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Research

Lexico-semantic structure and the word-frequency
effect in recognition memory

Joseph D. Monaco,'? L. F. Abbott," and Michael |. Kahana?®

" Center for Neurobiology and Behavior, Department of Physiology and Cellular Biophysics, Columbia University College of
Physicians and Surgeons, Kolb Research Annex, New York, New York, 10032-2695, USA; 2Department of Psychology, University

of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

The word-frequency effect (WFE) in recognition memory refers to the finding that more rare words are better
recognized than more common words. We demonstrate that a familiarity-discrimination model operating on data
from a semantic word-association space yields a robust WFE in data on both hit rates and false-alarm rates. Our
modeling results suggest that word frequency is encoded in the semantic structure of language, and that this
encoding contributes to the WFE observed in item-recognition experiments.

Old-new item recognition is the task of deciding whether or not
test items were presented on a previous study list. Performance is
quantified as the probability of old responses to (old) study items
(hit rate [HR]) and to (new) nonstudy items (false-alarm rate
[FAR]). One of the most prominent phenomena observed in this
task is the word-frequency effect (WFE): rare or low-frequency
(LF) words are better recognized than common or high-frequency
(HF) words (Schulman 1967; Shepard 1967). The recognition
WEFE is a mirror effect (Glanzer and Adams 1985, 1990): it con-
sists of an HR effect and an opposite, but approximately equal
FAR effect. The cause of the WFE and other mirror effects has
been the subject of extensive study, but no consensus view has
been established (e.g., Murdock 1998; Stretch and Wixted 1998;
Reder et al. 2000).

Both single- and dual-process models have been proposed to
explain the WFE. The former perform familiarity discrimination
(FD) based on similarity measures such as global feature match-
ing. These models typically require some additional transforma-
tion, such as log-likelihood computation, to achieve the required
symmetry between old- and new-item familiarity distributions
(Murdock 1998). To explain the WFE, certain differences between
LF and HF words must be assumed. These may include the modu-
lation of attentionally marked features (Glanzer et al. 1993), di-
agnostic content (Shiffrin and Steyvers 1997), or representative
feature variability (McClelland and Chappell 1998). In the end,
such models produce a unidimensional scalar value for the
strength or familiarity of a given stimulus that allows further
analysis with signal-detection theory. HR and FAR calculations
can be made by integrating thresholded familiarity distributions,
and threshold-independent performance may be quantified with
receiver operating characteristics (ROCs) (see Wickens 2002).
Dual-process models, however, rely on differential contributions
of recollective and familiarity-based processes to explain the per-
formance differences. Recollection, a recall-like process, is char-
acterized as less error prone than a global-matching familiarity
process (Guttentag and Carroll 1997; Reder et al. 2000).

In humans, both familiarity and recollection appear to de-
pend on the medial temporal lobe (MTL) (see Levy et al. 2004; de
Zubicaray et al. 2005). Electrophysiological studies in monkey
have shown perirhinal cortex (PRC), specifically, to have a sub-
stantial proportion of familiarity-sensitive neurons (Miller et al.
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1991; Li et al. 1993; Xiang and Brown 1998; Brown and Bashir
2002). Theoretically, it is known that a familiarity signal can be
read out from a simple autoassociative neural network by com-
puting its internal energy (Amit 1989). Indeed, the evaluation of
network energy may approximate the familiarity signal evident
in perirhinal neurons (Bogacz et al. 2001a; Brown and Bashir
2002) and has been used to determine theoretical limits on rec-
ognition capacity (Bogacz et al. 2001b; Bogacz and Brown 2002).
Thus, we set out to create a recognition model that uses network
energy as a readout of stimulus familiarity. For this purpose, we
used input vectors from a word-association space (WAS) (Steyvers
et al. 2004). The WAS is an empirical model of semantic similar-
ity based on normative data from free-association experiments
(Nelson et al. 2004). Simulating old-new recognition experi-
ments with this model, we found that word frequency produces
discriminable signal distributions such that LF words tend to be
more familiar than HF words. Further, coupling this output with
a particular decision-making strategy exhibited a WFE mirror ef-
fect. These results have novel implications for the roles of distinct
retrieval processes in recognition memory.

Model

We present a simple item-recognition model, where the famil-
iarity of a probe stimulus is read out as the internal energy of a
network trained on a set of activity vectors corresponding to
WAS word representations. This is coupled with an experimental
protocol emulating a typical word-recognition experiment (see
Methods: Experiment simulation). Importantly, all study and
test words are trained initially and then followed by retraining of
the study list. Retraining corresponds here to the subject having
recently experienced a word in the context of an experimental
study list.

Familiarity as network energy

In the Bogacz et al. (2001a) FD model, item vectors are associa-
tively encoded into a Hopfield network (Hopfield 1982). The fa-
miliarity signal is simply the internal energy of the network
when activated with a probe stimulus (Bogacz et al. 2001a).
Hopfield networks are fully connected recurrent networks of bi-
nary units. The network weights are trained on an input set & of
P N-dimensional activity vectors, such that &' e {-1,+1} for all
ie {1...N} and p € {1...P}. That is, each unit is either active (+1) or
inactive (-1) for a given input vector. If we denote the weight
matrix as W = [w;]}_,, its elements are computed according to an
associative Hebbian learning rule:
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where w;; = 0 for i € {1...N}. Once trained, we are only interested
in the internal energy of the network when presented with a
given stimulus, so no network dynamics are involved here. This
internal energy calculation is distinct from recollective processes
that use some form of network relaxation to fully recall the fea-
tures of stored items (Amit 1989). For a probe stimulus vector
X = [x]¥,, the internal energy' is computed as
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Note that more familiar stimuli will have lower energies than less
familiar stimuli. A probe X will thus be associated with the fa-
miliarity quantity E(X) for a network trained on a given input set.
In this form, the only free variables of the FD process are the size
of the network, N, and the set of input vectors, £%. FD such as this
is more efficient and has a much higher capacity than associative
recall. Allowing an error rate up to 0.01, the recall capacity of the
network is 0.145N (Amit 1989), whereas its recognition capacity
is 0.023N? (Bogacz et al. 2001b).

