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The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors
(Rescorla andWagner, 1972; Sutton and Barto, 1990). Recentwork suggests that gains and losses are ubiquitously
encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation
modulates these valence representations is not known. To address this question, we analyzed recordings from
4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative prob-
ability learning task. Using high-frequency activity (HFA, 70–200Hz) as an indicator of localfiring rates, we found
that expectation modulated reward-related neural activity in widespread brain regions, including regions that
receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted
subjects' abilities to encode stimulus–reward associations. Thus, neural signals that are functionally related to
learning are widely distributed throughout the human brain.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Theories of reinforcement learning postulate that greater learning
occurs following unexpected outcomes than following expected out-
comes (Rescorla and Wagner, 1972; Pearce and Hall, 1980; Sutton and
Barto, 1990). How the brain represents these unexpected gains and
losses has been the focus of considerable research. For example, func-
tional neuroimaging studies have identified a specialized group of
brain regions that encode reward prediction errors (Berns et al., 2001;
McClure et al., 2003; Pessiglione et al., 2006; Montague et al., 2006;
Rutledge et al., 2010; Bartra et al., 2013). Several of these regions
(e.g., ventral striatum, medial prefrontal cortex) receive prominent in-
puts from midbrain dopaminergic (DA) neurons, a neural population
known to be functionally important for reinforcement learning in
animals (Schultz et al., 1997; Reynolds et al., 2001) and humans
(Zaghloul et al., 2009; Ramayya et al., 2014a).

Recent evidence raises the possibility that the neural processes that
support reinforcement learning may extend beyond regions that are
heavily innervated by dopamine neurons. Vickery et al. (2011) used
multi-voxel pattern analysis to decode outcome valence from activity
in almost every cortical and subcortical region in the human brain.
However, because this study did not assess reward expectation, the
niversity of Pennsylvania, 3401
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extent towhich thesewidespread valence signals reflect reward predic-
tion errors that are functionally important for learning is not known. If
reinforcement learning is a widespread brain process, one would pre-
dict that valence representations throughout the brain would bemodu-
lated by reward expectation.

To test this hypothesis, we obtained intracranial electroencephalog-
raphy (iEEG) recordings from the cortex and medial temporal lobe
(MTL) of 39 patients with drug-refractory epilepsy as they performed
a two-alternative probability learning task. We studied changes in
high-frequency activity (HFA; 70–200 Hz) at individual electrodes, an
established indicator of local spiking activity (Manning et al., 2009;
Ray and Maunsell, 2011) that can be used to study heterogeneous pat-
terns of activity within a region (Bouchard et al., 2013a). We identified
putative valence signals that demonstrated differential HFA following
positive and negative outcomes and we then assessed their relation to
trial-by-trial estimates of reward expectation. In this way, we sought
to characterize the anatomical distribution of expectation-modulated
valence signals and assess their functional relevance for learning.

Materials and methods

Subjects

Patients with drug-refractory epilepsy underwent a surgical proce-
dure in which grid, strip, and depth electrodes were implanted in
order to localize epileptogenic regions. Clinical circumstances alone
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determined number of implanted electrodes and their placement. Data
were collected from Thomas Jefferson University Hospital (TJUH) and
the Hospital of University of Pennsylvania (HUP) in collaboration with
the neurology and neurosurgery departments at each institution. Our
research protocol was approved by the Institutional Review Board at
each hospital and informed consentwas obtained from the participants.
In total, we recorded neural activity from 39 subjects (12 females, seven
left-handed, mean age 37 years).

