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A B S T R A C T   

Traumatic brain injury (TBI) is a leading cause of cognitive disability in adults, often characterized by marked 
deficits in episodic memory and executive function. Prior studies have found that direct electrical stimulation of 
the temporal cortex yielded improved memory in epilepsy patients, but it is not clear if these results generalize to 
patients with a specific history of TBI. Here we asked whether applying closed-loop, direct electrical stimulation 
to lateral temporal cortex could reliably improve memory in a TBI cohort. Among a larger group of patients 
undergoing neurosurgical evaluation for refractory epilepsy, we recruited a subset of patients with a history of 
moderate-to-severe TBI. By analyzing neural data from indwelling electrodes as patients studied and recalled lists 
of words, we trained personalized machine-learning classifiers to predict momentary fluctuations in mnemonic 
function in each patient. We subsequently used these classifiers to trigger high-frequency stimulation of the 
lateral temporal cortex (LTC) at moments when memory was predicted to fail. This strategy yielded a 19% boost 
in recall performance on stimulated as compared with non-stimulated lists (P = 0.012). These results provide a 
proof-of-concept for using closed-loop stimulation of the brain in treatment of TBI-related memory impairment.   

1. Introduction 

Memory loss resulting from traumatic, infectious, or inflammatory 
insults to the brain constitutes one of the major health challenges 
affecting populations worldwide. Disability resulting from traumatic 
brain injury (TBI), in particular, affects 1–2% of the population and 
often results in a profound and specific impairment in episodic memory, 
preventing affected individuals from maintaining a reasonable quality of 
life. Prior TBI also increases risk for several chronic neurologic com-
plications, including epilepsy [1] and neurodegenerative diseases [2–4]. 
The variability in the nature and degree of impairment stems from both 

the nature of the acute insult and the subsequent development of neu-
roinflammation, diffuse axonal injury, diffuse vascular injury, and other 
secondary pathologies [5–8]. 

Although cognitive rehabilitation can help patients develop strate-
gies to adapt to their disability, such therapy has limited efficacy in 
remediating the memory deficits [9]. Given the profound unmet need 
facing patients with memory deficits related to acquired brain injury, we 
sought to examine whether closed-loop electrical stimulation can be 
effective in this patient group. As such therapies have yet to be vali-
dated, and because technology for chronic closed-loop stimulation is in 
its infancy, we sought to identify neurosurgical epilepsy patients with a 
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significant prior history of TBI and test whether closed-loop neural 
stimulation could effectively boost memory in these patients. 

Each year approximately 2400 patients in the US undergo invasive 
electrocorticography monitoring for drug-resistant epilepsy, with the 
goal of localizing the seizure focus and planning a potentially-curative 
resective surgery. To localize seizures, neurosurgeons implant many 
electrodes that will prove to be outside the seizure onset zone; as such, 
these patients provide a unique window into the electrophysiology of 
memory and cognition. Additionally, neurologists often use electrical 
stimulation in such cases to map regions of eloquent cortex, so as to 
avoid resecting tissue vital to motor, language and memory function. 
During such cases researchers have also used electrical stimulation as a 
manipulative tool to study memory and cognitive processes. Investiga-
tion of open-loop stimulation protocols have at times demonstrated 
impaired memory [10–12] but in some cases, with careful targeting of 
specific tracts, these studies have also shown improved memory 
[13–15]. 

Here, we explored the possibility of using biomarker-guided closed- 
loop electrical stimulation to improve memory. Building upon a recent 
demonstration that closed-loop stimulation of lateral temporal cortex 
boosts memory for stimulated items we set out to evaluate whether this 
strategy would also work in a “therapy-based” setting, where stimula-
tion would need to improve memory function throughout periods of 
potentially active stimulation as compared with improving memory only 
for stimulated items. We further sought to validate this therapy in pa-
tients with a history of moderate-to-severe TBI, whose heterogeneous 
pathologies (described above) may limit their ability to benefit from 
brain stimulation’s network effects. Among all patients undergoing 
invasive monitoring for resective surgery at six major epilepsy centers, 
we identified eight patients who met our TBI criteria (see Materials and 
Methods). Under an IRB-approved protocol, and with an independent 
medical monitor reviewing patient safety data, we recruited these pa-
tients for a multi-session experiment involving memory testing, neural 
recordings, and closed-loop brain stimulation. 

