
the proximal item to summed similarity, in comparison 
with that of the distal item, is substantially higher in the 
far condition (panels C and D) than in the near condition 
(panels A and B). 

We next will consider what happens when we replace 
the exponential similarity–distance function used in 
NEMObE with a Heaviside (step) function in NEMObH. 
Note first that even with the Heaviside function, NEMO 
chose a significantly negative value for the b parameter, 
indicating that when interstimulus similarity is low, sub-
jects are more likely to say yes when the probe is similar 
to one of the studied items. Although D takes on a value 
smaller than the distance between the two studied items, 

Figure 5. Relative contributions of proximal and distal items to summed similarity. Each panel shows 
p’s similarity to the proximal study item divided by p’s similarity to the distal study item as a function of 
probe position for one of the experimental conditions. The normalized spatial frequencies of s1 and s2 are 
indicated by gray bars. The upper panels show data from the near conditions; the lower panels show data 
from the far conditions. The panels on the left show data from the conditions in which s1 had the lower 
spatial frequency of the two study items; the panels on the right show data from the conditions in which s1 
had the higher spatial frequency. The dashed line highlights the region of each curve where proximal and 
distal items contribute similarly to summed similarity. The values used are the mean over 5,000 repetitions 
of NEMOb E, using the parameters given in Table 2.
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even in the near condition, the model still takes on a sig-
nificantly negative value for b. This means that interstim-
ulus similarity matters despite the fact that, on average, 
interstimulus similarity will be zero when the Heaviside 
function is used. This seems less mysterious when one 
considers that noise in the coding of s1 and s2 will occa-
sionally make the distance between the studied items less 
than D; therefore, interstimulus similarity will be 1 on a 
portion of the trials. 

Our final manipulation was to eliminate the b parame-
ter, yielding the models designated NEMOE and NEMOH. 
The effect of this manipulation can be seen in Figure 3 
and Figure 4’s plots of residuals (i.e., differences between 
predicted and observed mnemometric functions). In each 
panel, residuals associated with a model that includes b 
are shown as a solid line, and residuals associated with 
a model from which b has been eliminated are shown as 
a dotted line. In Figure 3, which presents results for the 
two exponential variants, NEMObE and NEMOE, differ-
ences between residuals with and without b are more pro-
nounced than the corresponding differences in Figure 4, 
which presents results for the model’s two Heaviside vari-
ants, NEMObH and NEMOH. These comparisons show 
clearly that the presence of b has a greater effect on the 
exponential models than on the Heaviside models. 

Discussion
Summed-similarity models provide a major current 

framework for thinking about recognition and classifica-
tion of stimuli whose similarity relations vary along mea-
surable dimensions (e.g., Brockdorff & Lamberts, 2000; 
Estes, 1994; Nosofsky, 1991). An important contribution 
of these models has been in their ability to describe varia-
tion in false alarm rates as a function of the distance be-
tween a lure and the studied items (see also Hintzman, 
1988). 

Extending the summed-similarity analysis to account 
for data on individual lists, Kahana and Sekuler (2002) 
found that summed-similarity models mispredicted sub-
jects’ performance on lists with very high or very low in-
terstimulus similarity. They also found that when lists were 
homogeneous, subjects committed fewer false alarms to 
similar lures. These findings, which were obtained using 
sinusoidal gratings as stimuli, were extended by Nosofsky 
and Kantner (2006) to Munsell color stimuli. 

The present experiment examined the role of interstim-
ulus similarity in predicting subjects’ false alarms to lures 
varying systematically in their similarity to a list of two 
previously studied items. This parametric manipulation 
of the lures’ perceptual coordinates reveals a functional 
relation between subjects’ false alarm rates and the lure’s 
similarity to the studied items. Zhou et al. (2004) referred 
to this relation as a mnemometric function and showed 
that a simple signal detection model could explain its 
basic form. 

In the present study, we measured individual subjects’ 
mnemometric functions for lists comprising two gratings 
that were separated by either 2 or 8 JNDs. Before testing 
memory, we measured individual subjects’ discrimination 
thresholds and used those thresholds to scale or tailor stim-

uli for each subject. Armed with a substantial data set for 
recognition memory, we fit four variants of NEMO to indi-
vidual subjects’ mnemometric functions. The four models 
differed along two dimensions: (1) whether they used inter-
stimulus similarity to adjust subjects’ criteria on a trialwise 
basis and (2) whether they used an exponential or a Heavi-
side function to map perceptual distance (in JND units) onto 
psychological similarity. The study by Zhou et al. (2004) 
motivated us to evaluate the form of the similarity–distance 
function, because the version of NEMO that assumes a 
Heaviside function is quite similar to the signal detection 
framework presented in that article. Individual-subject fits 
demonstrated a clear superiority for Kahana and Sekuler’s 
(2002) NEMObE model, which uses an exponential trans-
formation of perceptual distance and uses interitem similar-
ity to adjust the decision criterion (Nosofsky & Kantner, 
2006). Note that despite NEMObE’s clear superiority, each 
of the model variants does a respectable job of fitting the 
mnemometric functions. This fact serves as a reminder that, 
as Pitt and Myung (2002) and others have cautioned, even a 
seemingly good fit can be bad. 