Reinforcement learning task

Subjects performed a two-alternative probability learning task,
which has been previously used to study reinforcement learning and
value-based decision making (Fig. 1; Frank et al., 2004, 2007; Zaghloul
et al., 2012). During the task, subjects selected between pairs of
Japanese characters (“items”) and received positive or negative feed-
back following each choice. Subjects were informed that one item in
each pair carried a higher probability of positive feedback than the
other item, and were asked to select items that maximized their proba-
bility of obtaining positive feedback. On a given trial, the items were
a
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Fig. 1. Reinforcement learning task, and subjects' behavior, and electrode locations. a. Subjects
received positive or negative audio-visual feedback following each choice. b. Average tenden
item pair. Error bars represent s.e.m. across subjects. c. iEEG electrodes from each subject were
strip and grid electrodes on the cortical surface, and depth electrodes targeting the medial tem
and parietal lobes to supplement surface recordings (not shown).
simultaneously displayed on the screen; one on the left side and one
on the right side. They were presented on a dark gray background in
white font. The items remained on the screen until subjects responded
by pressing the left or right “SHIFT” button on a keyboard (to select
the item on the left or right side of the screen, respectively). Once a re-
sponse was registered by the computer, the selected item was
highlighted in blue, and feedback was provided immediately. In the
event of positive feedback, we presented a green screen and the sound
of a cash register. In the event of negative feedback, we presented a
red screen and the sound of an error tone. The colored screen was
presented for 2 s. There was a 0–400ms jitter between successive trials.
Items were randomly arranged on the left or right side of the screen
from trial to trial.

During a session, subjects were presented with up to three novel
item pairs, each carrying a distinct relative reward rate (80/20, 70/30,
or 60/40). This feature of the task allows for the study of value-basedde-
cision making in a subsequent stage of the experiment that is not con-
sidered in this study (Frank et al., 2007; Zaghloul et al., 2012). Distinct
item pairs were presented in a randomly interleaved manner. Reward
rates associated with each item were determined randomly prior to
b
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selected between pairs of Japanese characters on a computer screen and probabilistically
cy towards selecting the high-probability item during the first and last 10 trials of each
localized to a common anatomical space (see Materials and methods section). We show

poral lobe on the axial slice. On rare occasions, depth electrodes were placed in the frontal
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each session and fixed throughout the experiment. Each session began
with the exclusive presentation of a single item pair (random selection
of a relative reward rate). If participants met a minimum performance
criteria on the given item pair over a block of 10 trials (i.e., accuracy
≥60% for 80/20 or 70/30 pairs, or ≥50% for the 60/40 pair), a second
item pair was introduced and randomly interleaved along with the
first item pair. A third item pair was only introduced in subjects that
met the performance criteria on the two item pairs already introduced.
Participants performed a total of 107 sessions (each subject performed
an average of 2.82 sessions), with an average of 130 trials per session.

iEEG recordings

Subdural (grids and strips) and depth electrodes were spaced
10 mm and 8 mm apart, respectively. iEEG was recorded using a
Nihon-Kohden (TJUH) or Nicolet (HUP) EEG system. Based on the
amplifier and the discretion of the clinical team, signals were sampled
at either 512, 1024, or 2000 Hz. Signals were converted to a bipolar mon-
tage by taking the difference of signals between each pair of immediately
adjacent electrodes on grid, strip, or depth electrodes. The resulting
bipolar signals were treated as new virtual electrodes (henceforth
referred to as “electrodes” throughout the text), originating from the
midpoint between each electrode pair (Burke et al., 2013). Analog
pulses synchronized the electrophysiological recordings with behavioral
events.

Extracting high-frequency activity from iEEG recordings

We convolved segments of iEEG recordings (1000 ms before feed-
back onset to 2000 ms after onset, plus a 1000 ms flanking buffer)
with 30 complex valued Morlet wavelets (wave number 7) with center
frequencies logarithmically spaced from 70 to 200 Hz (Addison, 2002).
We first squared and then log-transformed the wavelet convolutions,
resulting in a continuous representation of log-power surrounding
each feedback presentation. We averaged these log-power traces in
200ms epochswith 190ms overlap surrounding feedback presentation
(−1000–2000 ms), yielding 281 total time intervals surrounding
feedback presentation. To identify HFA, we averaged power across all
frequencies (ranging from 70 to 200 Hz). We z-transformed HFA
power values within each session by the mean and standard deviation
of task-related HFA recorded from that session (0–500 ms post-
stimulus, −750–0 ms pre-choice, and 0–2000 ms post-feedback).
Henceforth, we refer to z-transformed HFA values as HFA.