Semantically structured input

Recognition models operating on correlated input spaces (Bogacz
and Brown 2003; Norman et al. 2005) have been studied that
benchmark behavioral data (Norman and O’Reilly 2003). How-
ever, recent empirical models of semantic space, such as the WAS
model of Steyvers et al. (2004) provide a basis for constructing an
input set with a similarity structure derived from behavioral
word-association data. The basis for the WAS is a free-association
data set containing the probabilities with which subjects named
a given word as the first associate of a cue word (Nelson et al.
2004). These data can be taken as a measure of direct associative
strength among over 5000 words. Indirect or second-order asso-
ciative strengths can also be calculated from the data set. To
create the WAS, singular-value decomposition (SVD) was applied
to these direct and indirect associations so as to place words in a
reduced 400-dimensional space. This was constrained so that the
cosine between any two-word vectors® reflects their mutual as-
sociative strength. The dimensional reduction revealed latent,
higher-order semantic relations within the data set. Importantly,
400 dimensions were found to be the lowest dimensionality that
remains highly predictive of experimental data such as free-recall
intrusion rates, extralist cued recall, and semantic similarity rat-
ings in recognition (Steyvers et al. 2004). The resultant WAS
shares gross structural characteristics, small-world but not scale-
free, with other semantic networks (Steyvers and Tenenbaum
2005). Thus, it is now possible to operate on input vectors whose
similarity relations approximate the lexico-semantic space of En-
glish speakers.

Here, we used a set of 1748 WAS vectors for which we have
the associated Kucera-Francis word frequency (WF) (see Kucera
and Francis 1967). In the cosine similarity matrix for the 100
most common and the 100 most rare words in the set (Fig. 1A),
it is evident that common words tend to be similar to other
common words and rare words tend to be similar to other rare
words. Similarities between rare and common words tend to be
lower than similarities within frequency groups. An intuitive rea-

"Here, we let E(-) be the function mapping a stimulus or set of stimuli to an
energy value or energy distribution, respectively. Statistical expectations are
noted by (-) brackets.

2 A vector cosine is the inner product between V and U normalized to [0, 1],
cos(by,) = (V- O/AVIIUD.
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Figure 1. (A) Similarity matrix of the WAS vectors for the 100 highest
and lowest frequency words in the set. The color of each pixel denotes
the cosine of the angle between the ith and jth vectors. The bottom-left
and top-right quadrants represent the cosine similarity among pairs
whose members are both HF or LF words, respectively. The white diago-
nal signifies identity. The symmetric off-diagonal quadrants represent
cosines between HF and LF words. (B) Normalized Hamming distances
between binarized WAS vectors decrease monotonically with the cosine
of the corresponding WAS vectors. Every point represents the mean and
error (« = 10~°) for each bin in a cosine-sorted partition (600 bins) of all
vector pairs.

son for such differential encoding of frequency is that rare words
tend to have a single definition, while common words may have
many definitions and usages. This reasoning predicts that rare
synonyms will be clustered in semantic space, whereas more
common synonyms will be placed at a semantic “centroid” of
multiple distinct meanings. That is, LF words will be encoded
into clusters and HF words will tend to occupy the space between
such clusters. We will refer to this as the “tight clustering” hy-
pothesis for LF words.

Interpreting the recognition model
The two functional components of our FD model are the Heb-
bian learning of a Hopfield network and the dimensional reduc-
tion of a word-association matrix. In considering this combina-
tion, we have to interpret the necessary combination of the as-
sumptions inherent in both. We must properly frame the
limitations of the results and emphasize that they comprise, at
most, a high-level explanation. A simple network computation
on a carefully chosen input set will not explain the intricacies of
human recognition memory for semantic stimuli, yet may pro-
vide insight into some aspect thereof. We argue for the specificity
and functional plausibility of the model components as well as
their composition.

First, we assume that using the energy (Equation [2]) of a
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trained Hopfield network (Equation [1]) as a familiarity signal
captures some salient characteristic of familiarity processing in
the perirhinal cortex. Bogacz et al. (2001a,b) provide support for
this assumption by arguing from a standpoint of functionality
and efficiency as well as from modeling results. Also, neurons
responding differentially to familiar stimuli have been found
consistently within monkey PRC (Miller et al. 1991; Li et al. 1993;
Sobotka and Ringo 1993). This difference is characterized by a
reduction in stimulus-induced activity for familiar stimuli and
rapid familiarity discrimination (on the order of 100 msec), but
neural responses for recency and novelty have also been found
(Fahy et al. 1993; Xiang and Brown 1998; Brown and Bashir
2002). Despite this functional diversity, only familiarity-sensitive
neurons are considered here. Furthermore, evidence from abla-
tion and impairment studies indicate that the PRC acts indepen-
dently from other inferotemporal (IT) mnemonic systems such as
that of the hippocampal formation (Gaffan 1994; Aggleton and
Brown 1999; Murray and Bussey 1999). This independence sug-
gests that PRC is the site of the neural substrate for familiarity
judgments (for reviews, see Yonelinas 2002; Rugg and Yonelinas
2003).

