
Journal of Experimental Psychology:
Learning, Memory, and Cognition
1993, Vol. 19, No. 3, 689-697

Copyright 1993 by the American Psychological Association, Inc.
O278-7393/93/S3.OO

OBSERVATIONS
Analysis of the List-Strength Effect

Bennet B. Murdock and Michael J. Kahana
In several articles, Shiffrin et al. (e.g., Shiffrin, Ratcliff, & Clark, 1990) argued that their data on
the list-strength effect (LSE), in conjunction with their data on the list-length effect (LLE), are
counter to current global matching memory models (GMMs). This is only true if one assumes that
the memory system is reinitialized after every list, which is an unrealistic default assumption
present in many implementations of GMMs. By making the more reasonable assumption that
memory is continuous, it is shown that TODAM (and probably other GMMs) does in fact predict
the LSE and LLE data.

The list-strength effect (LSE) refers to the effect other
items in a list have on the retention of any given item in the
list. These other items function as competition for the given
item, so the stronger they are, the poorer the retention should
be for the given item. As studied by Ratcliff, Clark, and
Shiffrin (1990) and Shiffrin, Ratcliff, and Clark (1990), the
LSE can be tested by selected comparisons between pure and
mixed lists. Pure lists contain only strong or weak items,
whereas mixed lists contain both. Strong items in a mixed list
(MS) should be retained better than strong items in a pure list
(PS) because the competition is less, but weak items in a pure
list (PW) should be retained better than weak items in a
mixed list (MW) for the same reason. In a series of exper-
iments, Ratcliff et al. (1990) and Murnane and Shiffrin
(1991a, 1991b) failed to find an LSE (but see Murnane &
Shiffrin, 1991a, Experiment 1). Basically, the result seems to
be that the composition of the list does not matter; strong
items are better retained than weak items, but equally so in
pure and mixed lists.

Because from the competition argument d'(MS) > d'(PS)
and d'(MW) < d'(PW), it follows that

Because d' = ^, one can write

d'(MS)
d'(PS) > 1.0 and

d'(MW)
d'(PW) < 1.0.

Because the first ratio is greater than 1.0 and the second ratio
is less than 1.0, it follows that the ratio of the ratios (ROR)
should also be greater than 1.0. That is,

ROR =
d'(MS)/d'(PS) d'(MS) d'(PW)

d'(MW)/d'(PW) d'(MW) d'(PS)
> 1.0.
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ROR =
jm(PW) cr(MW) o-(PS)

M-(PS) (i(MW) or(MS) cr(PW) " (1)

According to global matching memory models (the search
of associative memory [SAM] model for recalling of Gillund
& Shiffrin, 1984; the MINERVA 2 model of Hintzman, 1986,
1988; the composite holographic associative recall model
[CHARM] of Eich, 1982; the theory of distributed associa-
tive memory [TODAM] model of Murdock, 1982; and the
matrix model of Humphreys, Pike, Bain, & Tehan, 1989),
strength is a property of the items themselves independent of
the strength of other items in the list. If list length or retention
interval is controlled (as it usually is) and there is no rehearsal
borrowing, then /x(MS) = jw(PS) and /x(PW) = ju,(MW).
Thus, one can simplify ROR to

ROR =
o-(MW) CT(PS)
cr(MS) CT(PW) '

According to GMMs, all items enter into the comparison
process so cr(MW) = <x(MS). Consequently, the prediction
is

o-(PS)
(la)

However, in many experiments (e.g., Murnane & Shiffrin,
1991a, 1991b; Ratcliff et al., 1990), the obtained ROR is
generally about 1.0, and this would seem to be counter to all
GMMs.

Rehearsal borrowing is a possible complication. In a mixed
list, rehearsal time may be borrowed from strong items and
given to weak items; if this were the case, then jj.(MW) >
JA(PW) and /x(MS) < /x(PS). This difference in means could
offset the difference in variances and so lead to the obtained
results (i.e., ROR values of about 1.0).