Assessing HFA differences between positive and negative outcomes

For each electrode, we identified temporally-contiguous HFA differ-
ences between positive and negative feedback by performing a cluster-
based permutation procedure that accounts for multiple comparisons
(Maris and Oostenveld, 2007). As suggested by Maris and Oostenveld
(2007), we began by performing an unpaired t-test at each time interval
comparing HFA distributions associated with all positive and negative
feedback trials performed by the subject. Using an uncorrected
p = 0.05 as a threshold, we identified the largest cluster of temporally
adjacentwindows that showed positive t-statistics (greater HFA follow-
ing positive compared to negative outcomes), and the largest cluster of
temporally adjacentwindows that showed negative t-statistics (greater
HFA following negative compared to positive outcomes). By taking the
sum within each of these clusters, we computed positive and negative
“cluster statistics”, respectively. To assess the statistical significance of
each cluster statistic,we generated a null distributionof cluster statistics
based on 1000 iterations of shuffled data (on each iteration, positive
and negative feedback labels were randomly assigned to HFA traces
recorded during the session). Based on where each cluster statistic fell
on the null distribution, we generated a one-tailed p-value for each ef-
fect. We considered an effect to be significant if it was associated with
a one-tailed p-value b 0.025, thus, the false-positive rate of identifying
either a positive or negative cluster at a given electrode was set at 5%.

Assessing the frequency of a particular effect across subjects

To assess whether a particular effect was more frequently observed
by chance across subjects, we performed the following procedure
(“counts t-test”). In each subject, we counted the number of significant
electrodes that we observed (“true counts”), and generated a binomial
distribution of counts values expected by chance (“null counts
distribution”), based on the number of available electrodes in that
subject and the false-positive rate associatedwith the test. We obtained
a z-scored counts value in each subject by comparing the true counts
value to the null counts distribution. We then assessed whether distri-
bution of z-scores across subjects deviated from zero via a one-sample
paired t-test; positive t-statistics suggest that the effect was more
frequently observed than by chance, and negative t-statistics suggest
that the effectwas less frequently observed than by chance.When com-
paring the frequencies of two-effects across subjects (e.g., reward and
penalty effects), we performed a paired counts t-test in the following
manner.Within each subject, we obtained z-scored counts values for re-
ward and penalty effects based on the null counts distribution as de-
scribed earlier, and compared the distributions of reward- and
penalty-related z-values across subjects (via paired t-test). Positive z-
values indicate that reward effects occurred more frequently than pen-
alty effects, whereas negative values indicate that penalty effects oc-
curred more frequently than reward effects. We corrected for multiple
comparisons using a false discovery rate (FDR) procedure (Benjamini
and Hochberg, 1995).

