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Gamma frequency activity (30–150 Hz) is induced in cognitive tasks and is thought to reflect underlying neural processes. Gamma

frequency activity can be recorded directly from the human brain using intracranial electrodes implanted in patients undergoing

treatment for drug-resistant epilepsy. Previous studies have independently explored narrowband oscillations in the local field

potential and broadband power increases. It is not clear, however, which processes contribute to human brain gamma frequency

activity, or their dynamics and roles during memory processing. Here a large dataset of intracranial recordings obtained during

encoding of words from 101 patients was used to detect, characterize and compare induced gamma frequency activity events.

Individual bursts of gamma frequency activity were isolated in the time-frequency domain to determine their spectral features,

including peak frequency, amplitude, frequency span, and duration. We found two distinct types of gamma frequency activity

events that showed either narrowband or broadband frequency spans revealing characteristic spectral properties. Narrowband

events, the predominant type, were induced by word presentations following an initial induction of broadband events, which were

temporally separated and selectively correlated with evoked response potentials, suggesting that they reflect different neural

activities and play different roles during memory encoding. The two gamma frequency activity types were differentially modulated

during encoding of subsequently recalled and forgotten words. In conclusion, we found evidence for two distinct activity types

induced in the gamma frequency range during cognitive processing. Separating these two gamma frequency activity components

contributes to the current understanding of electrophysiological biomarkers, and may prove useful for emerging neurotechnologies

targeting, mapping and modulating distinct neurophysiological processes in normal and epileptogenic brain.
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Introduction
Intracranial electroencephalography (iEEG) during cognitive

task performance provides a valuable window into the neur-

onal activities underlying mental processes. Perceiving an

object, paying attention to it, and encoding its memory trace

is accompanied by changes in the local field potential recorded

with iEEG. The iEEG signal represents superposition from vari-

ous sources of neuronal activities—predominantly oscillations

in postsynaptic membrane potential (Nunez and Srinivasan,

2006; Buzsáki et al., 2012; Haider et al., 2016), but for

higher gamma frequencies also synchronized neuronal action

potentials (Ray et al., 2008; Miller et al., 2009). Separating

different sources of neuronal activity contributing to the

iEEG signal poses a major challenge to analysing and under-

standing brain electrophysiology, especially in gamma and

higher frequency ranges (Buzsáki and Silva, 2012; Worrell

et al., 2012; Burke et al., 2015; Cimbalnik et al., 2016).

Gamma frequency oscillations in the local field have been

extensively studied in cognitive processes engaged in percep-

tion, attention and memory (Hughes, 1964; Singer, 1993;

Tallon-Baudry and Bertrand, 1999; Jensen et al., 2007;

Fries, 2009; Düzel et al., 2010). Oscillations spanning a 30

to 150 Hz range, corresponding to a period of �6 to 30 ms,

were proposed to set an ideal time frame for neuronal inter-

actions underlying synaptic plasticity and memory consolida-

tion (Jensen et al., 2007; Düzel et al., 2010; Buzsáki and

Wang, 2012). Hence, these oscillations were hypothesized to

play a fundamental role in synchronizing neuronal processes

within the timeframe of a gamma oscillation cycle (Fries,

2009), setting a temporal window, or a ‘clock’, for cognitive

processes. This was proposed to be the mechanism for bind-

ing of coherent object representations, selecting out attended

objects, and consolidating their memory traces. In this view, a

specific group of neurons involved in processing information

of an object, i.e. a neuronal assembly, coordinates its activities

into coherent oscillations and thus selectively engages synaptic

interactions. Detecting these local field potential oscillations in

iEEG recordings has therefore been proposed to index coor-

dinated activity of neuronal assemblies (Lachaux et al., 2012).

An alternative view proposes that gamma frequency activity

(GA, �70 Hz and above) simply reflects activation of neural

populations, which does not underlie any specific functional

role in memory processing (reviewed recently in Burke et al.,

2015). These fundamental questions are complicated by the

fact that GA can be decomposed into true gamma oscillations

and broadband power changes that closely track multi-unit

neuronal activity (Ray and Maunsell, 2011; Scheffer-Teixeira

et al., 2013; Self et al., 2016). Unfortunately, studies of

human memory have not specifically separated and character-

ized the induced GA, i.e. increases in gamma frequency spec-

tral power and discrete gamma band oscillations, associated

with stimulus presentation, encoding and recall. Similarly,

high frequency biomarkers of epileptiform brain networks

have not been dissected into different contributing processes

(Stacey, 2015; Cimbalnik et al., 2016).

Here, we test a hypothesis that GA comprises a population

of heterogeneous electrophysiological events reflecting differ-

ent neural processes engaged during memory encoding. A

large dataset of human iEEG recordings acquired during

memory tasks was used to isolate different types of GAs in

the human brain. GAs were assessed by detecting discrete

events induced during word encoding in three physiologically

relevant frequency bands (Colgin et al., 2009; Belluscio et al.,

2012; Buzsáki and Silva, 2012; Schomburg et al., 2012)—

low gamma (30 to 560 Hz), high gamma (460 to 100 Hz)

and epsilon (100–150 Hz) and separating them using an un-

supervised clustering approach into different classes of activ-

ities. One hypothesis tested here is that the different classes of

activities can be separated based on their characteristic fre-

quency within specific spectral bands. An alternative possibil-

ity is that different GA types co-occur within the same

spectral bands and thus have to be separated based on

other qualitative differences, such as duration, amplitude,

spectral content, or temporal relation to stimulus presenta-

tion, to isolate specific neurophysiological processes.