However, as argued in Murnane and Shiffrin (1991b), if
there is rehearsal borrowing from strong to weak on a
mixed list, then on a final recognition test in which
list identity is lost so cr(MW) = cr(PW) and cr(MS) =
CT(PS), then a negative LSE (R < 1.0) would be predicted;
Equation 1 simplifies to
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In four experiments, Murnane and Shiffrin failed to find a
negative LSE in final recognition, so they concluded that
rehearsal borrowing was not counteracting a genuine LSE
on the immediate recognition test.

Yonelinas, Hockley, and Murdock (1992) used a more di-
rect approach to the study of rehearsal borrowing. They used
rapid sequential visual presentation in which items were pre-
sented at rates up to 10 items per second, and the hope was
that no rehearsal borrowing would be possible. In fact, in the
mixed list, there may have been reverse borrowing (rehearsal
or attention redirected from the weak to the strong) leading
(in two experiments) to ROR values greater than 1.0. How-
ever, when reverse borrowing was made more difficult (by
a blocked design), and in other experiments using a forced-
choice rather than a yes-no procedure, the ROR values did
not differ significantly from 1.0.

Consequently, the whole issue seems to come down to the
pure-strong to pure-weak variance ratio. If this ratio is greater
than 1.0, then you should get an LSE; but if this ratio were
1.0, then the ROR should also be 1.0. We address this issue
in this article.

TODAM

The whole thrust of the LSE enterprise is to test GMMs
on a common ground; namely, recognition memory (Rat-
cliff, Sheu, & Gronlund, 1992). Consequently, even though
many of the LSE experiments used a paired-associate for-
mat, we shall restrict our TODAM analysis to the item-
recognition case. The additional complications introduced
by the paired-associate format are beyond the scope of this
article.

In TODAM, all items are stored in a common memory
vector M. If M is initialized to zero at the start of each list,
then it will in fact only be the items in the current list that
enter into the comparison process so <r(PS) > o-(PW) and by
Equation la ROR > 1.0. This is the default assumption used
in many implementations of TODAM. But M cannot be ini-
tialized to zero at the start of each list; if it were, performance
on a final recognition test would be at chance. Not only that,
but subjects would not even be able to remember the task
instructions, that they were in an experiment, or what their
own name was. This seems rather unlikely.

Instead, it seems more reasonable to assume that memory
is continuous. The memory vector is not initialized to zero
at the start of each list or even at the start of the experiment.
(For evidence, see Estes, 1991.) Instead, it is continuous from
the past to the present, and the fact that there is a definite
starting time for the experimental situation does not alter this.
The information entered in memory is different, and subjects
can discriminate preexperimental from experimental events,
but both types of information are contained in the common
memory vector.

Can TODAM then predict the results from the LSE ex-
periments? The problem is to show not only why one does
not get an LSE, but also why one does get an LLE in com-
parable experiments or conditions. That is, performance as
measured by d' does get worse as list length increases. It

turns out that when one works out the derivations of the
model with the continuous memory assumption and uses
reasonable parameter values, this is exactly the pattern of
data one would predict. No new additions or modifications
to the model are needed. What one does need, however, is
the continuous memory assumption, and this is critical.

We use the standard TODAM model for item recognition
(e.g., Murdock & Lamon, 1988). Items are represented as
random vectors in an N-dimensional space and stored in a
common memory vector M. Features of the item are encoded
probabilistically so any given feature is encoded with prob-
ability p or not encoded (set to zero) with probability 1 - p.
As every new item is added to the memory vector, the mem-
ory vector is decremented by alpha where alpha is the for-
getting parameter. If f, is the jth item in a list of L items, then
the storage equation is

j . , +pf1.

The encoding probability p varies with presentation duration
increasing from zero at some very short duration to 1 at some
very long duration. However, it does not vary from item to
item or from trial to trial when items are repeated. The for-
getting parameter alpha does not vary with presentation du-
ration or from trial to trial; it is the same for novel items and
repeated items.

A probe item is compared with the memory vector by the
dot (or inner) product where for item f and the memory vector
M the dot product is defined as

N

f M = 2 f(i)M(i).
i = i

The dot product assesses the strength of the item in memory
or gives the familiarity of the probe item and so serves as the
basic information for a decision in a recognition test. Because
M is a common memory vector, after a single presentation
of a list of L items

so all the items enter into the comparison process. This is
what makes TODAM a GMM (Humphreys et al., 1989).