Electrode localization

Surface electrodes (strips and depths) were manually identified on
each post-operative CT scans and transformed to a common cortical sur-
face representation to allow for comparisons across subjects. We
employed FreeSurfer (Dale et al., 1999) to generate a cortical surface
representation that was representative of our patient population,
which includes individuals undergoing intracranial EEG monitoring for
drug-refractory epilepsy. We did this by generating cortical surface
reconstructions for a large group of patients who volunteered to partic-
ipate in our research studies. We included patients for whom a pre-
operative MRI was available from which a cortical surface could be
modeled (n= 62). Along with subjects who participated in the current
study, this group included subjects who participated in previous studies
conducted by our group (e.g., Burke et al., 2013). We aggregated these
surfaces to generate an average cortical surface representation, which
was co-registered to the MNI152 brain (Fischl et al., 1999). Each point
on this surface representation was automatically assigned an anatomi-
cal label based on a manually-labeled anatomical atlas (Desikan et al.,
2006). To map electrode coordinates from the CT scan onto the cortical
surface, we registered each post-operative CT scan to the average
cortical surface using a rigid-body 6 degrees-of-freedom affine transfor-
mation algorithm, and manually adjusted each transform such that
electrodes were positioned as close to the cortical surface as possible.
Finally, electrodes were “snapped” to the cortical surface by moving
each electrode to the nearest point on the gyral surface (mean deviation
of all electrodes was 2.16 mm; 95% of electrodes were moved less than
5.53 mm). We assigned an anatomical label to each bipolar pair of
electrodes based on the location on the cortical surface that was closest
to the midpoint between the two electrodes. Depth electrodes were
manually localized by a neuroradiologist using a post-operative MRI
scan. To visualize these depth electrodes in a common anatomical
space, we transformed them to MNI coordinates using the same
CT-to-average surface transformation described above. However, we
did not snap depth electrodes to the cortical surface. Depth electrodes
were visualized on a MNI brain slice generated using the WFU pick
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atlas toolbox (Maldjian et al., 2003). We categorized bipolar electrodes
into several regions of interest (ROIs) based on their associated anatom-
ical labels (Table 1). We defined ROIs in order to segregate regions that
might be expected to demonstrate distinct functional patterns based on
prior fMRI studies of reinforcement learning (Vickery et al., 2011; Kahnt
et al., 2011; Bartra et al., 2013), while ensuring an adequate number of
electrodes within each region for across-subject group analyses.

Estimating reward expectation

To obtain trial-by-trial estimates of reward expectation, we fit a
standard reinforcement learning model to each subjects' behavioral
data (Sutton and Barto, 1990). Because our goal was tomodel choice be-
havior during learning, we only considered behavioral data from item
pairs where subjects demonstrated evidence of learning (we required
N70% accuracy on the last 10 trials and N50% accuracy overall). The Q-
model maintains independent estimates of reward expectation (Q)
values for each option i at each time t (Sutton and Barto, 1990). The
model generates a choice on each trial by comparing the Q values of
available options on that trial according to:

Pi tð Þ ¼ exp Qi tð Þ=βð ÞX

j

exp Q j tð Þ=β� � ; ð1Þ

where β is a parameter that controls the level of noise in the decision
process (Daw et al., 2006). When β = 0 the model deterministically
chooses the highest value option;when β=∞ themodelwill randomly
choose among the set of possible options. Once an item is selected by
the model, feedback is received, and Q values are updated using the
following learning rule: Qi(t + 1) = Q i(t) + α[R(t) − Q i(t)], where
R(t) = 1 for correct feedback, R(t) = 0 for incorrect feedback, and α is
the learning rate parameter that adjusts the manner in which previous
reinforcements influence current Q values (0 ≥ α ≤ 1). Large α values
heavily weight recent outcomes when estimating Q, whereas small
α values incorporate reinforcements from many previous trials. We
identified the best-fitting parameters for each subject by performing a
grid-search through the two dimensional parameter space (α, learning
rate, and β, noise in the choice policy, 0.01 to 1, with a step size of 0.1)
and selected the set of parameters that minimized the mean squared
error between the model's predictions of subjects' choices (i*), and
subjects' actual choices. To quantify the model's goodness-of-fit, we
compared each subject's mean squared error value to a null distribution
of mean squared errors generated for that subject's data based on a
random guessing model (p = 0.5 for all choices, 10,000 iterations).
Based on this comparison, we obtained a p-value describing the false-
positive rate associated with the observed mean squared error for that
Table 1
Regions of interest. Anatomical labels used to define regions of interest.