Materials and methods
Patients with epilepsy (n = 101) who were implanted with intra-
cranial subdural and depth electrodes for surgical evaluation of
drug-resistant epilepsy were recorded with iEEG during free recall
memory tasks. The free recall tasks used lists of 12 words pre-
sented individually on a laptop computer screen for subsequent
recall. Individual bursts of GA (Kucewicz et al., 2014; Lundqvist
et al., 2016) were detected trial-by-trial in low gamma (30–60 Hz),
high gamma (60–100 Hz) and epsilon (100–150 Hz) frequency
ranges to build a library of GA detections from all patients and
electrodes. The spectral and time domain properties of every de-
tection were determined, including peak frequency, frequency
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span, duration, latency from word onset and peak amplitude. The
detected bursts of GAs were treated as point processes at the time
of peak amplitude of a given burst (Kucewicz et al., 2014, 2016).
Frequency span values of the detected GA events were then clas-
sified into those that showed narrow or broad frequency span (i.e.
bandwidth) by an unsupervised k-means clustering algorithm and
compared with Gaussian Mixture Models (Supplementary Fig. 4).
Properties of the narrowband and broadband detections, as well
as their relative proportions and distributions, were compared on
active electrode contacts that showed induced GA responses in the
tasks. The correlates of the two GA types with memory function
were investigated by looking at the latencies of the induced re-
sponse to word presentations, phase-locking and correlation to
evoked response potentials, and contribution to subsequent
memory effect, i.e. relative detection rates during presentations
of words that were subsequently recalled and forgotten. GA
phase-locking to evoked response potentials was quantified using
Chronux—a multi-taper spectral analysis toolbox (Bokil et al.,
2010) (www.chronux.org). All data processing and analysis was
performed in Matlab (MathWorks Inc.) using in-built and custom-
made codes. All results are presented as mean � SEM (standard
error of the mean) unless stated otherwise.

Study participants

Patients undergoing iEEG monitoring as part of clinical treatment
for drug-resistant epilepsy were recruited to participate in this
multi-centre collaborative study. Data were collected from the fol-
lowing eight clinical centres: Thomas Jefferson, University
Hospital (Philadelphia, PA), Mayo Clinic (Rochester, MN),
Hospital of the University of Pennsylvania (Philadelphia, PA),
Dartmouth Medical Center (Lebanon, NH), Emory Hospital
(Atlanta, GA), University of Texas Southwestern Medical Center
(Dallas, TX) and Columbia University Medical Center (New
York, NY). The research protocol was approved by the IRB at
each hospital and informed consent was obtained from each par-
ticipant. Electrophysiological data were collected from standard
clinical subdural and penetrating electrodes (AdTech Inc., PMT
Inc.) implanted on the cortical surface and into the brain paren-
chyma, respectively. The subdural electrode contacts were
arranged in either grid or strip arrays, with recording contacts
separated by 10 mm, whereas the spacing of contacts on the pene-
trating electrodes was either 5 or 10 mm. In each case, the number
and placement of the electrodes was determined by a clinical team
with sole purpose of localizing epileptogenic brain regions.

Anatomical localization

Whole brain cortical surface of each participant was obtained
from volumetric T1-weighted sequences of pre-implant MRI scan
using Freesurfer Matlab toolbox (www.surfer.nmr.mgh.harvard.
edu/). Electrode contact localization was determined through co-
registration of the pre-implant MRI sequences and post-implant
CT scan images to provide Talairach coordinates. The correspond-
ing anatomical locations were labelled according to the Talairach
daemon (www.talairach.org) to assign specific Brodmann area,
cortical gyrus, lobe and hemisphere to each contact.

Electrophysiological recordings

Intracranial data were recorded using one of the following
clinical electrophysiological acquisition systems (depending

on the site of data collection): Nihon Kohden EEG-1200,
Natus XLTek EMU 128 or Grass Aura-LTM64. Depending
on the acquisition system and the preference of the clinical
team, the iEEG signals were sampled at either 500, 1000 or
1600 Hz and were referenced to a common contact placed
either intracranially, on the scalp, or on mastoid process. A
bipolar montage was calculated post hoc for each subject by
subtracting the measured voltage time series on all electrode
pair combinations of spatially adjacent contacts. This resulted
in N� 1 bipolar signals in case of the penetrating depth and
strip electrodes, and N = (i� 1) x j + (j� 1) x i bipolar signals
on the grid electrodes, where i and j are the numbers of elec-
trodes in the two dimensions of the grid. All bipolar deriv-
ations with higher than 500 Hz sampling frequency were
then downsampled to 500 Hz—the minimum sampling fre-
quency used in all measurements.

Memory tasks

Following implantation each subject participated in delayed
free-recall memory tasks, in which they were instructed to
study lists of words presented on a laptop computer screen
for a later memory test. Lists were composed of 12 words
chosen at random and without replacement from a pool of
high frequency nouns (either English or Spanish, depending
on the participant’s native language; http://memory.psych.
upenn.edu/WordPools memory.psych.upenn.edu/WordPools).
The words on each list were either sampled from specific cate-
gories (categorized free recall task) like vehicles, music instru-
ments and vegetables, or they were sampled randomly (free
recall task). Each word remained on the screen for 1600 ms,
followed by a randomly jittered 750–1000 ms blank inter-
stimulus interval. Immediately following the final word in
each list, participants performed a distractor task (20 s) con-
sisting of a series of arithmetic problems of the form
‘A + B + C = ??’, where A, B and C were randomly chosen
integers ranging from 1–9. Following the distractor task par-
ticipants were given 30 s to verbally recall as many words as
possible from the list in any order. The patients’ vocal re-
sponses were digitally recorded by the laptop computer and
later manually scored for analysis. Each session consisted of 25
lists of this encoding-distractor-recall procedure. Task events
and responses, including stimulus appearance on the screen,
were synchronized with the electrophysiological recordings
through an electric pulse generator operated by the task
laptop to send pulses to a designated event channel in the
clinical acquisition system. The events were timestamped
after the recording session using custom-written Matlab
codes, and were used to extract specific epochs of interest.
The 3000 ms recording epochs of word presentation were ana-
lysed in this study, which comprised 1600 ms of word viewing
on the screen and 700 ms interstimulus interval before and
following the word presentation.

Detection of individual bursts of
gamma frequency activity

Bursts of increased GA power were detected using a method
based on normalized spectral amplitude estimated with Hilbert
transform analysis (Canolty et al., 2006). This method was
previously used to study the role of GA in epilepsy
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pathophysiology (Matsumoto et al., 2013) and cognitive pro-

cessing (Kucewicz et al., 2014, 2016). Each 3000 ms recording

epoch of word encoding was independently analysed (Fig. 1).
First, the epoch was corrected for direct current shifts by sub-

tracting the mean and then notch filtered at 60 Hz by

Butterworth filter of 10th order (Canolty et al., 2006) to

remove artefacts from the signal (Fig. 1A). Then, to address
the power law effect of decreasing amplitudes in high fre-

quency iEEG, the signal was band-pass filtered in 1 Hz steps

(Canolty et al., 2006), and normalized by subtracting the mean

and dividing by the standard deviation (SD) of the filtered

signal (Fig. 1B) in each filtered frequency band, providing a

z-score value for each amplitude sample. The Hilbert envelope
of the normalized, filtered signal was calculated in each filtered

frequency band. A threshold of z-score43 was applied to

detect significant amplitude increases in each frequency band.