Autoassociative neural networks such as the binary Hopfield
network produce stimulus-dependent attractors (Hopfield 1982).
Reading out the internal network energy as a stimulus-familiarity
signal is much more efficient than involving recollective pro-
cesses (Bogacz et al. 2001a; Bogacz and Brown 2003), which typi-
cally involve relaxing the network to reconstruct an attractor
state (Murdock 1982; Humphreys et al. 1989). For random vec-
tors, this FD process has a very high storage capacity, as does
human memory (Standing 1973), and enables a rapid network
response. It is also more robust than other network architectures;
e.g., encoding via feedforward competitive synaptic processes
can exhibit forgetting after a relatively small number of subse-
quent stimuli (Sohal and Hasselmo 2000). Bogacz et al. (2001b)
use both a Hopfield network and a multilayer spike-response
model to argue that perirhinal FD neurons may form an au-
toassociative network in order to exhibit such efficiency and ro-
bustness. From this, we posit that it is reasonable that the energy
computation of a Hopfield network is, at least, a useful abstrac-
tion of the FD processing performed by PRC neurons.

Second, we assume that the WAS is at least approximately
isomorphic to the space of neural representations of the semantic
features of words for speakers of English. This amounts to the
assumption that behavioral associativity refects the neural en-
coding of semantic similarity. That the WAS serves well as a pre-
dictive model for known human memory effects recommends it
as a useful inference of semantic space. Further, the WAS has
structural characteristics consistent with being isomorphic to real
semantic representations. Thus, this assumption is assuredly a
simplification, but it is likely to yield salient semantic informa-
tion.

Third, we assume that the semantic WAS vectors serve as
appropriate inputs to the FD model of PRC. This assumption
allows us to posit the combination of the two components as a
unified model of recognition memory. Supporting this, several
clinical studies indicate a role for PRC in associative memory for
semantic content and lexical processing (for review, see Murray
and Bussey 1999). Further, neurons in the perirhinal and other IT
areas in monkeys demonstrate the ability to represent abstract
object categories (Erickson et al. 2000; Miller 2000; Miller et al.
2003). Such abstraction is a hallmark of semantic information
processing and indicates that the PRC has access to semantic
features among its inputs.

Finally, although we investigate the recognition WFE with
this model, it can only describe effects due to familiarity process-
ing of semantically structured input data. There are certainly
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nonsemantic contributions to the WFE that are not within this
scope; e.g., context variability, and orthographic and phonologi-
cal features (Malmberg et al. 2002; Steyvers and Malmberg 2003).
Qualified as such, we will refer to this bipartite recognition model
as WAS-FE.

Energy and semantic attractors
If a meaningful stimulus is ultimately represented as a binary
pattern of activation across N perirhinal neurons, then we can
think of this stimulus as an N-dimensional vector of features that
are either present in the stimulus (+1) or not (—1). In Hopfield
learning (Equation [1]), these component features are pairwise
associated according to their correlation: the strength of the syn-
apse between two neuronal units is directly and linearly related
to the number of patterns for which the units carry the same
activity. Synaptic weights are simply inner products of across-
pattern activity vectors. Internal network energy (Equation [2]),
then, is an outer product measure of how well the pairwise bit
structure of a given activity vector aligns with the pairwise cor-
relations stored in the weights of the network. This is opposed to
recognition models based on summed similarity or global match-
ing (Shiffrin and Steyvers 1997; Zaki and Nosofsky 2001; Kahana
and Sekuler 2002; Kahana et al. 2005). However, a summed-
similarity recognition model using inputs derived from percep-
tual preprocessing of natural stimuli has been able to match ex-
perimental similarity and recognition data (Lacroix et al. 2006).
Small-world structure is characterized by short minimum-
path lengths, but also by hub-like connectivity (Watts and Stro-
gatz 1998). Considering the WAS as a small-world network
(Steyvers and Tenenbaum 2005), there must be subsets of vectors
that significantly share pairwise activity. Each of these groups, or
clusters, will bias those synaptic weights corresponding to their
respective set of shared features. Clusters of feature-sharing vec-
tors will form attractors commensurate with their size and mu-
tual similarity. Thus, a probe vector may yield a low energy by
matching features characteristic of different attractors in the net-
work: there is a combinatoric aspect to the diversity of such “spu-
rious” attractors (Amit 1989). The strongest attractors, though,
will correspond to groups of words with substantial semantic
similarities.

Results

Initially, we binarized® the WAS vectors in our wordset. This
allows proper operation of the Hopfield learning rule (Equation
[1]) and energy computation (Equation [2]). The normalized
Hamming distances between these binary vectors decreased
monotonically with cosine similarities of the corresponding con-
tinuous WAS vectors (Fig. 1B). This indicates that the binariza-
tion significantly preserves similarity relations between vectors.

Random inputs

In the initial item-recognition experiment we used an input set
of unbiased random vectors. The energy distributions for old and
new items were binomial with means of —399 and —199 (Fig.
2A, left column), matching theoretical means* of p, = —400 and
He = —200. Study lists consisted of 100 vectors (L = 100) and re-
sults using two reference pool sizes are shown in Figure 2A:
P =400 (top row) and P = 1600 (bottom row). We refer to these as
the low-load and high-load training conditions, respectively.
They demonstrate the effects of adding noise to the network in

3 The elements of WAS vectors are symmetrically distributed around zero, so
that taking the sign of each vector element produces a set of binary vectors
with, on average, unbiased activity levels.