Region of interest Desikan–Killiany Atlas labels

Orbitofrontal cortex (OFC) Medialorbitofrontal, lateralorbitofrontal
Dorsolateral prefrontal
cortex (dlPFC)

Rostralmiddlefrontal, caudalmiddlefrontal

Ventrolateral prefrontal
cortex (vlPFC)

Parstriangularis, parsopercularis, parsorbitalis

Anterior medial frontal Superiorfrontal, rostralanteriorcingulate,
caudalanteriorcingulate

Posterior medial frontal Paracentral, posteriorcingulate, isthmuscingulate
Sensorimotor Precentral, postcentral
Parietal Superiorparietal, supramarginal, inferiorparietal
Temporal Banksts, transversetemporal, banksts, middletemporal,

inferiortemporal, superiortemporal
Fusiform Fusiform
Occipital Cuneus, lateraloccipital, lingual, pericalcarine
Medial temporal lobe (MTL) Entorhinal, parahippocampal; depth electrodes

labeled as hippocampal, enterorhinal, perirhinal,
or parahippocampal by neuroradiologist
subject. In all subjects, the best-fittingparameters provided a better pre-
diction of choice behavior than the random guessing model (FDR-
corrected p's b 0.001). We describe mean best-fitting parameters and
goodness-of-fit data in Table 3.

Data sharing

The behavioral and neural data used in this study are freely available
online at (http://memory.psych.upenn.edu/ElectrophysiologicalData).

Results

39 subjects selected between pairs of Japanese characters (“items”)
and received positive or negative feedback following each choice
(Fig. 1a). Subjects were informed that one item in each pair carried a
higher reward probability than the other, and that their goal was to
maximize their probability of obtaining positive feedback. During each
session, subjects were presented with multiple item pairs in an inter-
leaved manner, with each item pair carrying distinct relative reward
rates (see Materials and methods section). To assess whether subjects
demonstrated learning during the task, we tested the null hypothesis
that subjects did not demonstrate a tendency towards selecting the
high probability item.We found that subjects demonstrated a tendency
towards choosing the high-probability item both during the first 10
trials (t(38) = 4.84, p b 0.001) and during the last 10 trials of an
item pair (t(38) = 7.24, p b 0.001). Furthermore, we found that
subjects were more likely to select the high probability item during
the last 10 item pair presentations as compared to the first 10 item
pair presentations (t(38) = 5.11, p b 0.001; Fig. 1b), suggesting that
subjects demonstrated learning during the task.

Theories of reinforcement learning posit that individuals alter
decisions based on learning signals which integrate information about
outcome valence and reward expectation (Rescorla and Wagner,
1972; Sutton and Barto, 1990). To characterize the neural representa-
tions of these learning signals, we first identified neural populations
that demonstrated distinct activity following positive and negative
outcomes. We refer to these signals as “putative valence” signals be-
cause in addition to valence, positive and negative feedback conditions
also differ in low-level sensory features. We obtained intracranial elec-
troencephalography (iEEG) recordings from 4306 surface and depth
electrodes located throughout the cortex andMTL (Fig. 1c). We focused
our analyses on HFA (70–200 Hz), an iEEG feature that has been
correlated with local neural firing rates (Manning et al., 2009; Ray and
Maunsell, 2011), and thereby provides a spatio-temporally precisemea-
sure of local neuronal activity (Buzsaki et al., 2012; Burke et al., 2014).
Rather than averaging activity within regions of interest, we studied
HFA changes at individual electrodes in order to extract information
from regions that may demonstrate heterogeneous representations of
outcome valence and reward expectation (Bouchard et al., 2013b).