As is customary, d' is defined as the ratio of the old-item
mean to the new-item standard deviation crN. If one ne-
glects output interference (the interference or variance
from prior test items), then for a list of L items presented
R times

N 1

1 - a2L '

(Murdock, 1992; Murdock & Lamon, 1988). If R = 1, this
simplifies to

p 1 - a2L

N 1
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For the old-item mean, from the basic storage equation
= paL~k so

f*0 i 4-1 r"l T i _ •

1=1

Thus, given the parameters of the model (N, p, and a) and
the experimental conditions (R and L), one can compute
an expected d' value that one can compare with the d'
value obtained from an experiment.

This assumes memory is not continuous; the memory vec-
tor is set to zero at the start of each list. If instead one assumes
memory is continuous, if H "items" are presented before the
start of the experimental session, the experiment has S lists
of length L, q is the encoding probability for the preexper-
imental items, and p is the encoding probability for the ex-
perimental items, then after S experimental lists have been
presented

i _ nm i _ n2II 1 jyt

cr2(H,S,L) = - q « 2 S L T Z ^ 1 - a 2

That is, the first term [q(l - a2H)/(l - a2)] is the vari-
ance of the preexperimental items, and the second term
[p(l - a2SL)/(l - a2)] is the variance of the experimental
items. With independent items, the variance of a sum is the
sum of the variances, but the variance of the preexperimental
items is decremented by a2SL resulting from the presentation
of S lists of length L.

As H goes to infinity, a2H goes to zero so

a2
N = lim <72(H, S, L) = {p + «2SL(q - p)}.

Consequently, one can get an explicit expression for d' for
a recognition-memory experiment using a study-test proce-
dure. With the continuous memory assumption, it is

- a)]
(2)

By Equation la, if list length is controlled, then the ROR
is

ROR = cr(PS)/o-(PW).

Neglecting output interference, when strength is varied by
presentation duration in a mixed-list design, assuming the
usual counterbalancing conditions, if pi andp2 are the strong
(slow) and weak (fast) encoding probabilities and p* is the
encoding probability for the Sth list, then

o-2(pure) =
1

N(l - a2)

_ (J _

p*(l - a 2 L )] .
The term in braces simply subtracts the current list from all
the experimental lists to date, and this is weighted by the

average of px andp2-T n e l a s t t e r m i s t n e current list weighted
by p*. Generally, p* would be p\ for a strong list, but p2 for
a weak list.

All one has to do then is to form the ratio for ROR
and, by Equation la, if px is strong and p2 is weak, then
one has

ROR (3)
'qa2 p2)/2](a 2L - a2SL) - a2La2L)

qa
2SL p2)/2](a 2L - a2SL) p2(\ ~ «2L)

Values of ROR as a function of S are shown in Table 1 for
a = 0.995, L = 15, q = 0.7, pi =0.5, and p2 = 0.3. As can
be seen, the values of ROR are close to 1.0. In addition, there
is little build-up of proactive inhibition as the ROR does not
increase much over trials.

It is not hard to understand why the value of ROR stays
so close to 1.0. For any value of S, both the numerator and
the denominator are a linear combination of three factors: the
preexperimental variance; the variance from all prior exper-
imental lists, strong and weak; and the current list. Only the
current list is greater for a slow presentation than for a fast
presentation, but it is dwarfed by the two other components.

Why did we choose a value of alpha so close to 1.0? This
is exactly the value of alpha we needed for an application of
the model to some paired-associate data (Murdock & Hock-
ley, 1989), and because TOD AM stores item and associative
information in a common memory vector, it seems reason-
able to assume the same alpha value applies here too. Why
is q greater than p{>. Even strong items in an experimental
situation are probably weaker than average items in everyday
situations, and this is why we make q > pv

Actually, for the LSE, this implementation of the contin-
uous memory assumption is conservative. We are differen-
tially weighting the prior and the experimental variances
by q and p, and the larger the prior-item variance the less
impact any experimental manipulation will have. Prior ex-
perimental items will surely be repeated so the repetition
covariance component inflates the prior noise level consid-
erably. By neglecting this covariance component, we are in
effect magnifying the contribution of the experimental
component, and still the value of ROR is insignificantly
different from 1.0.