4 These means are offset —N/2 due to the initial training of both study and test
vectors (see Methods: Experiment Simulation).
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Figure 2. Effects of semantic input vectors and training load on result-
ant energy distributions. (A) Increasing training load for both random
(left) and semantic (right) vectors increases overlap between energy dis-
tributions (100 study items, 400/1600 new items for low/high (top/
bottom) training load). The energies for semantic inputs, however, have
load-dependent means, non-Gaussian distributions, and worse discrim-
inability than in the random case. (B) WF-sorted partitioning of word
vectors results in discriminable familiarity distributions (150 study items,
600 new items). The LF distributions are more familiar than HF words for
both old and new items. The “rare” and “common” bins here are the
least and most frequent thirds of the lists, respectively.

the form of additional stored vectors. In all cases, the old and
new distributions have equal variance. The low- and high-load
conditions had standard deviations s; of 20 and 31, respectively.
This increase in spread decreases d' from 10.1 to 6.5 (Equation
[4]) in the high-load condition; however, both values indicate
perfect discrimination. Although we could have degraded the
model’s performance by reducing the magnitude of the weight
update for study-list items (Equation [5]), these results serve as an
input control for the simulations below.

Semantic inputs
The energy distributions resulting from the semantic input set
(Fig. 24, right column) differ substantially from the random in-
put condition. The distributions are non-normal, negatively
skewed (i.e., biased toward increasing familiarity), and their sta-
tistics have changed significantly. The means are lower than
those in the random input case. In the low-load condition, mean
old and new energies are —524 and — 326, respectively, and the
high-load case shows —777 and — 578, respectively. So, not only
are the distributions exhibiting enhanced familiarity, the means
are load dependent. The more semantic vectors we store in the
network, the more negative the energy distributions become.
Furthermore, they exhibit much lower d' distances than in the
random case. The discriminability as measured by d’' decreases
from 1.4 at P =400 (Fig. 2A, top right) to 0.61 at P = 1600 (Fig.
2A, bottom right). This 57% reduction in separation compares
with a corresponding 36% decrease for random inputs. Finally,
the high-load condition produces energy distributions with
noise-like irregularities that are not evident in the other cases.
These were not investigated, but they may be the result of capac-
ity effects or structural heterogeneity of the input space.
Statistical changes such as these could be expected for any

sufficiently nonrandom input set. However, there are systematic
differences in the energy distributions among WF classes. We
found that vectors representing LF words tend to have lower
energies, and thus enhanced familiarity, than those of HF words
(Fig. 2B). This was observed for frequency classes in both old and
new energy distributions. Figure 2B shows the distributions for
the thirds of the study list and reference pool with the highest
and lowest frequencies. This effect of increasing familiarity with
decreasing WF was observed robustly across the full range of
possible list and reference pool sizes. For the data shown here,
based on L =150 and P =600, all four distributions exhibited
standard deviation s; = 192, and both WF-dependent effects were
discriminable at d’ = 0.23. This effect is present in the new dis-
tribution and, as such, does not depend on item study (Equation
[5D).

ROCs computed from the semantic familiarity distributions
in Figure 2A are presented in Figure 3. The WF dependence of the
ROC:s is shown for both the low-load (Fig. 3A) and the high-load
(Fig. 3B) conditions. That is, for each training condition, the
“common” and “rare” ROCs compare A; (old-HF) and A4 (old-
LF), respectively, to the reference pool. These are the distribution
comparisons used to assess item-recognition performance (see
below and Discussion). In both conditions, LF words yield better
old-new discrimination than HF words. There are two load ef-
fects. First, the low-load ROCs (Fig. 3A) indicate better overall
performance, evident as higher HRs and lower FARs, than the
high-load ROCs (Fig. 3B). Second, the WEF-dependence of effect is
greater in the high-load than in the low-load condition. That is,
the ROCs in Figure 3B are more separated than those in Figure
3A. Both load effects are a result of the increase in energy vari-
ance and decrease in d' distances evident in Figure 2A. In the
low-load condition, the d’ distances are 1.2 and 1.5 for common
and rare words, respectively. For high-load, the relatively low d’
of 0.34 for common words more than doubles to 0.78 for rare
words. This Hopfield FD model has a theoretical recognition ca-
pacity of 3.7 x 10® random vectors (Bogacz et al. 2001b). Here,
storing 1.7 X 10% semantic vectors is severely detrimental to FD
performance, indicating that the correlations inherent in the se-
mantic inputs reduce the effective capacity of the network (Ap-
pendix C of Bogacz and Brown 2003).

Word frequency effect

We observed the WFE mirror effect across the possible range of
the list lengths for the study list and reference pool. We based
recognition performance on a WF-based decision criterion (see
Discussion). Mean HR-FAR trends for the low-load condition are

Hit Rate

0.2 1
j
— Rare
0'8.0 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate False Alarm Rate

Figure 3. Operating characteristics for item-recognition performance
under low (4; P = 400) and high (B; P = 1600) training load. The study list
is composed of 100 items in both conditions. Performance across word
frequency is assessed using a six-partition of the study list indexed and
sorted by Kucera-Francis frequencies. The common and rare ROC curves
represent the performance of the highest and lowest frequency bins,
respectively. The P =400 case (A) demonstrates better baseline perfor-
mance but a smaller frequency effect than the P = 1600 case (B).

Learning & Memory 207

www.learnmem .org


http://www.cshlpress.com
http://www.learnmem.org

Downloaded from www.learnmem.org on July 22, 2008 - Published by Cold Spring Harbor Laboratory Press

Monaco et al.