We identified electrodes that showed significant HFA differences
between positive and negative feedback (cluster-based permutation
procedure; Materials and methods section). We found that 2121 elec-
trodes (49.3%) demonstrated HFA differences between positive and
negative outcomes; 860 electrodes (19.9%) showed positive effects
(relatively greater HFA following positive feedback, “reward electrodes”)
and 1012 electrodes (23.5%) showed negative effects (relatively greater
HFA following negative feedback, “penalty electrodes,” Fig. 2a). We also
observed a small subset of electrodes (n=249, 5.78%) that demonstrated
both positive and negative effects during distinct time intervals. To assess
whether a particular effect wasmore frequently observed across subjects
than expected by chance, we performed an across-subject t-test on
z-transformed counts values (“counts t-test,” Materials and methods
section). Across subjects, we observed reward and penalty electrodes at
above-chance frequencies (t(38) N 8.94, p b 0.001, each effect was associ-
ated with a false-positive rate of 5%). We focus the remainder of our
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Fig. 2.Anatomical distribution of positive and negative outcome signals. a. Fraction of reward (orange) and penalty (blue) electrodes among all recorded electrodes. b. Fraction of positive
and negative electrodes in each ROI. See Table 2 for statistics.
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analyses on electrodes that exclusively showed a positive or a negative
effect (henceforth, “putative valence-encoding electrodes”).

To study the anatomical distribution of putative valence signals, we
registered electrodes from each subject to a common anatomical space
(Materials and methods section). In several ROIs (Table 1), we assessed
whether putative valence-encoding electrodes were more frequently
observed than chance (Fig. 2). We only considered ROIs where we re-
corded neural data from at least five subjects. In 13 of the 21 ROIs that
met this criteria (including lateral temporo-parieto-prefrontal regions,
anterior medial prefrontal cortex, and the fusiform gyrus), we found
that subjects showed both reward and penalty electrodes more fre-
quently than expected by chance (counts t-test, FDR-corrected
p's b 0.05; see Table 2 for statistics). In four regions (left and right
orbitofrontal cortices, left MTL, and left parietal lobe), we observed re-
ward electrodes more frequently than expected by chance. In two re-
gions (right occipital and left ventrolateral prefrontal cortices), we
only observed penalty electrodes more frequently than expected by
chance. Overall, we frequently observed putative valence-encoding
electrodes in 19 of the 21 ROIs that we studied, suggesting that
Table 2
Frequency of valence-encoding electrodes. For each region, we list the number of electrodes (co
frequency of penalty electrodes (column 4). Positive t-statistics indicate frequencies that are gr
expected. Bold texts in columns 3 and 4 indicate regions that showed valence-encoding electr

Region of Interest Number of
electrodes

Number of
subjects

L. OFC 48 15
R. OFC 67 16
L. dlPFC 223 21
R. dlPFC 246 19
L. vlPFC 92 18
R. vlPFC 65 16
L. anterior medial frontal 138 16
R. anterior medial frontal 149 18
L. posterior medial frontal 28 7
L. sensorimotor 277 23
R. sensorimotor 262 20
L. parietal 373 26
R. parietal 267 19
L. temporal 677 28
R. temporal 457 27
L. fusiform 98 23
R. fusiform 97 17
L. occipital 162 20
R. occipital 84 19
L. MTL 100 19
R. MTL 52 12
valence representations are widely distributed throughout the cortex
and MTL.

If these putative valence-encoding signals represented learning
signals, then onewould expect their activity tomodulate by subjects' re-
ward expectation during the task. To assess whether this was the case,
we studied the relation between reward expectation and mean HFA
during time intervals that we observed significant valence-related dif-
ferences in activity (identified using our cluster-based permutation pro-
cedure, Materials and methods section). Because our goal was to study
neural processes related to learning, we only considered neural and be-
havioral data from item pairs in which subjects demonstrated evidence
of learning (N70% accuracy on last 10 trials, and N50% accuracy overall).
1315 valence-encoding electrodes (from 26 subjects) were recorded
during trials which met this criteria. We did not exclude any periods
of time (e.g., early vs. late trials) by applying this learning criterion;
rather, we excluded individual stimulus pairs that particular patients
were unable to learn. We obtained qualitatively similar results when
replicating the analyses described belowwithout applying any learning
criteria.
lumn 1), number of subjects (column 2), frequency of reward electrodes (column 3), and
eater than expected, whereas negative t-statistics indicate frequencies that are lower than
odes more frequently than expected by chance (FDR-corrected p b 0.05).