Table 1
Predicted Values of the Ratio of the Ratios (ROR)
From Equation 3 as a Function of S for a = 0.995,
L= 15, q = 0.7, pi = 0.5, andp2 = 0.3

S ROR
1
4
7

10
13

100

1.021
1.025
1.028
1.030
1.032

1.036
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Suppose strength is varied by repetition? Then the deri-
vation is somewhat more complex; thus, it is presented in
three Appendixes. Appendix A presents a general linearity
principle that is useful in working out derivations in such
cases. The variance of a sum of conditions is the sum of the
variances of the separate conditions, each weighted by an
interference coefficient in which the interference coefficients
reflect the lag of each condition. Appendix B derives an ex-
plicit expression for the variance of a mixed list, and Ap-
pendix C derives explicit expressions for the pure-strong,
pure-weak, and mixed lists averaged over counterbalancing
conditions. Table 2 shows the predicted ROR values with the
same parameter values, and again the same results obtain.
The predicted values of ROR are close to 1.0, and they do
not increase very much over blocks (B) of three trials.

The predicted value of ROR does increase slightly as list
length or number of repetitions increases. For instance, with
five presentations and a 20-item list, with these same pa-
rameters in the limit (i.e., as B —> °=) the predicted value of
ROR is 1.205. In Experiment 2, using a list length of 20 and
five presentations, Ratcliff et al. (1992) reported an ROR
value for their group data of 1.21 and 1.13 for the average
of the individual S's RORs, so the prediction seems quite
close.

What about the LLE? We would argue that one reason
the LLE comes about is because, on average, the study-
test lag is greater in long lists than in short lists so the
mean is different, but by the continuous memory assump-
tion the variances are essentially the same. If we neglect
output interference, to assess the magnitude of the LLE for
any given set of parameter values, we would want d'(k)
where k is the input serial position. Because d' is the old-
item mean over the new-item standard deviation, for d'(k),
we would have

d'(k) = pa (4)

Predicted values for d'(k) are shown in Table 3, so obvi-
ously one gets an LLE using the same parameter values
that generate a negligible LSE.

Do these parameter values give reasonable estimates of d'
for study-test data? Study-test d' values from Equation 2,

Table 2
Predicted Values of the Ratio of the Ratios (ROR) as a
Function of Blocks (B) of Three Trials When Strength
Is Varied by Repetition (From Appendix 3 With
Parameter Values a = 0.995, q = 0.7, p = 0.4,
H = 1,000, L = 15, and R = 3)

B ROR

100

1.026
1.063
1.080
1.087

1.092

Table 3
The List-Length Effect From Equation 4 for L = 40,
q = 0.7, p = 0.4, S = 15, a = 0.995, and N = 1,000

k 7'
40
30
20
10
1

2.00
1.90
1.81
1.72
1.64

Note. Shown is d'(k), where k is the input serial position.

which use these same parameter values with L = 20 and
N = 1,000 are shown in Table 4. These are certainly good
ballpark estimates for study-test data when one varies pre-
sentation duration (e.g., Murdock & Anderson, 1975), so
again the predictions seem quite reasonable.1

If memory is continuous, and the value of alpha is so high,
how is list discrimination possible? List discrimination
would be a joint function of the separation between the two
lists and the age of the more recent list. Consequently, list
discrimination on the basis of the d' values for the two items
in a two-alternative, forced-choice judgment of recency
would increase with the list separation but decrease with the
age of the more recent list. The d' values would depend on
the exact experimental conditions, but if the predicted
judgment-of-recency values were too low, it could be that a
value of N of 1,000 is too low. A larger value of N would
facilitate list discrimination without altering the LSE-LLE
pattern in any way. However, before working out quantitative
details for judgment-of-recency data, we need to include out-
put interference in the model because output effects are, if
anything, larger than input effects in the data (Murdock &
Anderson, 1975).

What happens to the LLE in a final recognition test?
With the continuous memory assumption, the only differ-
ence would be in the lag of an in-session or end-session
test so the LLE should be attenuated if not eliminated in an
end-session test. That is, an LLE can be generated by lag
differences, and if x and y are the lag differences for short
and long lists, ay < ax, if x < y. For an end-session test,
the ratio of x to y will be much less than for an in-session
test so the LLE will be attenuated. However, one needs to
represent output interference in the model before a quanti-
tative comparison is possible.