: Equation (6) would dictate that these

distributions be orientated oppositely
from those in Figure 5B. That is, even
though LF words have more high-
similarity neighbors—so that neighbor

4 WF values are more strongly weighted—
v(§) is distributed to lower WF than
1 those of common words. Thus, the
dominant factor in these v(§) averages
. must be the WF component, indicating

that LF words are tightly clustered with
other LF words, whereas HF words are
more diffusely distributed.
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Figure 4. Word-frequency mirror effect from 2000 trials of item-recognition experiment simulations
(A; L=100, P =400) and as seen in human memory experiments (B; data from Schwartz et al. 2005).
The HR and FAR effects compose the mirror effect (top) and are due to changes in discriminability
(bottom). Model HR, FAR, and d’ data have 95% confidence intervals of mean = 4.2 x 1073,
1.5 X 1073, and 1.2 X 10 2, respectively. The discriminability of the experimental data was esti-

mated from signal detection theory.

shown in Figure 4A with d' distances. In this condition, HR de-
creases from 0.77 for the lowest-frequency words to 0.73 for the
highest-frequency words. Similarly, the FAR increases from 0.18
to 0.22. Human recognition data collected by Schwartz et al.
(2005) are shown for comparison in Figure 4B. The experimental
d' distances (Fig. 4B, bottom) were calculated using an unbiased
estimator from detection theory (Wickens 2002). The experimen-
tal HR decreases from 0.90 to 0.86, while the FAR increases from
0.077 to 0.13. These data approximately match the trends ob-
served in the model data.

Note, however, the differences in absolute magnitude of the
HRs, FARs, and d’ distances between the model and experimental
data in Figure 4. The absolute d’' distances could be manually
tuned with the addition of a coefficient in the study rule (Equa-
tion [5]), but we chose not to do this. Scaling up the model d’
data would increase HRs and decrease FARs to better match the
experimental data. For our purposes, it is sufficient that we ob-
serve a qualitatively correct WFE.

Semantic clustering

The above supports the tight clustering hypothesis for LF words,
so we performed two simple neighborhood analyses of the con-
tinuous WAS data set. Consider an even partition of the entire
WAS such that each bin contains a distinct WF class. Figure 5A
shows, for each of the WF bins, the mean neighborhood popu-
lation counts for word-centered hyperspheres of varying radii in
cosine space. We count all neighbors, regardless of word fre-
quency. Counts are shown for radii up to d.,s = 0.062, as that is
sufficient to illustrate the WF dependence of the number of close
neighbors as d.,, approaches zero. The more rare words (blue
solid line) have more neighbors on average than common words
(red lines) for most of this range, and especially around
d.os = 0.01-0.02. This indicates that LF words tend to have more
close neighbors than HF words.

Next, Figure 5B addresses the WF composition of those
neighbors. For each vector § we compute the quantity v(§) as an
average of the WF of its neighbors (Equation [6]). The distribu-
tions of these values for each frequency class are shown as 15-bin
histograms in Figure 5B. The LF and HF distributions have means
of 1.13 and 1.74, respectively, and a distance of d' =0.93 stan-
dard deviations. From Figure SA, LF words tend to have closer
neighbors than HF words. Given the null hypothesis that seman-
tic similarity and WF are not correlated, the cos(6) coefficients in
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1 Discussion

Here, we bring together a simple model
of familiarity-based recognition (Bogacz
et al. 2001a,b) and a recent model of se-
mantic similarity (Steyvers et al. 2004)
and demonstrate a word-frequency ef-
fect. The only free parameters for the re-
sulting model (WAS-FE) are the lengths
of the study and test lists, across which
the WEFE is robust, only differing in magnitude. Notably, and as
discussed below, the observed WFE is a mirror effect when deci-
sions are determined using a stimulus-dependent criterion.

Input structure effects

The input-type effect evident in Figure 2A is attributable to non-
random structure of the semantic input space. From the low
means for the new distributions, we can infer that the vectors in
the semantic input space tend to be near network attractors. The
presence of spurious attractors, as well as learned attractors, fur-
ther contributes to lower energies across the space. In fact, the
large systematic decrease in probe energies indicates that much
of the input space is likely spanned by basins of attraction. The
observed shape of the energy distributions, then, is a function of
the number, density, and spatial distribution of vector clusters in
WAS.

Vectors populating a space with large-scale structure carry
redundant information in their correlations. For the Hopfield FD
mechanism, it can be shown that input redundancy reduces the
effective capacity of the network (Bogacz and Brown 2003, Ap-
pendix C). This is evident in the large drop in discriminability
between the random and semantic input spaces and between the
low- and high-load training conditions (see d’ in Fig. 2A). So,
processing raw semantic information is inefficient, but results in
much more realistic (i.e., measurably worse than perfect) recog-
nition performance. Stimulus decorrelation is thought to occur
downstream of IT cortex in the dentate gyrus (O'Reilly and Mc-
Clelland 1994; Kesner et al. 2000), so presumably the FD neurons
in PRC have access to the original stimulus features.

Word-frequency effects

On the hypothesis that the WFE is supported by semantic coding
differences and thus might be evident within WAS-FE, we sorted
and partitioned the task lists into WF bins using a normative
frequency measure (KucCera and Francis 1967). These WEF-
differentiated bins resulted in separable energy distributions for
both old and new lists (Fig. 2B), an effect observed robustly across
list length. Notably, this frequency effect is in the observationally
correct direction of increased familiarity for rarer words. That is,
as in Figure 2B, the energies for each “Rare” (LF) bin are distrib-
uted more negatively than those of the corresponding “Com-
mon” (HF) bin.
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Figure 5. Word frequency-dependent clustering of word vectors in the
WAS. Using a six-partition of the word set, the mean population size for
a neighborhood of a given radius in cosine space shows that rare words
have more close neighbors than common words (A4; the abscissa is
d_s =1 — cos(6). The WF composition of those neighbors is indicated by
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the relative distributions of WF-cos(8) convolutions (Equation 6) for dif-
ferent WF bins (B). The close neighbors of rare words tend to be other rare
words.

There must be some structural or statistical characteristic of
the WAS underlying this effect: aside from the network mecha-
nism, there simply is nothing else in WAS-FE to cause it. Specifi-
cally, the random input condition (Fig. 2A) serves as control for
the structure in the semantic inputs. Cumulative population
counts across cosine space (Fig. 5A) show that LF words have
more close neighbors than HF words. Further, distributions of a
neighborhood frequency average (Equation [6]), demonstrate the
required WF dependence and separation to show that words tend
to be colocated with neighboring words of the self-same WF class
(Fig. 5B). These neighborhood effects support the tight-clustering
hypothesis that LF words tend to cluster with other LF words,
while HF words are coded more diffusely. Considering attractor
formation on small-world inputs, this is sufficient cause for the
type of relative familiarity differentiation observed in Figure 2B.