2. Materials and methods 

2.1. Study design 

Based on prior published work in an independent data set [16], we 
hypothesized that closed-loop stimulation of lateral temporal cortex in 
human participants with a history of memory dysfunction and traumatic 
brain injury would provide a boost in recall on an episodic memory task 
during trials receiving stimulation as compared to trials without 
stimulation. 

2.2. Research participants 

We recruited eight patients (7 male, 1 female; mean age 44.5 ± 11 
SD) with intractable epilepsy and a history of moderate-to-severe TBI 
who were undergoing seizure monitoring and localization using 
implanted intracranial electrodes. We determined the sample size in 
advance and did not perform group analyses until we completed data 
collection. Specifically, we received a one-year extension of a prior 
award during which we planned to recruit eight participants (a number 
estimated to be 10% of the total number of patients admitted to the 
epilepsy monitoring units at our collaborating centers. None of the 
recruited patients overlapped with samples in prior publications 
reporting the therapeutic effects of closed-loop stimulation on memory 
function (e.g., Ezzyat et al., 2018). We identified patients as having a 
history of moderate-to-severe TBI based on criteria established by expert 
neurologists at the University of Pennsylvania (Dr. R. D-A) and Uni-
versity of Texas Southwestern (Dr. K. D.), as follows: a reported history 
of significant head injury accompanied by either prolonged loss of 
consciousness (>30 min), post-traumatic amnesia, or imaging results 
compatible with moderate-to-severe traumatic brain injury. Most 

injuries occurred years prior to surgical epilepsy evaluation, limiting our 
ability to relate post-injury medical records to the experimental results. 
We confirmed left-language dominance based on functional magnetic 
resonance imaging (fMRI) and/or WADA testing in six of these patients; 
the remaining two patients did not have specific data confirming lan-
guage dominance, but one was right-handed and other self-reported as 
being ambidextrous. The enrolled patients participated at the following 
collaborating hospitals: Dartmouth-Hitchcock Medical Center (Hanover, 
NH), Emory University Hospital (Atlanta, Georgia), and University of 
Texas Southwestern Medical Center (Dallas, TX), with the University of 
Pennsylvania (Philadelphia, PA) serving as the Data Coordinating Cen-
ter. This research was part of a multi-center project designed to assess 
the effects of electrical stimulation on memory-related brain function. 
Institutional review boards approved the study protocol at the respective 
institutions, and each participant gave written informed consent after 
the nature and possible consequences of the study were explained. 

2.3. Experimental design 

All enrolled participants underwent the same experimental protocol: 
multiple sessions of a non-stimulation behavioral task followed by one 
or more sessions of a closed-loop stimulation task (see details in 
following subsections). Each participant served as their own control 
within each stimulation task session (control trials receiving no stimu-
lation). Patients were aware that stimulation could be delivered 
throughout the closed-loop stimulation task but were blinded to the 
specific trials containing stimulation. We included all closed-loop 
stimulation task sessions performed by the participants in the reported 
results and did not perform group analyses until all data were collected. 

2.4. Behavioral task 

Each participant performed a delayed verbal free recall task (Fig. 1A) 
on a laptop, in which they studied lists of displayed items for later verbal 
recall. Each list comprised 12 words selected without replacement from 
a pool of nouns; the word pool consisted of items belonging to 25 se-
mantic categories (e.g. beverages, kitchen appliances, zoo animals). 
Each list of 12 items consisted of four unique words drawn at random 
(and without replacement) from each of three randomly-selected cate-
gories. Participants contributed up to 25 study-test trials per session, 
plus a practice trial discarded in subsequent analyses. Each trial con-
sisted of three main phases: encoding, distractor, and recall (Fig. 1A). 
Following a 10-s countdown period, each trial began with the encoding 
phase, in which the computer displays each item individually for 1600 
ms followed by a randomly jittered 750–1000 ms blank inter-stimulus 
interval (ISI). After viewing the final item of the list, participants 
entered a distractor phase (20 s), in which they typed responses to a 
series of simple arithmetic problems, receiving correct/incorrect feed-
back through an audio tone. Following the distractor phase, a brief 
auditory tone cued participants to speak aloud as many items as possible 
from the most recent viewed list (30 s), in any order, with vocal re-
sponses digitally recorded and later manually annotated for analysis. 
Participants performed the categorized delayed free recall task without 
brain stimulation (i.e. “record-only”) or with closed-loop brain stimu-
lation (see details below). Two of the eight participants performed 
record-only sessions of a nearly-identical uncategorized variant of the 
delayed free recall task in addition to the categorized variant described 
above, in which the word pool consisted of high frequency nouns. In 
prior work, analyses of behavioral and electrophysiological data across 
these two task variants have revealed nearly identical biomarkers 
relating to successful memory encoding and retrieval [17]. 