Does the LLE disappear in the final recognition test? The
hit rate (HR) data for short and long lists for in- and end-
sessions tests from Murnane and Shiffrin (1991b) are shown
in Table 5. One cannot directly compare in- and end-session
d' values for short and long lists because one has separate
false-alarm rates (FAR) for short and long lists tested in-
session, but a common FAR for short and long lists tested
end-session. It may instead be that the end-session LLE is

1 For the simulation, the value of N was 1,000, which may seem
large compared with some previous applications. However, for
paired-associate learning data, we needed an N of 5,000 so a value
of N of 1,000 is conservative.
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Table 4
Study-Test d' Values From Equation 2 as a Function
of p for a = 0.995, L = 20, S = 15, q = 0.7,
and N = 1,000

n d'

0.5
0.3

2.11
1.60

attenuated but not eliminated; it is hard to say because of the
obvious floor effect (chance HR is .50).2

It could be argued that by using the continuous memory
assumption, TODAM is now a different model, and there
is no guarantee that this new model explains any of the ef-
fects handled by the previous model. We would disagree
with both of these points. First, we have only changed the
assumption about the starting value of the storage equa-
tion; the storage equation itself remains unchanged, the ba-
sic encoding process (probabilistic encoding of random
vectors) is unchanged, the retrieval operation (the dot
product) is unchanged, the parameters are unchanged, and
even the parameter values are essentially the same as in
previous applications.

The storage equation is a difference equation, and any dif-
ference (or differential) equation has starting values and
boundary conditions. All we have done is to change the de-
fault assumption, emphasize that the starting value is not—in
fact cannot be—zero, and work out the implications. More-
over, even this is not a new development. In the TODAM
simulations reported in Murdock and Lamon (1988), the
memory vector was filled with random noise before presen-
tation of the first list and carried over from trial to trial.

Second, there is no reason to worry that this change
would affect previous applications. This change only af-
fects the variance, not the means, and most if not all of our
previous applications relied on mean values. If one uses
the continuous memory assumption, then the variance will
be larger, but this could be counteracted by increasing N,
and increases in N have no effect whatsoever on mean val-
ues. In fact, the increase in N could offset any variance
changes due to the continuous memory assumption, so we
feel concerns about a different model or different predic-
tions are not serious matters.

Summary

Using the standard TODAM model for item recognition,
we have derived explicit expressions for the LSE statistics

Table 5
Hit Rates for Short and Long Lists Tested In- or
End-Session for the Four Experiments of Murnane
andShiffrin (1991b)

Experiment
1
2
3
4

In-session

Short
.77
.795
.685
.76

Long
.69
.69
.705
.69

End-session
Short
.55
.565
.54
.56

Long
.52
.545
.54
.54

when strength is manipulated by stimulus duration or rep-
etition. With the continuous memory assumption, TODAM
not only can predict the general pattern of data in studies of
the LSE, but also gives reasonable quantitative estimates for
the LSE, the LLE, and the d' values for a study-test pro-
cedure with the same parameter values. Furthermore, the
predictions are much the same regardless of whether strength
is varied by presentation duration or by repetition.

In the various articles by Shiffrin and his colleagues (e.g.,
Shiffrin et al., 1990), they made some general statements
about the inability of the GMMs to predict the LSE, but they
did not work out the detailed predictions. For TODAM, their
statements only apply when memory is assumed to be ini-
tialized to zero at the start of every list. As we argued here,
this assumption is unrealistic. By using the more reasonable
continuous memory assumption, one sees that TODAM (and
probably other GMMs too) can in fact predict the results
quite accurately.