Among single-process recognition models, there has not
been a consistent approach for the structural representation of
semantic stimuli. For instance, the retrieving effectively from
memory (Shiffrin and Steyvers 1997) model assigns higher diag-
nostic content to LF words by spreading out the distribution of
feature values for LF words. This is based on the assumption that
HF words share features to a higher degree than LF words. How-
ever, the subjective-likelihood model (McClelland and Chappell
1998) approaches WF differentiation by injecting more noise
into the feature vectors of HF words to represent the higher de-
gree of contextual variability for more frequent words. Lastly, the
attention-likelihood theory (Glanzer et al. 1993; Malmberg and
Nelson 2003) does not rely on structural differences to demon-
strate the WF mirror effect. Instead, it uses the hypothesis that
fewer features of HF words are attended to by the subject. This
effectively reduces the semantic information in HF words, analo-
gous to adding noise or placing vectors in smaller clusters. Algo-
rithmically, these models combine features matching with the
computation (or estimation) of log-likelihood ratios.

One intuitive line of thought is that a semantic attractor
represents an atom of semantic content, a “sense.” LF words tend
to be associated with a very small number of different senses. HF
words, however, may be associated with many distinct word
senses. Semantic encoding would then place HF words in the
space between their several senses. This leaves most rare words
proximal to strong semantic attractors, with corresponding high-
familiarity judgments, and more common words are placed away
from these energy minima. To assess the validity of this idea, we
repeated the neighborhood analyses for a WAS four-partition
based on the number of senses a word has in the WordNet data-
base (Fellbaum 1998). The cumulative population count Figure
6A shows a significant decline in close neighbors only for the
most-senses words. The v'(§) (i.e., neighborhood senses average)
distributions (Fig. 6B) show only the most-senses words have a
slight tendency to be encoded with other high-senses words. Fi-
nally, plotting WF against WordNet senses (Fig. 6C) reveals that
only the most-senses words have any correlation with word fre-
quency. This indicates that the number of word senses does con-
tribute explanatory power to our structural observations, but this
is limited to the HF/most-senses domain.

Decision process and performance
The WFE is fundamentally a behavioral effect of recognition per-
formance, so a decision-making process is needed. The human
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Figure 6. Clustering analysis redone in terms of the number of Word-
Net senses for a given word (4,B), instead of the K-F normative word
frequency. The wordset used is the intersection of WAS words with K-F
values and those with WordNet results. (C) WordNet senses are plotted
against WF for comparison, with the blue vertical line indicating the
lowest number of WordNet senses for Bin 1, which contains the words
with the highest number of senses.
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WEFE is a mirror effect (Glanzer and Adams 1990; Glanzer et al.
1993), meaning that, for LF probes, subjects are better at both
accepting targets as old and rejecting lures as new. Many differ-
ent decision processes could be devised, but we will explore what
would be necessary with the restriction of a simple process
within the scope of and commensurate with the results presented
so far.

We classify WAS-FE as a single-process signal-detection
model of recognition: LF and HF stimuli are not processed dif-
ferently and a single scalar energy value is the only output. This
familiarity signal is noisy and a decision must be made whether
a given probe was studied (old) or not (new). We consider a
simple threshold process (see Methods: Signal detection) with a
decision criterion below which a probe is judged old, otherwise
new. For simplicity, we will consider as decision criterion, the
midpoint of the empirical means of the energy distributions.
Similarly, but for random vectors, Bogacz et al. (2001a,b) used the
midpoint of the theoretical means. The question becomes that of
which two distributions, in particular, are being compared in the
decision process.

The signal detection comparison here is between a study list
(A) and a reference pool (P), either of which may be broken
down in WF classes. Thus, there are 2 X 2 possible comparisons:
the WF bins or aggregate study list against the WF bins or aggre-
gate reference pool. In the notation used above and in Methods:
Experiment Simulation, these are A;—®;, A;—®, A—®;, and A —
®, respectively, where i traverses WF bins. The A —® comparison
is not WF dependent, and thus, meaningless in terms of the WFE.
With a means-based criterion, the A;—®; comparison will not
produce either component of the mirror effect, because the WF
dependence of both distributions is the same. A fixed, WEF-
independent criterion could be used, but the resultant FAR effect
would not “mirror” the HR trend. This is typical of the funda-
mental difficulty with single-process signal-detection models, as
the familiarity effect needs to be reversed for new items to
achieve a mirror effect (Glanzer et al. 1993). For instance, the
attention-likelihood theory of the WFE mirror effect uses a log-
likelihood ratio to bring about this required symmetry (Murdock
1998).

We are left to consider decisions involving a mixed com-
parison: WF bins of one distribution against the aggregate of the
other. The A —®; comparison falters on two counts. First, if only
one distribution is going to receive the benefit of WF informa-
tion, it does not make sense for it to be the distribution for items
that have not been recently experienced. Second, it results in a
performance decrease with rarity, because the increasingly nega-
tive distributions have more overlap with the A distribution. The
A;—® comparison addresses both counts: cognitively and intu-
itively, it makes sense that the subject has information regarding
the WF classes of recently studied stimuli, and performance in-
creases with rarity because the old distributions are farther from
the @ distribution. There are different possible forms for a stimu-
lus-dependent criterion shift, but most allow that the criterion
must increase in the signal direction “with the memorability of
old items” (Hirshman 1995). Thus, we can tentatively delimit
certain requirements for both the discimination comparision (A;
— &) and the decision criterion (Equation [3]). The resultant WFE
has mirrored HR and FAR effects that match recognition data
(Fig. 4).