2.5. Data collection and processing 

The neurosurgical team implanted minimally-invasive stereo-
electroencephalography (sEEG) depth electrodes (AdTech Medical 
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Instrument Corporation, PMT Corporation, DIXI Medical) within the 
brain parenchyma to collect electrophysiological data (EEG) to best 
localize epileptogenic regions, with specific placement of each electrode 
planned to support each patient’s individual clinical care. The External 
Neural Stimulator (ENS) (Medtronic, Inc.) recorded EEG signals (mi-
crovolts; sample rate = 2000 Hz) using a bipolar reference scheme, 
consisting of pairs of immediately adjacent contacts on the implanted 
sEEG electrodes. During testing sessions, the laptop recorded behavioral 
responses (vocalizations, key presses), synchronized to the ENS- 
recorded EEG via transmitted network packets. In a first pre- 
processing step, a 5 Hz band-stop fourth order Butterworth filter 
(centered on 60 Hz) removed line noise from the recorded EEG signals. 
Then, we performed a spectral power decomposition on the time-series 
data at 8 frequencies from 6 to 180 Hz, logarithmically-spaced, using 
Morlet wavelets (wave number = 5) for time windows from 0 to 1366 ms 
relative to word onset, including a mirrored buffer (length = 1365 ms) 
before and after the interval of interest. Mirrored buffering, which uses 
the mirror of the signal to avoid convolution edge effects, allowed our 
algorithm to make stimulation decisions within ~200 ms of the end of 
the 1.33 s decoding interval and to stimulate the brain at least 500 ms 
prior to the onset of the next stimulus, thus affecting brain activity 
during the period when participants are still encoding and rehearsing 
the target stimulus. Finally, we log-transformed the resulting time- 
frequency data, averaged over the time interval, and z-scored within 
session and frequency across item presentations. 

2.6. Localization of electrodes to anatomy 

We performed a patient-specific parcellation of cortical surface re-
gions according to the Desikan-Killiany atlas using Freesurfer [18] on 

pre-surgical volumetric T1-weighted magnetic resonance imaging (MRI) 
scans. We performed an additional volumetric segmentation of the 
whole brain cortical surface and medial temporal lobe was performed on 
the T1-weighted scan and a high-resolution hippocampal coronal 
T2-weighted scan using Advanced Normalization Tools (ANTs) [19] and 
Automatic Segmentation of Hippocampal Subfields (ASHS) multi-atlas 
segmentation methods [20]. We derived coordinates of the radiodense 
electrode contacts from a post-implant CT using custom software 
(Voxtool, https://github.com/pennmem/voxTool), and co-registered 
with the T1 and T2 MRI scans using ANTs. 

2.7. Classification of mnemonic success 

Each participant took part in multiple sessions of a delayed free recall 
memory task (Fig. 1A). The record-only sessions provided behavioral 
data and EEG time-series data upon which to train a participant-specific 
multivariate logistic regression classifier to identify patterns of brain- 
wide neural activity during memory encoding that predicted recall 
success [17,21–23]. The classifier utilized recorded EEG spectral power 
as features for training, measured during successful and unsuccessful 
memory encoding and memory retrieval event epochs from all prior 
record-only sessions (Fig. 1B). Spectral power, measured at each bipolar 
electrode pair and at each of the eight logarithmically-spaced fre-
quencies between 3 and 180 Hz, served as features for decoding mne-
monic success. To optimize classification of encoding states using a 
combination of information obtained during encoding and retrieval 
phases of the experiment, we used a joint classifier based on the work of 
Kragel et al. (2017). Encoding event epochs spanned the time 0–1366 ms 
relative to item presentation, and retrieval event epochs spanned − 525 
to 0 ms relative to either a valid recall or an unsuccessful search period. 