2 Why does one get an LSE in recall? In free recall, there is
output interference so in a mixed list if strong items are recalled
before weak items, then the weak items will suffer. With cued
recall, there is little or no output interference so one probably
should not expect an LSE in cued recall. Ratcliff, Clark, and
Shiffrin (1990) found no LSE in either recognition or cued recall
in Experiment 3, but a small LSE (ROR = 1.38) in cued recall.
However, Metcalfe (personal communication, April 3, 1989) did
some simulations with CHARM in which she found an LSE in
cued recall but not in item recognition.
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Appendix A

In this Appendix, we derive a general principle for computing the
variance of a multicondition experiment using a within-lists design.
If the variance of a set of items (or lists) is a2, then the variance
of this same set of items followed by another set of (independent)
items is

where CTA
2 is the attenuated variance and c depends on the number

of items (or lists) in the interfering set.
Say there are L items in the first (target) set and the storage

equation is

Then the familiarity or strength s of any probe item is the dot product
of the probe item with the memory vector M. For a new-item probe
f (no subscript),

S = f • M.

Because the items are represented by random vectors, this strength
has a mean and a variance; namely, E[s] and Var[s] where

s = f • M and M = 2 c,f,

where c, is the serial-position constant of the lth item. Consequently,

E[s] = E[f-M] = E f -2c , f , I

and

L

Var[s] = Var[f • m] = Var f • 2 c,l

Now if these items are followed by T other items, then

r (- ' V I
E[s] = E[f • M] = E f • I 2 c,f, + 2 ctf, j

and

= E f -2c , f , + E

Var[s] = Var[f • M] = Var

= Var f-2c,f, Var

because there is no covariance (the items are assumed to be inde-
pendent).

Compare the variance of the L items alone with the variance of
the L items followed by T additional items. Let the variance of the
alone condition be a2; then

a2 = Var
1

Let the variance of these same items in the interference condition

r «•
a\ = Var f - 22<Mi

where d, = aTc,. (The expression for d, is a direct consequence of
the storage equation.) Consequently,

a\ = Var f - d,f, = Var

so

a? = a2Tcr2.

Thus, in the interference condition, the alone variance is reduced by
a factor of a2T.

More generally, the same argument applies whether there are lists
of items rather than single items or whether there are several sets
of items or lists, not just two. If there is repetition within one set,
then there will be covariance within that set but not across sets. As
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an example, if g is one set and h, and h2 are the two presentations
within the second set, then

h2)]Var[f • (g +

= Vaiff • g + f • h, + f • h2]

= Var[f • g] + Var[f • h,] + Var[f •h j + 2 Cov[f • h,, f • h2],

but there is neither f • g, f • h, nor f • g, f • h2 covariance.
The implication of this analysis for the repetition manipulation

of the LSE design is that if one has explicit expressions for the
variance of the three conditions separately, then one can obtain an
explicit expression for the new-item variance at any point in the
experimental session by summing all occurrences to date of these
three conditions, each weighted by an interference coefficient that
depends only on the total number of subsequent lists for that con-
dition, as these subsequent lists are the interference for that con-
dition. To handle counterbalancing in the order of list presentation,
one must average these coefficients over all possible permutations.

Appendix B

In this Appendix, we derive an explicit expression for the mixed-
list condition of the LSE design when strength is varied by repe-
tition. If f is an N-dimensional item vector, then the standard
TODAM storage equation would be

where M is the memory vector, a is the forgetting parameter, and
p is the encoding probability. Each element in a given item vector
is encoded (added to the memory vector) with probability p or not
encoded (not added to the memory vector) with probability 1 - p.
See Murdock and Lamon (1988) for details.

For a single presentation of a list of L items (W condition), the
total strength of all items is simply

1 - a

Over counterbalancing or randomization conditions, all items
should have the same average strength so /A(W), the mean item
strength for the W condition, should be

- aT

The remaining strength values must be equally divided among the
m repeated items so

- aT m 1 - a T \ p(T - m) 1 - aT

1 - a T 1 - a mT 1 - a

These derivations for /A(W), JJ,(S), /X(MW), and /i.(MS) apply to
in-session tests, and they assume there is no output (test) interfer-
ence. They apply regardless of whether one assumes the memory
vector is cumulative over lists.3

For the variance, if one assumes that the memory vector is cleared
after each list, then for the W condition

and for the S condition, if items are presented in a fixed presentation
order, then

1 1 - a2L

For R presentations of a list of L items (S condition), the total
strength of all items is

_ RL

Again, over replications, all items should have the same average
strength so

p
L - | = ^

- «2L

l - a R L

(see Murdock, 1992; Murdock & Lamon, 1988, for details). Com-
puter simulation suggests that the same expression for (72(S) char-
acterizes a randomized presentation order, at least if a trials format
is preserved.