This decision process, however, is not entirely satisfactory.
The study lists here are mixed, containing words randomly
sampled from the data set, so the decision criterion needs to be
adjusted on a per-stimulus basis. As discussed, this is necessary to
achieve proper FAR trends. However, this type of criterion shift in
recognition has been controversial (Miller and Wolford 1999;
Roediger and McDermott 1999; Wickens and Hirshman 2000;
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Wixted and Stretch 2000). However, some recent cases are able to
demonstrate that subjects modulate their decision criteria on-
line according to stimulus class to optimize performance (Heit et
al. 2003; Benjamin and Bawa 2004). This strategic use of multiple
criteria may be driven by self-knowledge of the category-
dependent memorability differences of probe stimuli (Strack et
al. 2005). The multiple-criterion decision process required by
WAS-FE is in line with these observations. Note also that we
intentionally constrained our decision-making process to be
simple, plausible, and within the scope of WAS-FE.

Finally, criterion-independent performance is illustrated by
the ROC:s. For both small (Fig. 3A) and large (Fig. 3B) list sizes, the
trial-averaged ROC for the bin of LF words has higher HRs and
lower FARs than that of HF words. These characteristics corre-
spond to the Ag—® and A, —® comparisons, respectively. They
largely resemble those of other recognition models, except that
they are not symmetric around the negative diagonal. These ROC
examples also demonstrate two performance effects of the num-
ber of trained stimuli. The low-load condition (Fig. 3A) shows
high absolute performance, but a relatively small WFE; the high-
load condition (Fig. 3B), however, shows worse overall perfor-
mance, but a larger difference between LF and HF words. These
are capacity effects of the attractor-based FD mechanism. Larger
stored lists entail higher synaptic load and reduced recognition
accuracy. Further, we can infer that such capacity effects hurt the
performance of HF words more than LF words. This WF depen-
dence may be a result of the sparse encoding of HF words in the
WAS: weaker attractors are more sensitive to the perturbations of
overlearning than the strong LF-word attractors. So, for a given
reference pool size, increases in study-list length push the net-
work closer to capacity, decreasing HRs and increasing FARs, re-
gardless of WF class. This means that WAS-FE exhibits a list-
length mirror effect, which previous single-process models have
also demonstrated (Shiffrin et al. 1990; Shiffrin and Steyvers
1997; McClelland and Chappell 1998). Conversely, for constant
study-list length, this predicts better overall recognition perfor-
mance and a smaller WFE for subjects with relatively less back-
ground experience (e.g., children versus adults).

Role of contextual information

Dual-process recognition theories use asymmetric recollective
processing as the basis of the HR effect for LF words; the FAR
effect is due to error-prone familiarity processing of similarly en-
coded HF words (Guttentag and Carroll 1994, 1997; Reder et al.
2000; Arndt and Reder 2002). This account is supported by evi-
dence from pharmacological dissociation of recollection (Hirsh-
man et al. 2002; Mintzner 2003), but not to the ultimate exclu-
sion of single-process accounts (Malmberg et al. 2004). Indeed, it
seems that both familiarity and recollection are involved, but the
exact nature of their interaction is not yet definitively character-
ized (for review, see Yonelinas 2002).

As a decision-making recognition model, WAS-FE is not
purely a single-process familiarity model. In the decision com-
parison A;—®, words from the study context are treated cat-
egorically as members of their respective WF class. However,
nonstudy probes are not likewise differentiated. The contextual
distinction consists of the subject having formed stimulus cat-
egories, such as frequency, only for recently studied stimuli.
These categories then inform the decision process. Both IT cortex
and PRC are implicated in highly plastic category formation
(Erickson et al. 2000; Miller 2000; Miller et al. 2003), thus the
formation of such WF categories of recent semantic stimuli is
plausible. Also, further episodic information could allow dis-
crimination between, for example, several study lists in a session.
This could be modeled within the framework of WAS-FE by in-
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tegrating a representation of a time-varying context signal (e.g.,
Howard and Kahana 2002).

Dual-process models typically use differential recruitment of
recollective processing. Physiologically, this would be evident as
WEF-modulation of activity in regions such as the hippocampal
formation and MTL. However, WAS-FE predicts that such areas,
including PRC, differentiate old-new responses, but do not ex-
hibit frequency dependence. It also predicts that the area respon-
sible for semantic representation and processing shows WE-
modulated activity. Using event-related fMRI at retrieval, de Zu-
bicaray et al. (2005) sought to test predictions such as these and
found two main effects. First, recollection-specific MTL regions
with significant old—new responses did not show WF modula-
tion. Second, the LF word HR advantage was associated with left
lateral temporal cortex (LTC) activation. Evidence suggests that
LTC but not MTL structures are necessary for lexico-semantic
information processing (Levy et al. 2004; de Zubicaray et al.
20095). Thus, LTC is well positioned as a possible semantic input
region for familarity processing in PRC. De Zubicaray et al. (2005)
suggest that these results are consistent with context-noise mod-
els of the recognition WFE, but they are also consistent with our
account here. Recently, EEG techniques have been able to disso-
ciate verbal from nonverbal retrieval (Hwang et al. 2005), indi-
cating the possibility of investigations using higher temporal-
resolution methods. More such studies are needed to comple-
ment the large body of behavioral data.