Fig. 1. Assessing memory and decoding mnemonic success. (A) For each list, participants first studied a list of twelve sequentially-presented nouns, then 
performed an arithmetic-distractor task, and finally attempted to freely recall the studied items. Participants contributed data on 40+ study-test lists across 3+
experimental sessions. (B) We trained a logistic regression classifier to predict which items would be recalled on the basis of the neural activity (spectral power) 
measured at each electrode during memory encoding (vector labeled X). Training on hold-out sessions allowed us to estimate a weight matrix (w) associating brain 
activity with memory performance. (C) We examined the relation between the participant-specific neural classifier’s false-positive and true-positive rates, resulting in 
the ROC curves displayed here (mean ROC curve shown in red; overall classification performance well exceeding chance levels (AUC = 0.64; t(7) = 6.40, p < 10− 3). 
(D) Although we fit classifiers separately to each participant, the overall pattern derived by a forward model [40] revealed that increased high frequency and 
decreased low frequency activity marked periods of successful mnemonic processing. (E) Recall as a function of list position for items classified as in the top half (red) 
vs. bottom half (blue) of predicted recall, based on neural biomarkers. This shows the magnitude of the difference in predicted recall based on neural signals and 
demonstrates that the effect appeared consistently across list positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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Valid recalls did not include repeated items and intrusions of non-list 
items. We defined a deliberation period as a 525 ms interval in which 
no prior vocalizations occurred within 1000 ms from onset and no 
subsequent recall within 2000 ms. We also excluded time periods within 
the first and last 1000 ms of the entire retrieval interval. For each valid 
pre-retrieval epoch, we identified a “matched” unsuccessful search 
deliberation epoch on another list, selecting the epoch from the closest 
list within the session whose timing within the recall period matched 
that of the valid recall and no vocalization took place. Given the po-
tential imbalance between encoding and retrieval events, we inversely 
weighted the penalty parameter according to the class imbalance [24], 
and computed class weights for each class as 

1
nA(

1
nA
+ 1

nB
2

) (1)  

where nA is the number of events class A events, and nB is the number of 
class B events. Encoding/retrieval class observations had a fixed value 
weighting of 2.5 [21]. 

For each participant, we measured classifier performance on the 
training dataset using a leave-one-session-out (LOSO) cross-validation 
procedure, by measuring the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. Fig. 1C illustrates the 
ROC curve obtained for each participant. The AUC of the ROC relates the 
ratio of the true positive rate (correctly classified as later recalled) and 
false positive rate (incorrectly classified as later recalled) across classi-
fication thresholds (Fig. 1C). A two-tailed, one-sample t-test versus 
chance level AUC of 0.5 (alpha = 0.05) tested for significance of trained 
classifier AUCs across participants. To measure generalization perfor-
mance of a participant’s classifier to the closed-loop session, we used the 
same AUC metric calculated using the No-Stim lists as the evaluation 
dataset (Fig. 2D), testing for significance using the above described t-test 
across closed-loop stimulation sessions. To assess the relative impor-
tance of different frequency features to the classifier’s performance 

(Fig. 1D), we calculated a forward model for each participant based on 
the data covariance matrix and the weights of fitted classifier. We also 
used the classifier’s outputs on the training data to separate items into 
low and high probability of memory success based on the median of the 
distribution of classifier outputs across all items (Fig. 1E). This allowed 
us to characterize how participants’ actual memory performance 
compared with the predictions of the model. 

2.8. Closed-loop stimulation 

Closed-loop stimulation sessions used the multivariate logistic 
regression classifier trained during multiple prior record-only sessions 
(Fig. 1B) to decode the probability of recall from neural activity on-line 
during the encoding phase of the task (Fig. 2A). Participants first per-
formed one No-Stim practice list, followed by 25 additional Stim and 
No-Stim lists. Lists 1–3 were used as a No-Stim baseline for z-transform 
normalizing the classifier features (using the mean and standard devi-
ation of power values); lists 4–25 consisted of 16 lists of Stim and six lists 
of No-Stim conditions, randomly distributed. We report on classifier 
generalization from training (record only) to closed loop sessions in 
Results. Concurrent with the encoding phase of the free recall task, the 
closed-loop system calculated spectral power features on recorded data 
from 0 to 1366 ms relative to item presentation: During Stim lists, if the 
predicted probability of recall was below 0.5 (i.e. a poor memory 
encoding state), the system immediately triggered stimulation. On No- 
Stim lists, stimulation was not delivered. During each stimulation 
event, electrical current passed through a single pair of adjacent elec-
trode contacts, as charge-balanced biphasic rectangular pulses (pulse 
width = 300 μs) at 200 Hz frequency, for 500 ms. When triggered, a 
stimulation event would begin towards the end of the 1600 ms word 
presentation period and would end approximately 500 ms prior to the 
presentation of the next item. This timing ensured that neural signals 
used for classifying brain states occurred long enough after a stimulation 
event to minimize contamination caused by post-stimulation electrical 
artifacts. 