The variance of a sum of random variables is the sum of the
variances plus twice the covariance. With independent item vectors,
the covariance comes in when items are repeated across trials and,
with probabilistic encoding, this is proportional top2 not p. So, the
expression for cr2 is the exact counterpart of the form

For the mixed (M) condition, assume m items are presented
R times and m items are presented once for a total of T presenta-
tions, where T = mR + m = (R+ l)m. As above, the total strength
will be

~ P
1 - a T

1 - a

Any given once-presented (weak) item is equally likely to be
presented in the T possible serial positions so

3 The notion of total item strength provides a way of simplifying
the TODAM derivations. What we really have is

= E[fk • M] and /xo ju..

so the average old-item strength is simply the average of an
old-item probe fk dotted with the memory vector M (see e.g.,
Murdock, 1992; Murdock & Lamon, 1988, for a more complete
presentation).

{Appendixes continue on next page)
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used in Appendix C of Murdock and Lamon (1988).
We can use this to derive an expression for cr2(M), the new-item

variance for a mixed list. Because every slot will be filled with the
presentation of some item,

o-2(M) = '-
N 1 - a2 Cov.

The covariance term depends on the spacing of repetitions, which
in turn depends on m and R. Define the spacing v where v = T/R
so a repeated item occurs every vth position. That is, on average
there are v - 1 other items intervening between any two presen-
tations of a repeated item. There are m such repeated items followed

(on average) by 0, 1, 2, . . . , m - 1 other items. So, the covariance
term is approximately

so the variance is approximately

l ~ o 2 T 1 - a2m | Y l - a R v V l - a 2 R v

As a check, we ran some computer simulations with a com-
pletely randomized presentation order (trial format not pre-
served), with L = 3; R = 2, 3, 4, or 5; N = 100; a = .95; and
p = .5, and the predicted and obtained variances agreed well.
Consequently, the derivations may also apply to a randomized
presentation order.

Appendix C

In this Appendix, using the continuous memory assumption, we
derive explicit expressions for the variances of each of the three
experimental conditions of an LSE design as a function of trial block
when strength is varied by repetition and averaged over counter-
balancing conditions. Assume, as is usually the case, that a within-
subjects design is used and that in each block of three trials there
is one list of each of the three conditions (weak or W, mixed or M,
and strong or S) presented in random (or counterbalanced) order.
Let x, y, and z be the variance of each of the three types of lists
presented in isolation, where x = <J%,, y = a2

u, and z = cr .̂ Define
a (column) vector w where

As shown in Appendix A, at any point in the experiment, the
new-item variance is a linear combination of all the possible vari-
ance components (i.e., prior items and W, M, and S lists presented
to date) weighted by the appropriate interference coefficients, where
these interference coefficients reflect the reduction in trace strength
due to subsequent list presentations. These interference coefficients
will vary with the presentation order and with the six (3!) permu-
tations in each block of three lists. Define vectors d, e, and f for the
interference coefficients for the six permutations of the W, M, and
S conditions, respectively, where these interference coefficients at-
tenuate u, the variance component from the prior items. As noted
in the body of the text,

q 1 - a2" q
u = lim — -1 - a2 N(l - a2)'

The three vectors d, e, and f are shown below.
-,,2L

•»2L

a2(RL+L)

a2(T+RL+L)

a 2(RL+T+U

a2T

a 2 ( L + T ,

Q2(RL+T)

2(L + T + RL)

2(T+L + RL)

« '

a2(L+RL)

a 2 (T+RU

a2(L+T+RL)

a 2(T+L+RU

These three vectors represent the interference coefficients ap-
propriate for a particular condition when that particular condition

has been presented as the first, second, or third condition in a par-
ticular permutation. When presented first or third, the order of the
other two conditions does not matter, but when presented second,
the order of the other two conditions does matter.