The threshold crossings for all the 1 Hz signal bands were
transformed into binary format and plotted as a time-fre-

quency distribution spectrogram (Fig. 1C). Finally, discrete ‘is-

lands’ of significantly increased GA amplitudes (z-score4 3)

Figure 1 Method for detecting gamma frequency activities. Two detections of gamma frequency activity in frequency band 40–41 Hz are

presented in one example of 3000 ms recording epoch from an occipital cortical electrode contact. (A) Raw data epoch (left) was first corrected

for shifts in direct current and slow oscillations (51 Hz) and notch filtered to remove power from line noise (right). (B) The signal was then band-

pass filtered in a 1 Hz step from 40 to 41 Hz (left) and the amplitude was normalized using z-score before calculating Hilbert spectral envelope (red

trace above the filtered signal) because the amplitude values are normally distributed (lower left black inset histogram) in contrast to the spectral

envelope values (lower right red insert histogram). Hence the spectral envelope trace was thresholded at 3 SD (dashed line) determined from the

population of amplitude values (right). Two threshold crossings corresponding to two detections are presented in binary format. (C) Coloured

spectrogram matrix visualizes the normalized Hilbert amplitude values across all filtered frequency bands from 1 to 150 Hz (left) including the 40–

41 Hz example from B (red rectangle). The matrix was transformed into the binary format as in B to identify discrete islands of significant gamma

frequency activity above z-score threshold4 3 (right). (D) Two detections at the 40 to 41 Hz band are shown in the enlarged inset plots of the

raw data epoch from A (black trace), which is superimposed on 40 to 41 Hz band-pass filtered signal (red trace).
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were isolated on the spectrogram using Matlab image process-
ing toolbox to delineate individual bursts of GA. Artefacts
caused by epileptiform spikes and other sharp transients
(Worrell et al., 2012, Cimbalnik et al., 2016), which produce
a wide-band increase in low and high frequency power, were
automatically removed in the detection algorithm by rejecting
any detection with spectral components below 25 Hz. In add-
ition, individual spectrograms were visually reviewed with the
filtered and raw signals as in Fig. 2.

The spectral and temporal properties of each GA burst were
characterized, including duration, peak amplitude, latency
from stimulus onset, and frequency span. The frequency
span was estimated directly from the spectrogram boundaries
by subtracting the maximum and minimum frequency values
that crossed the threshold for detection (Fig. 2A). The peak
amplitude of z-score was detected from the spectrogram and
the frequency band showing the highest z-score within the
burst was determined. The duration of the burst was estimated
in the filtered signal from the boundaries of the threshold de-
tection (z-scored amplitude43) to the adjacent local min-
imum of the z-scored amplitude. Correlations between these
properties were tested with Pearson correlation coefficient
and visualized with least-squares lines. Differences in duration,
peak amplitude, and latencies from stimulus onset between the
clustered narrowband and broadband populations (see below)
were tested using Wilcoxon rank sum test.

Clustering narrowband and broad-
band gamma frequency activity
bursts

The spectral and temporal properties of each GA burst were
stored in a library of all detections including peak frequency,
peak amplitude, frequency span, duration between two local
minima in spectral amplitude, latency from word onset, to-
gether with metadata about brain localization of the corres-
ponding electrode contact and the task trial information about
subsequent memory recall of specific words. Narrowband and
broadband GA bursts were classified according to their fre-
quency span determined in spectrogram (Fig. 2A). The fre-
quency span values of all GA detections recorded on a given
electrode contact were automatically clustered using an un-
supervised k-means algorithm with k = 2 to assign each burst
to a narrowband or a broadband class. The k-means algorithm
partitioned observations into two sets, S = {S1, S2}, so as to
minimize the within-cluster sum of squares, i.e. sum of distance
functions of each point in the cluster to the K centre:

arg min

s

Xk

i¼1

X

x2Si

k V� mik
2 ð1Þ

where mi is the mean of points in Si. The algorithm assumes
that variance of the distribution of each clustered attribute
(variable) is spherical, variables have the same variance, and
the prior probability for k clusters is the same. Given the limi-
tations of k-means clustering method, the Gaussian mixture
models (GMM) method was also used to obtain GA clusters.
This method fits the observed data to Gaussian models assum-
ing that the attributes are normally distributed, but not equal
in size. The GMM algorithm provided clustering solutions
similar to results obtained using the k-means method

(Supplementary Fig. 4). The fact that the two different cluster-
ing approaches separated similar populations of narrowband
and broadband events supports the physiological validity of
separating induced GAs into broadband and narrowband
events.

The distributions of the resultant cluster centroids estimated
for all studied contacts are presented in Supplementary Fig. 4.
Frequency span values of the resultant two GA populations
were summarized for every contact as histogram divided by
the total number of detected GAs to obtain a relative propor-
tion of detections at a given frequency span value i.e. prob-
ability density (Fig. 3).

Figure 2 Discrete detections of gamma frequency activity

showing narrow and broad frequency spans. (A) Top panel

shows raw data epoch together with its band-pass filtered signals in

the low gamma, high gamma and epsilon frequency ranges.

Detections of GA events showing narrow and broad frequency

spans are highlighted in blue and red rectangles, respectively, as

outlined in the corresponding spectrogram below (Supplementary

material). The bottom panel spectrogram delineates spectral

boundaries of each of the four detections (black line), showing their

frequency span (i.e. bandwidth) in white vertical bars (�F) that was

used to classify them into broadband and narrowband events. (B)

Average amplitude changes of 922 broadband (left, red) and 1578

narrowband (right, blue) detections with peak amplitude at fre-

quency band 43–47 Hz aligned to the time of peak amplitude

(dashed line). Detections were taken from all active occipital cor-

tical contacts in one patient implanted with subdural electrode grid.