We should note that NEMO includes some implicit 
assumptions that need to be tested explicitly. First, as 
presently formulated, the model treats each trial as en-
capsulated, with no intrusion or bleed-through from any 
preceding trial. Put another way, Equation 3 implies that 
the information used for each recognition decision is writ-
ten on a blank slate, with memory being reset after each 
trial (cf. Howard & Kahana, 2002; Murdock & Kahana, 
1993a). If this assumption were correct, recognition mem-
ory measured in this paradigm for grating stimuli would 
differ from memory for other classes of stimuli, including 
letters and words, which show strong interlist interference 
effects (e.g., Bennett, 1975; Donnelly, 1988; Monsell, 
1978). Moreover, with a different paradigm, visual search 
experiments have demonstrated bleed-through from pre-
vious trials for features such as color (Huang, Holcombe, 
& Pashler, 2004) and, most directly relevant to our ex-
periment, the spatial frequency of stimuli (Maljkovic & 
Nakayama, 1994). NEMO could be easily augmented to 
account for interlist interference effects, if needed to ac-
commodate results from extensions of experiments such 
as the one we report here. Briefly, if recognition judgments 
on the nth trial were shown to be influenced by study items 
on the previous trial, NEMO could be augmented by an ad-
ditional term that represents summed similarity between 
p on the nth trial and study items on the (n21)th trial. If 
the proportion of intertrial intrusions were modest, the 
term for intertrial summed similarity would be weighted 
substantially less than its intratrial counterpart. 

Models of contextual drift (e.g., Dennis & Humphreys, 
2001; Howard & Kahana, 2002; Mensink & Raaijmak-
ers, 1988; Murdock, 1997) offer a more sophisticated ap-
proach to the problem of interlist interference and contex-
tually focused retrieval. Rather than downweighting the 
contribution of older memories to summed similarity, as 
we have done in NEMO, contextual drift models assume 
that each memory is tagged with a contextual represen-
tation that changes slowly over time. This vector repre-
sentation of context, sometimes referred to as temporal 
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context, integrates the patterns of brain states over time, 
with more recent states weighted more heavily than older 
states (see Howard & Kahana, 2002, for details). Within 
this framework, a recognition test cue is a vector of at-
tribute values whose elements include both the attributes 
representing the test item itself and the attributes repre-
senting the state of temporal context at the time of test (cf. 
Neath, 1993). This composite test cue, representing both 
content and context information, is used to retrieve similar 
traces stored in memory. The recognition decision is then 
based on the similarity of this retrieved information with 
the test cue itself (Dennis & Humphreys, 2001; Schwartz, 
Howard, Jing, & Kahana, 2005). Although context-based 
models have previously been applied primarily to data 
on verbal memory, it is possible to incorporate their con-
textual drift and contextual retrieval mechanisms into 
summed-perceptual-similarity models, such as NEMO. 

The second assumption deserving of further study is 
the mechanism behind interitem similarity’s influence on 
recognition. In NEMO, this influence is represented by 
the parameter b (see Equation 3). Fits of the model have 
produced consistently negative values for b, which is con-
sistent with the assumption that intersimilarity leads to an 
adaptive shift in the subject’s criterion (Kahana & Sekuler, 
2002; Nosofsky & Kantner, 2006). When study items are 
highly similar to one another, the associated negative b 
seems to increase the effective conservatism of the sub-
ject’s criterion for responding yes. Hence, the negative b 
affords some protection against false positives. This inter-
pretation, which locates b’s role at a decision-making stage, 
seems a reasonable hypothesis, but one that future research 
might examine. Several physiological and behavioral stud-
ies hint at an alternative worth considering—namely, that b 
is mediated by a change in the sensitivity or noise of early 
visual mechanisms in cortical processing, well before the 
decision-making stage. For example, Spitzer, Desimone, 
and Moran (1988) showed that the difficulty level of a 
visual discrimination task altered neuronal responses in 
visual area V4 of the cerebral cortex. Presumably, a more 
difficult task makes for increased attentional demands, 
which increase the strength and selectivity of neuronal re-
sponses (see also Boynton, 2005; McAdams & Maunsell, 
1999; Reynolds & Desimone, 2003). It would be useful, 
therefore, to determine whether, in recognition memory, 
interitem similarity has an analogous effect, altering the 
noise or sensitivity of visual mechanisms responsible for 
the encoding of study items. 
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NOTES

1. Zhou et al.’s (2004) signal detection model assumed that yes deci-
sions arose when either the absolute difference between the remembered 
exemplar s1 and the probe or the absolute difference between the re-
membered exemplar s2 and the probe was less than a threshold value. 
Thus, Zhou et al.’s model would substantively differ from NEMOH only 
in those cases in which both study items were sufficiently proximate to 
the probe item to produce a nonzero similarity value. 

2. We used an evolutionary algorithm to search for the parameter val-
ues that minimized the RMSD (for further details on parameter estima-
tion, see Kahana, Rizzuto, & Schneider, 2005; Kahana & Sekuler, 2002; 
Rizzuto & Kahana, 2001). 
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