Fig. 2. Closed-loop stimulation and memory per-
formance. (A) While the patient views a word during 
the memory encoding phase of the delayed recall task 
(Fig. 1A), we applied the logistic-regression classifiers 
trained in earlier record-only sessions (Fig. 1B) to 
predict mnemonic success. Our algorithm triggered 
500-ms bouts of 200 Hz stimulation to the lateral 
temporal cortex whenever the estimated probability 
of recall dropped below 0.5 (B) Participant-level 
memory improvement/impairment. Participants 
experienced an average 19% increase in recall per-
formance (red) with seven of eight patients experi-
encing some positive effect of closed loop stimulation 
(t(7) = 2.92, p = 0.012). (C) Stimulation targets for 
each unique stimulation site (n = 11 sessions) 
rendered on an average brain surface; sphere shading 
indicates the percent change in word recall perfor-
mance. Targets were distributed across the superior, 
middle, and inferior temporal gyrus, though largely 
located in the middle temporal gyrus. (D) Classifier 
performance. Receiver operating characteristic (ROC) 
curves showing performance of a record-only classi-
fier tested on No-Stim lists during the closed loop 
sessions (gray lines, n = 11 sessions; red line, average 
ROC). The overall AUC across sessions reliably 
exceeded chance levels (t(10) = 4.82, p < 10− 3; see 
Methods). (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the Web version of this article.)   
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Each stimulation session began with the determination of a safe 
stimulation amplitude, in which experimenters delivered stimulation 
trains at the above parameters at a low amplitude chosen by the moni-
toring clinician, who observed the patient’s EEG for stimulation-induced 
afterdischarges. With the clinician’s approval, the amplitude of addi-
tional stimulation incrementally increased, until reaching either the 
target amplitude or a safe maximum amplitude. Target amplitudes were 
below the afterdischarge threshold and below accepted safety limits for 
charge density; in this study, all participants received stimulation at 0.5 
mA, which translated to a current charge density ranging from 0.081 to 
0.099 mA/mm2 (depending on electrode geometry). None of the par-
ticipants reported sensations related to brain stimulation during our 
experiments. As the neurosurgical team determined electrode implan-
tation sites on a case-by-case basis to address each patient’s specific care, 
we used a combination of anatomical and functional information to 
select stimulation sites (we excluded electrodes in the seizure onset zone 
or otherize deemed to increase seizure risk from candidate stimulation 
targets). We prioritized electrodes in lateral temporal cortex (LTC), in 
particular the middle portion of the middle temporal gyrus, where 
previously published results indicated stimulation-related memory 
improvement [16]. 

2.9. Statistical analysis of stimulation effects 

To assess the effect of stimulation on memory performance, we 
compared participant recall rates on Stim lists and No-Stim lists. As 
standard practice, we excluded the practice list and the first three 
baseline (non-stimulation) lists from these analyses. For each session, we 
calculated the mean percentage of recalled words for the Stim and No- 
Stim list conditions (i.e. number words recalled divided by total num-
ber of words). To account for inter-session baseline differences in recall, 
we calculated the difference in individual session Stim and No-Stim 
recall rates, normalized by the mean No-Stim recall rate across all ses-
sions, and tested for significance using a two-tailed paired t-test (alpha 
= 0.05). 

We further estimated the effect of stimulation on memory perfor-
mance using a hierarchical linear mixed effects model that took account 
of the varying numbers of closed-loop sessions across participants and 
the effect of list position within each session. Here, we analyzed recall 
percentage in the model, with Stim/No-Stim and list number (position 
with the session) as fixed effects and session nested in participant as a 
random intercept effect. A likelihood-ratio chi-squared test (alpha =
0.05) evaluated the significance of the fixed effects by comparing the 
performance of the full model to that of a reduced model without the 
fixed effect in question. 

2.10. Data availability 

We have posted all de-identified data, including EEG, localization 
information, and behavioral data, to the cognitive electrophysiology 
portal at memory.psych.upenn.edu. Correspondence and requests for 
materials should be addressed to M.J.K. 

3. Results 

Consistent with prior studies in patients with a history of traumatic 
brain injury, our participants exhibited a moderate degree of memory 
impairment as determined by neuropsychological evaluation. Evalua-
tions of memory included the Wechsler Memory Scale (WMS-IV), which 
was administered to all participants, and either the California Verbal 
Learning Test (CVLT-II) or the Rey Auditory Verbal Learning Test 
(RAVLT). Using the available indices of delayed recall, we constructed a 
composite measure that included the WMS-IV logical memory scale and 
the word-list recall measures from the CVLT-II and RAVLT (see Methods). 
Our participant group exhibited impaired memory, as seen in their 
average composite z-score of − 1.01 (SEM = 0.31). This result aligns 

with prior TBI studies reporting a memory deficit of z = -0.82 on a 
similar index [25]. 