We also need Matrices A, B, and C for the three conditions
(A for W, B for M, and C for S), and these three matrices are shown
in Table C-1. For each matrix, the rows are for the six permutations
(WMS, WSM, MWS, SWM, MSW, and SMW in that order), and
for each row, the columns are the interference coefficients for the
three conditions (W, M, and S in that order). If we define a (column)
vector r as a vector of Is (r is 6 X 1), then the average variance
for each of the three conditions in the first block of three trials is

Table C-l
Matrices A, B, and C for the Interference Coefficients
for Conditions Weak (W), Mixed (M),
and Strong (S), Respectively

A =

0
0

a2L

0
'IL+RU

a
2L

B =

0
0

a2T

0
V 2 ( T T R L )

a
27

C =

0
0
0

a 2 R L

a 2 R L

_2(L + RL)

0
0
0

,v2T
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and

fwO) = '/6rT(ud + Aw) = '/6urTd + >/6rTAw,

(T2
M(\)= '/6rT(ue + Bw) = '/6urTe + '/6rTBw,

= '/6rT(uf + Cw) = '/6urTf + '/6rTCw,

where rT is the transpose of r and T = (R + l)m where m is
the number of presentations of the strong items in the mixed-list
condition.

For the Bth block of trials, B > 1, the vectors (d, e, and f) and
the matrices (A, B, and C) have to be modified to take account of
the fact that the interference from the prior items is progressively
attenuated as B increases and the interference from prior occur-
rences of the experimental lists is progressively potentiated as B
increases. Consequently, one can write

oi(B) = '/6urTd(B) + '/6rTA(B)w,

and

(T2
M(B) = >/6urTe(B) + '/6rTB(B)w,

CT2(B) = '/6urTf(B) + '/6rTC(B)w.

To simplify the notation, let G = L + T + RL. Then G reflects
the total amount of interference in each block of trials. For the prior
items,

and

d(B) = a2Gd(B - 1),

e(B) = a2Ge(B - 1),

f(B) = a2Gf(B - 1),

= d,

= f,

so the attenuation factor is the same for all three conditions because
each block consists of one presentation of each of the three con-
ditions and the presentation order is immaterial. We have then a
simple geometric decay in the interference coefficients so

d(B) = a2(B-|)Gd,

and

e(B) = a2IB-'1Ge,

f(B) = a2(B-1)Gf.

The interference from prior presentations of the experimental
lists accumulates over the session, but in a negatively accelerated
fashion. In the second block, the variance for each condition is
the variance from the second block (0.167rTAw) for the weak
condition plus the sum of all three conditions from the first block
attenuated (on average) by a2G. In the third block, the variance
for each condition is the variance from the third block (still
0.167rTAw for the weak condition) plus the sum of all three con-

ditions from the first block attenuated (on average) by a4G plus
the sum of all three conditions from the second block attenuated
(on average) by a2C.

More generally, one can write this for the weak condition as

'/6rTA + a2G 1 -
1 - a 2

where r* is also a vector of Is (to sum over the three conditions),
but r* is 3 X 1, rather than r that is 6 X 1. We have exactly the same
expressions for the mixed and strong condition, except we substitute
Matrices B or C for Matrix A.

Because the new-item variance for each condition is simply the
(weighted) sum of the prior items and the experimental lists, to date
we have

atifl) = .167a2(B-I)0urTd
! _ a2(B-DG

.167rTA + a2G
 2G (r*)T

2

and

= .167a2(B-1)GurTe

.167rTB + a2G

o-2(B) = .167a2(B-"GurTf

1 -
(r*)T w,

1 _ a2(B-l)G
.167rTC + a2G — =- (r*)T

=
1 — a "

(r*)

This is the variance by the continuous memory assumption for each
of the three experimental conditions of an LSE experiment as a
function of trial block (B) when strength is varied by repetition.
These expressions agreed with several simulations with different
values of H (number of prior items), a, N, and L.

With these results, one can easily get an explicit expression for
ROR as a function of B because by Equation la

ROR(B) = o-s(B)

These are the values that are entered into Table 2.
It should be noted that the expressions do not just apply to

TODAM. Instead, they would apply to any GMM as long as there
is a storage equation (to get the interference coefficients) and ex-
plicit expressions for x, y, and z, the components of w, for the
variance of each of the three experimental conditions presented in
isolation. Consequently, it should be relatively easy to find out
whether the results of LSE experiments do in fact pose problems
for other GMMs.
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