Notice nine consistent cycles of oscillation in the 200 ms window of

the narrowband detections (black arrows point to cycles extending

beyond the central waveform), in contrast to the broadband

detections.
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The average amplitudes of the two different classes of GA
detections determined from the automated clustering algorithm
were obtained from raw data epochs of all detections for a
given peak amplitude frequency estimated at a chosen example
frequency. For example, in Fig. 2B the filtered signals of
epochs for frequency window 43–47 Hz of all GA detections
were aligned to the time of peak normalized amplitude deter-
mined to be between�50 and + 50 ms from the detection onset
time (i.e. crossing of the 3.0 z-score threshold), and 100 ms
before and after the amplitude peak were utilized from the
raw data epoch of each detection and averaged across all de-
tections to produce the amplitude plots.

Identification of active electrode
contacts and subsequent memory
effect

For every electrode contact the low gamma, high gamma and
epsilon GA detections were first binned into 60 50-ms seg-
ments of the entire 3000 ms of all task data epochs to produce
a matrix of detections with columns of 60 time bins and rows
of all word presentation epochs. Mean counts were then cal-
culated for each column and compared against baseline count
distribution estimated from eight bins (50 ms segments) ran-
ging from �500 ms to �100 ms from the word onset time.
Every bin that crossed a threshold of 3 SD above the mean
of the baseline distribution was marked as showing signifi-
cantly increased GA count. An electrode contact with at least
two consecutive bins showing an increased detection count (i.e.
showing increased counts for at least 100 ms) was identified as
active and exhibiting induced responses to word presentation
in the low gamma, high gamma or epsilon band. Once a con-
tact was identified as active in the task, its GA detections were
broken down into narrowband and broadband for further
analysis (Figs 5–7).

The subsequent memory effect, i.e. the ability to recall pre-
viously encoded words and its association with GAs, was
tested using the mean bin counts calculated separately for
the data epochs with words that were subsequently recalled
and those that were forgotten. These mean bin counts were
compared between the two conditions (recalled versus forgot-
ten) by averaging across four 750 ms epochs of word encoding
(�750 to 0, 0 to + 750, + 750 to + 1500, + 1500 to + 2250 ms
relative to word onset time) and running a Wilcoxon Signed
Rank test with Bonferroni correction for multiple comparisons
in the four epochs. Sample size for the test was therefore equal
to the number of all active electrodes in a given band for a
given GA type. Magnitudes of the subsequent memory effect
(SME) for narrowband and broadband GA type were com-
pared using Wilcoxon Rank Sum test.

Phase locking of gamma frequency
activities to evoked response
potentials

GA detection rates per second were calculated using mean
counts from all word presentation epochs for every 50 ms
bin (Fig. 6A) to evaluate detection rate (Hz) in each 50 ms
bin. The evoked response potentials (ERPs) were generated

by averaging over all raw data epochs for a given contact
(Fig. 5A).

Multi-taper spectral analysis (Bokil et al., 2010) (www.
chronux.org), was used to estimate phase relationship between
GA detections in the three frequency bands and oscillations in
1–30 Hz lower frequency range. Each detection was treated as
point process data point occurring at its peak amplitude, like
spikes in single unit analysis (Kucewicz et al., 2016). Phase
coherence of these point processes to the low frequency oscil-
lations was calculated using Chronux toolbox (taper param-
eters: 2.5 Hz frequency width, 0.4 s time width) in 400 ms
sliding time windows (50 ms steps) averaged across the entire
3000 ms data epochs. This method calculates the magnitude of
coherency between the GA detections and the low frequency
oscillations, and their cross-spectrum and individual spectra
from which the coherence is computed. Phase coherence esti-
mate is sensitive to a trial-bias problem (Winck et al., 2010),
which was addressed here by matching the number of the
narrowband and broadband event trials for every electrode—
‘n’ randomly selected narrowband events were used in the
analysis, where ‘n’ equals the total number of broadband
events. As a result, the Chronux function produced a matrix
of trial-averaged coherogram pixel values (each data epoch is
one trial) with rows and columns as frequency and time bins,
respectively (Fig. 6A). Difference between phase locking of
narrowband and broadband GAs was tested with Wilcoxon

Figure 3 GA detections cluster into two consistent popu-

lations. Distributions of frequency spans of two GA detection

types (top), as separated by unsupervised, automated clustering

algorithm for every electrode contact, are presented as relative

proportion of all detections of a given type (probability density).

Inset plots summarize the average percentage of the narrowband

(blue) and the broadband (red) types. The frequency span distri-

butions are broken down into individual electrode channels and

separated into narrowband and broadband types in the middle and

bottom row, respectively (148 low gamma, 214 high gamma, and 229

epsilon band channels). Colour scale matrices are used to visualize

the probability density distributions of each channel that contribu-

ted to the average plots in the top row. Notice the regularity of the

peak frequency span values of the narrowband GAs distribution,

compared to variability and skewness of the broadband distribution.
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signed rank comparison of coherogram values from all elec-
trode contacts for every pixel of the matrix (Fig. 6B and
Supplementary Fig. 6), with Bonferroni correction for multiple
comparisons.

ERP amplitudes were estimated by calculating the absolute
value of maximum amplitude in first 600 ms post-stimulus of
the ERP trace. Total induced GA count and peak GA rate
were calculated for every electrode contact from all patients
by taking the sum of all counts and the maximum mean count
value, respectively, from the first 400 ms post-stimulus.
Correlations between the ERP amplitude and the GA count
and rate were tested with Pearson’s correlation coefficient
and visualized with least-squares lines.

Results
Data were collected from 101 patients implanted with

intracranial electrodes as part of their evaluation for epi-

lepsy surgery who performed a free recall verbal memory

task. In total, 41 100 epochs of word presentation (mean of

415 � 28 words per patient) were recorded from 10 533

electrode contacts (mean of 108 � 4 contacts per patient)

in various cortical and subcortical locations. This study

focused on a subset of electrode contacts that were active

in the task and showed clear visually evoked potentials and

induced gamma responses, similar to the responses studied

in animals (Singer, 1993; Fries, 2009; Ray and Maunsell,

2011) and in humans (Tallon-Baudry and Bertrand, 1999;

Jensen et al., 2007). Out of 459 occipital cortical contacts,

from 37 patients, 148 showed induced responses to word

presentation in the low gamma (32.2%), 214 in the high

gamma (46.6%), and 229 in the epsilon (49.9%) frequency

band. The electrode contacts in the occipital lobe had the

highest proportion of active electrodes compared to all

other brain lobes. These active occipital contacts comprised

19.3%, 15.9%, and 17.3% of all active brain electrode

contacts showing induced task responses. The majority of

the active contacts were localized in Brodmann areas 18

and 19 of the middle occipital gyrus (Table 1), correspond-

ing to the extrastriate or associative portions of the visual

cortex responsible for processing higher order stimuli

including words and images.