During preliminary brain recording sessions we identified person-
alized biomarkers of successful memory encoding (see Methods) that we 
would use in later sessions to control closed-loop brain stimulation. To 
do this, participants first took part in computer-controlled memory tasks 
that would serve as “training” sessions for classifiers to learn personal-
ized biomarkers indicative of successful or unsuccessful memory. Par-
ticipants repeatedly studied lists of serially-presented nouns which they 
attempted to freely recall following a brief distractor task, designed to 
prevent active rehearsal (Fig. 1A, see Methods for details). This memory 
task mimics typical neuropsychological assessments (e.g., the CVLT 
mentioned above) but allowed us to relate multivariate neural activity 
captured by the 100+ clinical recording electrodes to patients’ behav-
ioral performance. 

We constructed logistic-regression classifiers trained on spectral 
features of each participant’s intracranial electroencephalography 
(iEEG) traces across all recorded bipolar electrode pairs. Assessing 
spectral power at eight logarithmically-spaced frequencies between six 
and 180 Hz across an average of 174 electrodes per patient produced a 
set of approximately 1400 features per participant. Using a “leave-one- 
session-out” cross-validation paradigm, we assessed classifier perfor-
mance only on held-out sessions of experimental data that were never 
seen by the training algorithm. This process yielded, for each partici-
pant, a weighted indication of how well spectral features measured 
during item encoding predict subsequent item retrieval. Previous studies 
have documented the success of mnemonic classification in much larger 
samples of >100 patients [21,22]; here we show that this approach 
generalized to our TBI cohort (Fig. 1C). Periods of high classifier output 
– indicating a high probability of successful recall – correlated with 
increased power at high frequencies and diminished power at low fre-
quencies (Fig. 1D). This effect appeared consistently across item posi-
tions within a list (Fig. 1E). Although the average classifier weights 
exhibit consistency, the individual patterns across electrodes and fre-
quencies can differ dramatically across subjects [27,28]. These analyses 
show that a classifier-based approach to predicting momentary changes 
in mnemonic function generalized well to our TBI cohort. 

After building logistic-regression classifiers to decode variability in 
mnemonic success during record-only sessions and meeting criteria for 
safe brain stimulation (see Materials and Methods), we advanced to the 
closed-loop stimulation experiment. Here, we again administered a se-
ries of delayed-recall lists, randomly assigning each list to either a 
stimulation or non-stimulation condition. Within stimulation lists, our 
algorithm decoded mnemonic success in real time using the previously 
constructed classifiers (normalized based upon data from the initial 
NoStim lists) and triggered 500 ms bouts of 200 Hz, 0.5 mA biphasic 
stimulation when the classifier signaled that a patient’s memory per-
formance dipped below their predicted average (Fig. 2A). Accordingly, 
500-ms bouts of stimulation would occur with a probability of 0.5 to-
wards the end of each item presentation on the stimulation lists. We 
restricted stimulation to contacts on the left lateral temporal cortex, 
based on evidence from a prior study [16]. Additionally, a recent 
analysis of stimulation frequencies [26] indicated that 200 Hz stimula-
tion more strongly modulated high-frequency activity – an established 
biomarker of cognition function in human hippocampus and neocortex 
[23,27,28]. 

Our primary question was whether a fully closed-loop therapy could 
improve memory for entire lists during which only some items are 
stimulated; prior studies considered stimulation’s effect on individual 
items, leaving open the possibility that helping some items came at the 
expense of hurting others. We thus examined recall rates in lists with 
closed-loop stimulation and compared those to lists in which stimulation 
was disabled (non-stimulation, or “sham” lists). Participants recalled 
reliably more items on the stimulation than on the sham lists (25.2% vs. 
21.1%; two-tailed paired t-test, t(7) = 3.36, p = 0.012, Cohen’s d = 1.18). 
Fig. 2B illustrates the degree of memory improvement (or impairment) 
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for each of our eight participants. Here we quantified stimulation- 
related memory improvement (or impairment) as the mean difference 
in stimulation and non-stimulation list recall rates (determined for each 
session), divided by the average non-stimulation recall rate across par-
ticipants. On average, closed-loop LTC stimulation improved recall by 
19% (Fig. 2B). On average, our algorithm triggered stimulation on 6.5 
out of 12 items on each stimulation list. 

