The modality effect in free recall: A retrieved context account
Jesse K. Pazdera \& Michael J. Kahana | University of Pennsylvania
Computational Memory Lab
University of Pennsylvania

Methods

- Immediate free recall experiment on Amazon Mechanical Turk - 2000 participants completed 16 lists + final free recall
- Manipulated modality (M), list length (LL), presentation rate (PR) - M varied between subjects; LL and PR varied within subjects

Serial Position Effects

Recall Initiation
Probability of First Recall:

SPC by Recall Start Position:

Prior-List Intrusions

Computational Modeling
Steps:

1. Fit CMR2 to our average data (short lists only) using particle swarm optimization
2. Allowed context drift rate ($\beta_{\text {enc }}$) and strength of contextual cueing ($\gamma_{C F}$) to vary by modality - inspired by temporal distinctiveness theory (Gienberg \& swanson, 1986)
3. Grid search to identify which pair of $\beta_{\text {enc }}$ and $\gamma_{C F}$ best simulates each modality

Best-Fitting Model Predictions: \quad| Visual: $\beta_{\text {enc }}=0.4942, \nu_{C F}=0.5680$ |
| ---: |
| Auditory: $\beta_{\text {enc }}=0.5347, \nu_{C F}=0.7072$ |

Predictions of SPC by Recall Start Position:

[^0]

[^0]: CMR2 can account for modality effects in free recall by associating auditory presentation with a higher drift rate during encoding and stronger contextual cueing during retrieval
 Increased drift rate may be due to temporal dynamics of auditory presentation (vs. static visual items) Stronger contextual cueing may result from auditory/dynamic stimuli having richer sets of features Unlike most existing accounts, CMR2 can simultaneously explain both the ME and the IME
 CMR2 also predicts the patterns we observed in intrusion behavior and SPCs by start position
 A retrieved-context account can explain why "modality" effects also appear during dynamic visual presentation (e.g. lip reading, sign language, and finger spelling) (Campbell \& Dodd, 1980; rakow \& Hanson, 1985)