Overall, these active occipital cortical contacts yielded a

total of 211 070 low gamma, 398 571 high gamma, and

534 595 epsilon GA detections (average detection rates:

1.1 Hz, 1.6 Hz, and 2.0 Hz, respectively) that were analysed

in this study. Individual GA were detected as discrete bursts

of power in the frequency-time space as shown in humans

and non-human primates (Kucewicz et al., 2014; Lundqvist

et al., 2016). Based on previously published methodology

(Canolty et al., 2006; Matsumoto et al., 2013; Kucewicz

et al., 2014) we constructed frequency-time plots for every

data epoch by band-pass filtering the iEEG signal in narrow

frequency bands and calculating the normalized Hilbert

spectral amplitude (Kucewicz et al., 2014, Fig. 1). These

plots were then used to estimate the frequency span of

each GA detection (Fig. 2 and Supplementary Fig. 1) as

well as other properties.

GA detections were classified into narrowband or broad-

band categories based on their frequency span values inde-

pendently for every electrode. Classification of GA events

into narrow or broad frequency span was remarkably con-

sistent, separating regular narrowband events from broad-

band events (Fig. 3). For any of the studied electrode

contacts, narrowband events comprised on average 83%

of low gamma, 78% of high gamma, and 74% of epsilon

detections, leaving 17%, 22% and 26% broadband GA

events, respectively. The distribution of the narrowband

frequency spans showed a central peak with a frequency

span between 10–20 Hz (Fig. 3), which was consistent

across all electrode channels and subjects (Supplementary

Fig. 2). The distribution of the frequency span values of the

broadband events was more varied and skewed with a long

tail extending toward high frequency span values (Fig. 3).

This profile of distributions of the frequency span values

and relative proportions of the two GA types was also

observed in other cortical structures (Supplementary Fig.

3) and was confirmed with another clustering algorithm

approach (Supplementary Fig. 4). The same pattern was

also reflected in the distributions of centroids used for clus-

tering the frequency spans into narrowband and broadband

detections (Supplementary Fig. 5). Narrowband GA cen-

troids had their range confined to 10–30 Hz with few

Figure 4 Duration and amplitude of GA bursts is corre-

lated with their frequency span. (A) Scatterplots of all low

gamma (211 070), high gamma (398 571), and epsilon (534 595) GA

detections show decreasing duration (top) and increasing amplitude

(bottom) of events with increasing frequency span (graded with the

colour scale). Least-squares lines are drawn in black. (B)

Scatterplots of the GA detections from A are plotted in the amp-

litude-duration space with the same graded colour scale of the

frequency span. Notice that the hot colour points of the broadband

events cluster in the high amplitude-low duration space.

Human gamma activities BRAIN 2017: 140; 1337–1350 | 1343



outliers, contrasted to �30–100 Hz range of broadband

GA centroids with numerous outliers beyond the 100 Hz

range (Supplementary Fig. 5). Ranges of the centroid dis-

tributions did not overlap. To summarize, narrowband

GAs showed a regular frequency span as compared to the

broadband events, which were more variable. Specific

values of the frequency span, as well as the relative pro-

portions of the broadband GAs, were observed to increase

with increasing GA frequencies of the low gamma, high

gamma and epsilon bands.

Consistent separation of GA bursts with low and high

frequency span does not necessarily mean, however, that

they are qualitatively different. Therefore, we assessed the

effect of the frequency span on duration and amplitude of

every low gamma, high gamma and epsilon band detection

(Fig. 4). The durations of GA bursts were very weakly

Figure 5 Stimulus presentation induces early broadband and late narrowband responses. (A) Narrowband (blue) and broadband

(red) GA detections from one occipital cortical electrode contact are plotted at their peak amplitude frequency and latency as single points (top)

and summarized as histogram counts (bottom) in response to word presentation (arrows mark the word onset and offset; grey background marks

the entire word presentation interval). (B) Latency distribution of low gamma, high gamma and epsilon GAs averaged across all active contacts are

plotted as: relative proportion (probability density) of all detections of a given type (top row), as percentage proportion of all GA detections

(middle row), and as sum histogram count (bottom row). Dashed line indicates the 50% proportion point of equal chance of detecting a narrowband

or a broadband event. Arrowheads point to the peak values of detection counts, and the dashed black rectangles mark windows for the bottom

magnified views of the histogram counts. (C) Average values of latencies from word onset of peaks in narrowband and broadband detection

counts, as in B (148 low gamma, 214 high gamma, and 229 epsilon band contacts; ***P5 0.001). Note the early sharp peak of broadband GAs

response (especially in the epsilon band), which results in equal proportion of the two GA types and precedes subsequent narrowband response

peak in all frequency bands.

Table 1 Anatomical localization of the active electrode contacts by Brodmann area and cortical gyri

BA 17 BA 18 BA 19 BA 30 BA 31 BA 37 Middle

occipital

Lingual Cuneus Fusiform Middle

temporal

Inferior

occipital

Inferior

temporal

Superior

occipital

Precuneus

LG 7 55 72 3 2 9 66 28 24 13 1 9 4 1 2

HG 9 71 112 3 5 14 89 39 27 22 10 8 8 6 5

EP 9 82 114 2 6 15 93 42 30 26 10 9 7 6 6

Total number of electrode contacts that showed induced responses to word presentation in a given frequency band are summarized for specific areas arranged in the sequence of

visual information processing, and for specific gyri arranged from the highest to the lowest counts. Notice that most of the active contacts were localized in the Brodmann areas (BA)

19 and 18 of the extrastriate cortex, and most of the active contacts were localized in the extrastriate portion of the middle occipital gyrus.