Having demonstrated improved memory for stimulated word lists, 
we next asked whether the specific benefit to stimulated items sub-
stantially exceeds the 19.2% list-level benefit described above. Such a 
difference might appear if, for example, stimulation enhanced memory 
for stimulated items at the expense of neighboring non-stimulated items. 
Alternatively, if stimulation’s effect persists to modulate recall of 
neighboring non-stimulated items, we would expect similar item-level 
and list-level memory improvement [16]. We thus evaluated the ef-
fects of stimulation at the item level by comparing recall of stimulated 
items (on Stim lists) with recall of non-stimulated items on NoStim lists 
that appear during classifier-predicted memory lapses (i.e., matched 
with respect to the criteria used in our closed loop stimulation algo-
rithm). This comparison revealed a 17.5% recall benefit for stimulated 
items on the Stim lists. The finding of similar levels of recall enhance-
ment at the item level and at the list level suggests that the benefits of 
stimulation persisted beyond the individual stimulated items to influ-
ence overall list performance. 

We applied a hierarchical linear mixed-effects model to account for 
the effect of multiple unique stimulation targets (three participants took 
part in an additional stimulation session with a different target location 
yielding a total of 11 unique targets, Fig. 2C), as well as the effect of list 
position within each session (to control for variability in the randomly 
assigned positions of stimulation and non-stimulation lists). This model 
relates recall performance on each list to the presence of stimulation 
during each list and the list position within each session. Recall per-
formance often varies over the course of a session [29] leading to a 
potential bias if the random assignment of stimulation conditions to list 
positions results in one condition occurring in more favorable list posi-
tions within a session. A positive relation (β parameter) between recall 
rate and stimulation indicates higher memory performance during lists 
where poor-biomarker states triggered stimulation (as compared with 
the non-stimulation, “sham” lists). We observed a main effect of 
closed-loop stimulation (β = 0.043; likelihood-ratio test, χ2

(1) = 5.5; p =
0.019) as well as an effect of list position within the session (β = − 0.004; 
likelihood-ratio test, χ2

(1) = 9.7; p = 0.0018). These results indicate that 
the delivery of closed-loop LTC stimulation improved list-level recall 
even when controlling for list position and statistically modeling the 
effect of repeated sessions. 

Prior work has suggested that closed-loop stimulation of items dur-
ing item encoding can enhance memory performance for items that flank 
the stimulated item but are not themselves stimulated [16]. We there-
fore also investigated this question in the current set of patients by 
comparing memory performance for items on Stim lists that were not 
stimulated vs. memory performance for matched items (those that were 
predicted to have good memory outcomes) on NoStim lists. Memory 
performance was numerically higher for unstimulated items on Stim lists 
compared to matched items on NoStim lists [27.9% vs. 23.9% recall 
performance]. This difference was not statistically significant, perhaps 
due to the small sample size [t(7) = 1.65, P = 0.15]. Nevertheless, the 
numerical trend is consistent with prior work showing significant 
memory improvement for items that flank stimulated items. This finding 
suggests that stimulation improved memory encoding in a way that also 
improved memory for items encoded in nearby contexts [29]. 

Seven of the eight participants receiving closed-loop stimulation 
experienced improved memory on stimulation lists, but the degree of 
improvement varied considerably across participants (Fig. 2B). 
Although our sample size did not permit a quantitative analysis of in-
dividual differences in response to therapy, two variables deserve 
mention. Stimulation targets for the eleven sessions lay across variable 

regions of the superior, middle, and inferior temporal gyrus, due to 
clinical constraints. Fig. 2C illustrates each stimulated target on an 
average brain along with its modulatory effect on recall, indicated by the 
shading of each sphere. Classifier generalization also varied across 
stimulation sessions (Fig. 2D) which would increase variability in the 
effectiveness of any closed-loop algorithm. Owing to the small sample 
size and lack of control over other between-subject variables, neither of 
these variables reliably correlated with the degree of memory 
improvement in our sample. Elucidation of these and other potential 
mediating factors will require larger studies and explicit manipulations. 

4. Discussion 

Direct electrical brain stimulation has emerged as a viable thera-
peutic tool to rescue function in patients with progressive neurological 
disorders, most prominently refractory Parkinson’s disease and essential 
tremor [30,31], and more recently, intractable epilepsy [32,33], 
depression [34], and obsessive-compulsive disorder [35]. The lack of 
effective pharmaceutical therapies for many neurological and psychi-
atric conditions has prompted researchers to investigate the potential 
utility of electrical stimulation in treating a host of other indications, 
including depression, eating disorders, and addiction [36]. 