Conclusion

In the present work, we take advantage of an empirically deter-
mined model of semantic space to demonstrate a benchmark
effect of human memory. Using the WAS as an input space for a
Hopfield model of perirhinal familiarity processing, we found a
word-frequency effect on familiarity distributions that can be
explained as a function of the small-world structure of the se-
mantic space. This structure, characterized by tight local cluster-
ing of rare words, implies that word frequency is nonintuitively
encoded into the semantic structure of language. We argue that
the model components plausibly capture the salient features, re-
spectively, of semantic representation and neurobiological famil-
iarity processing. Thus, we suggest that lexico-semantic structure
forms a causal basis for the recognition WFE. Further, we show
that a frequency-dependent criterion shift produces a WFE mir-
ror effect without requiring log-likelihood computations to bring
about old—new symmetry. This entails a role for dual-process in-
volvement in recognition contrary to previous models but con-
sistent with some recent imaging data. Finally, we hope to have
demonstrated the utility of relatively simple, but specific and
salient models of complex biological systems and likewise the
importance of establishing an appropriate interpretative context.

Methods

Signal detection

For a criterion \, a vector X is determined to be old if E(X) <\,
otherwise it is judged new. The distribution of energies from
trained vectors is distinct from that of untrained probes. Con-
sider a random and unbiased set &) of stored vectors. The distri-
bution of synaptic weights in W can be approximated by a Gauss-
ian distribution with ., = 0 and o3, = P/N?. The energy distribu-
tions for both untrained probes and stored vectors have ¢% = P/2.
The expected energy value of an untrained probe X is
(E(X)) =0, while that of a stored vector £ is (E(§")) = — N/2. Here,
the logical decision criterion would be N = —N/4, the midpoint
between the old and new energy distributions. This is the crite-
rion used by Bogacz et al. (2001b, 2002) in their signal-noise
analysis of capacity. For the semantically structured inputs con-
sidered here, \ is chosen as the midpoint between the empirical

means of the distributions. To determine HRs and FARs, we used
a WEF-based multiple-criterion decision strategy (see Discussion)
with means-based thresholds,

A; = [(E(P)) + (E(A))]/2, 3)

where E(®) is the energy distribution of the reference pool. The
HR is the fraction of stored vectors with E < \, while the FAR is
the probability for an untrained vector to have E < \. The dis-
criminability between the old (E(£°)) and new (E(£")) energy dis-
tributions is computed as the distance between means in stan-
dard deviations,

_ (BE) - (BE)

“
\V O'i + 0'(2)/2

For the experimental data in Figure 4B, d' was calculated
based on an unbiased estimator assuming underlying Gaussian
distributions: d’ = z((HR)) — z({FAR)). ROCs are constructed by
plotting HR against FAR for a range of possible decision criteria.
Better performance is indicated by an ROC curve farther from the
chance function (where HR = FAR and d' = 0) in the direction of
higher HRs and lower FARs.

d'(E(E"),E(€°)),

Experiment simulation

In an old-new item-recognition experiment, the subject studies a
list of known items from a training set. At test, the subject is
shown a list of probe items, some of which had appeared in the
training set (old items) and others that had not (new items). The
task is to judge whether each item is old or new.

Experimental subjects here are defined by ©, the random
subset of word vectors on which the Hopfield network is initially
trained (Equation [1]). Each vector in O is associated with a WF
value corresponding to the word that it represents. Using these
frequencies to index the vectors, 0 is sorted and evenly parti-
tioned into six bins with ©, containing the highest-frequency
subset and ®4 containing the lowest-frequency subset of words.
The study list for the task is defined by A, which is a random
subset of ©, such that an approximately equal number of study
items are chosen from each WF bin. That is, A comprises random
subsets A; c ©;, fori € {1...6}, such that the length of the study list
is L = X2 | Al where | A/ is the number of vectors in A; The study
list is presented to the model by retraining the network on all of
the study vectors. If £, is a matrix containing the study vectors
row-wise, then W is updated as

1.7
W— W+K]§A§A (5)

and then zeroing out diagonal terms. This procedure is analogous
to strengthening the pre-existing neural representation of the
items in a study list attended to by a subject. Specifically, this
operation doubles every weight component resulting from the
initial training of A as part of ©. All items are studied equally. The
training-set vectors not chosen for the study list composed the
reference pool, ®. Therefore, the size of the pool is the size of the
training set ® minus the study-list length |A|. The items in the
study list and the reference pool serve as the old and new probes
during test, respectively. We calculate the internal energy (Equa-
tion [2]) of each vector in O using the updated weight matrix. We
then compare the resulting sample energy distributions by cal-
culating d’ distances (Equation [4]), ROC curves, HRs, and FARs.
This process, starting with a new random © chosen from our
binarized WAS, is repeated for 2000 trials. That is, one trial here
is analogous to a new subject performing a single recognition
task. Across-trial means and confidence intervals were computed
for Figure 3 and Figure 4. Representative energy histograms were
created by accumulating energy vectors across trials and comput-
ing frequencies for 100 equally spaced bins across the range of
energies.

Neighborhood measures

First, we computed the WF dependence of the mean number of
neighbors in WAS space. Consider the metric d.,, =1 — cos(6) so
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that close neighbors have a cosine approaching 1 and a d_.s ap-
proaching 0. For every WAS vector, our algorithm traversed the
range of possible d_,, from O to 1 while counting the number of
vectors within that distance from the given vector. The mean
populations were computed for every d_, radius for each of six
WEF classes (Fig. 5A). Second, to address the question of the WF
composition of neighbors, we used a cos(f)-weighted frequency
measure. We calculated the quantity,

1,748 £ g
g = 2 <ﬁ>m<§“’>—fm(§”> ©6)
o=\l el

for all WAS vectors &, where fy(-) is the function mapping a
vector to its associated Kucera-Francis WF value. This measure
quantifies the expectation of the WF for neighbors of a given
vector. The distributions of these convolutions for the word vec-
tors of each of the six frequency classes are shown as 15-bin
histograms in Figure 5B.
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