EP = epsilon; HG = high gamma; LG = low gamma.
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correlated (R5 0.1) with frequency span in all three bands

(P50.001; R = �0.061, �0.062, �0.011 for low gamma,

high gamma and epsilon bands, respectively). Amplitude,

on the other hand, was positively correlated with the fre-

quency span (Pearson correlation coefficient, P5 0.001,

R = 0.776, 0.774, 0.777 for low gamma, high gamma

and epsilon bands, respectively). Within each frequency

band, GA detections with low frequency span had longer

duration and shorter amplitude than the ones with high

frequency span (Wilcoxon rank sum test, P5 0.001).

Narrowband as well as broadband detections had

significantly different duration and amplitude when com-

pared across the three frequency bands (P50.001), e.g.

duration of low gamma narrowband events was longer

than high gamma and epsilon narrowband events, or amp-

litude of epsilon broadband events was higher than high

gamma and low gamma broadband events. These results

show that GAs of narrow and broad frequency spans are

qualitatively different both within and across the three stu-

died frequency ranges.

Having established that the narrowband and broadband

GA events had different properties, we investigated their

Figure 6 Broadband GAs are phase-locked to ERP. (A) Example of a single electrode contact showing selective phase-locking of

broadband epsilon GA detections to rising edge of the ERP waveform—top row summarizes mean detection rates of narrowband (blue on the left)

and broadband (red on the right) GAs superimposed on ERP trace from the same contact (black dashed boxes delineate windows for the enlarged

inset views). Lower coherograms visualize trial-averaged phase coherence of the GA detections to low frequency oscillations from the same

contact. Notice increased coherence to 4–8 Hz oscillation corresponding to the timing of ERP waveform (from �50 to 250 ms post-stimulus).

(B) Difference between the broadband and narrowband phase-locking is presented as subtraction of coherograms for the two GA types as in

A averaged across all active contacts (left side; 148 electrode contacts in the low gamma, 214 in the high gamma and 229 in the epsilon frequency

bands), and as P-values of Wilcoxon signed rank test run for each pixel of the coherograms (red indicates P5 6.25 � 10�5 after multiple

comparison correction). (C) Scatterplots and least-squares lines show correlations of ERP size with total and peak GA counts (narrowband and

broadband in blue and red, respectively) during first 400 ms after word presentation. Notice that broadband but not narrowband peak GA

responses are correlated with ERP amplitude.
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physiological origins and association with memory tasks.

Presentation of words induced different responses of the

two GA types. Broadband GAs were primarily induced im-

mediately after word onset exhibiting a sharp peak in the

detection count, in contrast to a later and more gradual

induction of narrowband GAs (Fig. 5). This pattern of

GAs was most prominent in the high gamma and epsilon

band—the latter showed a 10-fold increase from baseline in

probability of a broadband GA detection 30 ms after word

onset, compared to only a 2-fold increase in the subsequent

narrowband detection peak (Fig. 5B). At that time in the

task, the relative proportion of the broadband events

increased from a baseline of �20% to 50% of all detected

GAs, meaning that vice versa the proportion of narrow-

band detections dropped from baseline of 80% to 50%

and that the two types contributed equally to this peak

of induced gamma response. Latencies of the peak broad-

band responses to word presentation were consistently

shorter than the narrowband in all three frequency bands

(Wilcoxon rank sum test, P5 0.001 for all comparisons)

and followed a time course analogous to multi-unit activity

spiking reported in humans (Self et al., 2016). There was

also a general relationship between the peak latencies and

frequency bands (Fig. 5C), with the higher the frequency,

the shorter the latency (Wilcoxon rank sum test, P5 0.001

for all comparisons), as reported in our previous study

(Kucewicz et al., 2014). This trend across the three bands

was also holding for latencies of all GA detections of nar-

rowband as well as broadband type (Wilcoxon rank sum

test, P5 0.001) with exception of high gamma and epsilon

broadband GAs (P = 0.22).

Given that the latencies of the sharp broadband epsilon

response were in the range of ERP in the occipital cortex,

we tested whether the two phenomena are related. We first

checked if GA detections of a given type consistently occur

on any specific phase of the ERP waveforms by calculating

coherence of the detections with the slow frequency oscil-

lations. Active electrode contacts revealed selective phase-

locking of broadband GAs to 4–8 Hz oscillation at the time

of ERP and word presentation (Fig. 6A), which was highest

for the broadband GAs in the epsilon frequency band

(Wilcoxon signed rank test, P5 0.001; Fig. 6B and

Supplementary Fig. 6). The size of the ERP was positively

correlated with counts of both narrowband and broadband

GA responses (Pearson correlation coefficient, P5 0.001,

R = 0.450 and 0.560, respectively). On the other hand,

only the peak response values of the broadband GAs

were correlated with the ERP size (Pearson correlation co-

efficient, P5 0.001, R = 0.010 and P = 0.26, 0.500, re-

spectively), suggesting that the sharp broadband GA

response may be causally related and thus phase-locked

to ERP.

Changes in gamma power have previously been shown to

predict successful memory encoding (Sederberg et al., 2003,

2007) and bursts of GAs shown to be associated with

working and recognition memory (Kucewicz et al., 2014;

Lundqvist et al., 2016). To assess involvement of the two

GA types in memory processing, we looked at their relative

contribution to subsequent memory effect (SME) by com-

paring GA counts during encoding epochs of words that

were subsequently recalled compared to those that were not

recalled. There was no SME in the low gamma band either

for the narrowband, or broadband, or both GA types com-

bined (Fig. 7). In the higher frequency bands (high gamma,

epsilon, and both combined), we observed a positive SME,

i.e. significantly more GA detections during epochs with

subsequently remembered versus forgotten words, for

both narrowband and broadband GAs detected in the

first 800 ms of word presentation (Wilcoxon Rank Sum

test, P = 0.0098 and P = 0.0078, respectively). The

Figure 7 Contribution of narrowband and broadband GAs

to SME. Contribution of all (black), only narrowband (blue), and

only broadband (red) GA detections to subsequent memory effect

is presented as mean detection rates on trials with subsequently

recalled (solid lines) and forgotten (grey lines) words. Electrode

contacts with GA responses in the low gamma band (left column)

were grouped separately from the high gamma or epsilon bands

(right column) to provide a total of 282 and 420 active electrodes in

each group. Top row summarizes mean detection counts smoothed

across the 50 ms bins, middle row bar plots show difference scores

from the top row plots between recalled and forgotten words (i.e.

positive or negative SME), and the bottom row bar plots provide

average values of the middle row plot scores across four epochs of

word encoding (�750 to 0, 0 to + 750, + 750 to + 1500, + 1500 to

+ 2250 ms relative to word onset time) for statistical comparisons.