The present study offers a proof-of-concept for a closed-loop brain 
stimulation strategy to treat memory loss in epilepsy patients with a 
significant history of TBI – a group whose heterogenous neural pathol-
ogies may limit their ability to benefit from a network-based therapy. By 
first training logistic regression classifiers on spectral power features 
observed during memory encoding, we demonstrated that these classi-
fiers could accurately predict subsequent memory even before a 
participant engaged in overt recall. We further showed that these same 
classifiers could form the basis of a closed-loop stimulation algorithm in 
which electrical stimulation to the temporal cortex was delivered during 
predicted memory lapses. Recapitulating earlier work in a heterogenous 
epilepsy cohort [16], this approach yielded an average 19% improve-
ment in recalled items across our TBI-epilepsy group, with individual 
positive effects observed in seven of the eight patients. 

To gauge the meaningfulness of a 19% memory boost, we need to 
consider the degree of impairment in this cohort. Among patients with 
moderate-to-severe TBI, one typically finds that delayed recall perfor-
mance is 0.82 standard deviations below the average performance of 
age-matched controls [25]. Based on the distribution of performance of 
TBI-afflicted individuals in delayed-free recall, the 19% improvement 
observed in our study implies a 0.44 standard deviation increase. Our 
results therefore suggest a theoretical reduction in the burden of this 
type of memory impairment by 53.6% in these patients. By demon-
strating therapeutic efficacy in patients who have both a history of 
moderate-to-severe TBI and documented memory impairment we hope 
our findings will accelerate the development of technologies for patients 
with acquired brain injuries, which could restore some degree of their 
lost memory function as they attempt to rebuild their post-injury lives. 

Although the present work established the efficacy of closed-loop 
stimulation for improving verbal episodic memory in our TBI-epilepsy 
sample, one may reasonably ask whether similar improvements in 
memory could have been achieved using open-loop stimulation. Ezzyat 
et al. (2017) demonstrated that stimulation delivered when the brain 
was in a good memory state, as determined by machine-learning clas-
sifiers, tended to impair memory whereas stimulation delivered when 
the brain was in a poor memory state tended to improve memory. These 
prior results motivated the approach pursued in this work, whereby 
model-predicted poor memory states triggered brief bursts of 200 Hz 
stimulation. Given the rare occurrence of TBI patients fitted with 
intraparenchymal electrodes, we optimized our study to establish the 
efficacy of closed-loop stimulation. Future work should further establish 
the validity of closed-loop neuromodulation via a direct comparison 
with random, open-loop, stimulation. 

While these findings are encouraging, more work remains before this 
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technique can be applied in a therapeutic setting. First, the electro-
physiological responses – not just behavioral responses – to brain stim-
ulation must be explored to better understand the neural mechanisms 
underlying improved memory performance. Several studies have 
recently characterized spectral responses to direct brain stimulation, 
with these early results suggesting that both low and high-frequency 
oscillations can be induced by exogenous pulse trains, depending 
partly on the local tissue architecture of the stimulation site [37]. 
Relatedly, it remains an open question as to how the underlying con-
nectivity profile of a stimulation site interacts with consequent change in 
behavior – the structural and functional connectivity of a stimulation 
site with the medial temporal lobe, and other regions of the core 
memory network, is a point of particular interest and should be char-
acterized in future work [38]. 

The long-term efficacy of chronically indwelling electrodes for 
memory enhancement is entirely uncharacterized, though addressing 
this question will be critical to the eventual deployment of brain stim-
ulation as a memory therapeutic in TBI patients. The use of direct 
electrical stimulation in Parkinson’s and epilepsy, among other neuro-
psychiatric conditions, suggests that chronic implantation is safe and 
effective [39]. However, chronic modulation of the neural circuitry 
underlying episodic memory could pose additional challenges, including 
adaptive changes in neural responses to stimulation. 

Finally, our study constitutes a rare case in which direct brain re-
cordings and stimulation can be ethically carried out in a group of TBI 
patients. As such, our study population is small, and likely does not 
capture the full heterogeneity of TBI pathologies. Through continued 
multi-institutional efforts, we hope that future work can extend these 
results to larger samples, and thus more precisely determine the efficacy 
of therapeutic brain stimulation across a range of underlying traumatic 
neuropathologies. 
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