Grey area indicates word presentation interval. *Bins with signifi-

cant subsequent memory effect (Wilcoxon Signed Rank test,

P5 0.0125 after correction for multiple comparisons); #significant

difference between narrowband and broadband SME scores

(Wilcoxon Rank Sum test, P5 0.05). Notice that only high gamma/

epsilon band shows the memory effect, which is greater and peaks

later (black arrows) for narrowband than broadband GAs.
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magnitude of this effect was higher for the narrowband

GAs (Wilcoxon Rank Sum test, P = 0.0429) and peaked

later than the broadband SME (broadband: + 400 ms, nar-

rowband: + 600 ms; Fig. 7). There was a consistent pattern

of initial negative trend in SME, i.e. less GA detections

during epochs with subsequently recalled words, followed

by a positive SME trend in response to word presentation,

and a switch back to negative SME toward the end of word

encoding period (Fig. 7). This pattern was present in both

low gamma and the higher frequency bands, despite differ-

ent timelines for the switching of SME direction.

Discussion
In this multi-centre collaborative study we took advantage

of a large dataset of human intracranial recordings to

quantify and characterize gamma frequency neural activ-

ities induced during word presentation and memory encod-

ing. Over one million detections were collected from short

word presentation epochs in the occipital cortex to test the

hypothesis about different spectral characteristics of GAs.

Our results reveal a heterogenous population of discrete

bursts of power in low gamma, high gamma and epsilon

frequency ranges. The GA events have different spectral

properties, which cluster into two distinct subpopula-

tions—one with a narrow frequency span centred on a spe-

cific frequency peak, consistent with a discrete oscillation in

the local field potential, and the other population with a

broad frequency span extending over a wide range of

gamma frequencies. There was no clear frequency bound-

ary separating the narrowband and the broadband GAs—

both were present in all three gamma bands but their rela-

tive proportions showed marked differences across the fre-

quency bands. The two GA types have previously been

reported in human intracranial recordings—the former

was associated with coordinated oscillations in synaptic

field potential, and the latter with synchronized multi-unit

firing (Manning et al., 2009; Miller et al., 2009, 2014; Ray

and Maunsell, 2011; Waldert et al., 2013). It has remained

unclear, however, to what extent each GA type contributes

to gamma frequency power in the iEEG signal and the

significance, if any, to underlying processes engaged

during memory encoding.

Electrophysiology of gamma
frequency activities

The subpopulation of narrowband GAs was remarkably

consistent across different electrodes and brain structures

in each of the three frequency bands. These narrowband

GAs comprised the majority of all detections with the high-

est proportion in the low gamma band, which was grad-

ually decreasing in the high gamma and epsilon bands

while the other broadband GAs subpopulation was increas-

ing (from 17% low gamma to 26% epsilon GAs, Fig. 3).

This trend is in agreement with a prevailing view that

power in low gamma frequency bands (560 Hz) reflects

mainly oscillatory activity, whereas higher frequencies in

the epsilon bands and above (4100 Hz) are contaminated

with spiking activity from populations of neurons (Ray and

Maunsell, 2011; Belluscio et al., 2012; Schomburg et al.,

2012). Spectral analysis of extracellular spike waveforms

can produce broadband power in frequencies down to

100 Hz (Zanos et al., 2012), but the exact frequency

ranges affected by spiking activity will depend on the wave-

form of a particular neuron type—sharp waveforms have

higher frequency components compared to broader wave-

forms. Moreover, increased spike synchrony and firing

rates can shift this boundary even into gamma frequency

bands (Ray et al., 2008; Ray and Maunsell, 2011; Waldert

et al., 2013) if the narrowband oscillatory activity is weak

or absent. Therefore, our observed proportions of broad-

band GAs gradually rising with the frequency ranges could

be explained by increasing contribution from spiking activ-

ity. Frequency bands higher than those studied here are

predicted to carry proportionally more spiking activity

and fewer oscillations with the latter detected up to

600 Hz in a similar task (Kucewicz et al., 2014), which is

a standard lower boundary for detecting ‘pure’ neuronal

spiking activity (600–6000 Hz).

There are also other non-oscillatory sources of gamma

frequency power in human intracranial recordings. Band-

pass filtering of any sharp transition in the signal will pro-

duce broadband power increase with a frequency span de-

pendent on the transition’s gradient. For instance,

myogenic activity from oculomotor and cranium foramen

muscles was shown to generate biphasic sharp potential

transients at the onset of a saccade generating a broadband

power increase in 20–200 Hz range (Jerbi et al., 2009;

Kovach et al., 2011). Interictal epileptiform discharges

(also known as epileptiform spikes) also produce broad-

band power in this patient population, in addition to all

other sources of extracranial muscle activity associated with

blinking, grimacing or chewing (for review see Worrell

et al., 2012), or artefacts related to, for example, visual

display (Williams et al., 2004). In this study, we were care-

ful to remove these non-specific activities from the analysis

using methods described previously (Ball et al., 2009;

Worrell et al., 2012; Kucewicz et al., 2014). The detected

events showed consistent trends in their duration and amp-

litude as a function of frequency (Fig. 4), unlike what

would be predicted for the non-specific sources of gamma

frequency power.

To summarize, it is possible to separate GAs from other

non-specific extra- and intra-cranial sources of gamma fre-

quency power, as well as the specific narrowband and

broadband neuronal activities (Buzsáki and Wang, 2012;

Cimbalnik et al., 2016). So far the two GA types have

been predominantly separated into disparate frequency

ranges, e.g. 30–70 Hz for what mostly composes of

gamma oscillations, and 70–200 Hz for mostly non-oscilla-

tory high gamma and epsilon activities (Burke et al., 2015).

Data from our study and others (Zanos et al., 2011;
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Belluscio et al., 2012; Schomburg et al., 2012) show that

the two frequency ranges overlap and cannot be separated

into distinct bands (Scheffer-Teixeira et al., 2013; Waldert

et al., 2013). Separating different types of GAs may prove

crucial for electrophysiological biomarker applications,

including mapping and modulation of specific electro-

physiological processes that underlie particular brain func-

tions in health and disease (Stacey, 2015; Cimbalnik et al.,

2016).

Roles of narrowband and broadband
gamma frequency activities

If the narrowband and broadband GAs have different

physiological origins, they may play specific roles in stimu-

lus processing in the tasks. Both were induced by stimulus

presentation in extrastriate areas of the middle occipital

and lingual gyrus, which are associated with processing

of higher order visual stimuli, including words and

images. Both GA types exhibited an initial peak response

followed by maintained elevated counts throughout the

whole period of word encoding (Fig. 4). The latencies of

these induced responses were different, however.

Broadband activities peaked earlier with latencies of

multi-unit spiking response (Self et al., 2016), suggesting

that stimulus-induced non-oscillatory neural activities pre-

cede coordinated oscillations of neuronal networks. GAs in

the highest epsilon frequencies were the first to be induced

followed by the lower frequencies as previously reported

(Kucewicz et al., 2014). The broadband epsilon GAs were

also tightly coupled to evoked response potentials—they

were phase-locked to the ERP waveform and their rate

was correlated with the ERP amplitude, unlike the narrow-

band GA counterparts (Fig. 6). We observed that the higher

the rate of induced GA detections, the greater the ERP

amplitude, which may indicate how close a given electrode

contact was to neuronal networks generating the ERP.

Selective correlation and phase-locking of the peak broad-

band GA response with the ERP could reflect a common

generating source, like synchronized spiking of large neur-

onal populations (David et al., 2006). Our data thus sup-

port a view that stimulus presentation first induces a surge

of multi-unit spiking activity, which is subsequently fol-

lowed by coordinated activity of synchronized neuronal

assemblies, giving rise to oscillations in the local field po-

tential. This proposed sequence of events is consistent with

recent microelectrode recordings in humans (Self et al.,

2016) and can be tested with combined micro- and macro-

electrode recordings of spiking activity and local field po-

tential (Kucewicz et al., 2016).

A recent study using microelectrode recordings in rats

found that GAs in the epsilon frequency ranges (4100

Hz) reflect both neuronal spiking and network oscillations,

which were separated based on their preferred coupling to

theta rhythm in the hippocampus (Scheffer-Teixeira et al.,

2013). The authors have also separated them based on

their frequency span. Our data reveal analogous phase-

locking of broadband GAs recorded with clinical subdural

and penetrating macro-electrodes, and differences in ERP

phase-locking at theta frequencies (4–8 Hz). In contrast, we

observed much weaker theta phase-locking of narrowband

GAs (Fig. 6). Thus the two GA types appear to be engaged

in different network processes both in humans and rodents.

But the exact functions they serve, e.g. sensory perception,

attention or memory, remain unclear.

In this study, we have also looked at the relative contri-

bution of the two GA types to the SME. Instead of com-

paring different stimulus patterns, we compared counts of

narrowband and broadband GA detections induced on

trials with words that were subsequently recalled and

those that were not. Both GA types showed the memory

effect in the high gamma and epsilon band during the crit-

ical epoch of induced response to word presentation. SME

for the narrowband GAs was greater than for broadband

GAs and peaked later �600 ms after word onset (Fig. 6).

The relevance of these differences in successful memory

encoding remains to be further investigated. This pattern

of differential SME modulation confirms the same temporal

profile of broadband GAs preceding narrowband GAs, and

presumably reflecting different neural processes supporting

memory encoding.

Gamma frequency activities as a
biomarker of neuronal assemblies

Most of the low gamma, high gamma and epsilon GA de-

tections were composed of narrowband oscillations, which

have been associated with various cognitive functions

including perception, attention and memory (Singer,

1993; Tallon-Baudry and Bertrand, 1999; Jensen et al.,

2007). Gamma frequency oscillations have been proposed

to reflect the coordinated activity of neuronal assemblies

that effectively acts as a ‘clocking’ mechanism to time in-

formation processing on the phase of a given oscillation

(Fries, 2009). This hypothesis has been disputed based on

arguments that gamma oscillations exhibit low and incon-

sistent power and phase (Burns et al., 2011; Xing et al.,

2012; Ray and Maunsell, 2015) and can be better ex-

plained with stochastic spiking activity and not a coordi-

nated oscillation. Others have argued that gamma

oscillations should not work like a perfect clock or metro-

nome as it would limit their adaptive phase-coding flexibil-

ity (Nikolić et al., 2013). The narrowband induced GA

oscillations that we detected agree with this general picture

with lower amplitude than the broadband GAs, but longer

duration and a specific centre frequency. The duration and

frequency of the narrowband GAs satisfy the requirements

for proposed roles of gamma oscillations in mechanisms of

synaptic plasticity and memory formation (Fries, 2009;

Düzel et al., 2010; Buzsáki and Wang, 2012), and have

been shown to be modulated by cognitive processes

engaged in a recognition memory task in humans
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(Kucewicz et al., 2014) and in spatial working memory in

monkeys (Lundqvist et al., 2016). So even though their role

in timing of information processing in the brain is unclear,

narrowband GAs are likely to reflect coordinated activity of

neuronal assemblies supporting cognitive processes.

Hence, GAs provide a potential biomarker for mapping,

targeting, and modulating neuronal assemblies at high tem-

poral resolution during memory and cognition (Lachaux

et al., 2012; Burke et al., 2015; Johnson and Knight,

2015). Both narrowband and broadband GAs can be

used to track different neuronal assembly activities: the

former network oscillations, the latter synchronized multi-

unit neuronal firing. It is important though to separate

them from each other and from other non-specific activities

generating high-frequency power (Stacey et al., 2009), if

they are to be used as effective biomarkers of specific

physiological processes. One potential application is in lo-

calization of neuronal networks generating epileptiform dis-

charges and seizures (Worrell et al., 2012; Cimbalnik et al.,

2016) that should benefit from separating physiological GA

activities induced in cognitive tasks from pathological activ-

ities (Stacey, 2015). Another application is to use GAs for

mapping networks forming declarative memories, and mod-

ulating their activities through therapeutic stimulation. In

summary, emerging neurotechnologies may benefit from

sampling and targeting specific GA types to map both

physiological and pathological networks, and could ultim-

ately improve therapies directed at memory and epilepsy.
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