Frequency of reward electrodes;
counts t-test results

Frequency of penalty electrodes;
counts t-test results

0.33; t(14) = 3.72; p = 0.002 0.08; t(14) = 0.460; p N 0.5
0.33; t(15) = 3.10; p = 0.007 0.13; t(15) = 1.44, p = 0.17
0.23; t(20) = 5.97, p b 0.001 0.22; t(20) = 4.46, p b 0.001
0.19; t(18) = 3.86, p = 0.001 0.47; t(19) = 5.32, p b 0.001
0.20; t(17) = 2.15, p = 0.046 0.21; t(17) = 3.39, p = 0.003
0.22; t(15) = 2.33, p = 0.034 0.37; t(15) = 3.12, p = 0.007
0.30; t(15)2.91, p = 0.010 0.25; t(15) = 3.89, p = 0.001
0.22; t(17) = 4.05, p b 0.001 0.33; t(17) = 3.30, p = 0.004
0.18; t(6) = 1.60, p = 0.16 0.32; t(6) = 2.19, p = 0.07
0.15; t(22) = 3.97, p b 0.001 0.32; t(22) = 4.06, p b 0.001
0.17; t(19) = 2.68, p = 0.015 0.32; t(19) = 3.67, p = 0.002
0.25; t(25) = 5.53, p b 0.001 0.11; t(25) = 2.14, p = 0.042
0.24; t(18) = 3.70, p = 0.002 0.19; t(18) = 2.66, p = 0.016
0.18; t(27) = 5.05, p b 0.001 0.20; t(18) = 2.17, p = 0.052
0.16; t(26) = 3.72, p = 0.001 0.23; t(26) = 4.54, p b 0.001
0.17; t(22) = 3.42, p = 0.002 0.13; t(22) = 4.87, p b 0.001
0.18; t(16) = 3.13, p = 0.007 0.28; t(16) = 3.06, p = 0.008
0.13; t(19) = 2.55, p = 0.020 0.28; t(19) = 3.60, p = 0.002
0.13; t(18) = 1.19, p = 0.25 0.37; t(18) = 3.26, p = 0.004
0.32; t(18) = 4.36, p b 0.001 0.05; t(18) = 0.25, p N 0.5
0.27; t(11) = 2.17, p = 0.052 0.17; t(11) = 1.51, p = 0.157
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Given the heterogeneity in the neural data observed in our previous
analysis, we sought to identify the subset of valence-encoding elec-
trodes that were modulated by reward expectation. To obtain trial-by-
trial estimates of reward expectation, we fit a standard-reinforcement
learning model to each subject's behavioral data (Sutton and Barto,
1990; Materials and methods section; Table 3). Because distinct item
pairs were presented in an interleaved manner, reward expectation es-
timates were dissociated from time during the task (Fig. 3a). For each
valence encoding electrode, we studied the relation between HFA and
reward expectation, separately following positive and negative feed-
back, using the following regression model :Y = β0 + βQQ + βtT.
Here, Y is a vector containingHFA values,Q is a vector containing expec-
tation values, and T tracked number of times a given item pair had been
previously presented in order to account for any novelty-related chang-
es in HFA. We considered an electrode to show an expectation-related
effect if there was a significant βQ coefficient (t-statistic, p b 0.05) asso-
ciated with HFA following positive or negative feedback. This linear
model, thatwas applied to each electrode's neural data, assumes the fol-
lowing: 1) HFA (Y) demonstrates a linear with each independent vari-
able (Q and T), 2) each trial provides an independent observation of
behavioral and neural data, 3) homoscedastic error distributions associ-
ated with each independent variable, and 4) normality of the error
distribution.

Because of the previous neural descriptions of learning-related feed-
back signals (Bayer and Glimcher, 2007; Bromberg-Martin et al., 2010),
we did not have any a priori hypotheses regarding the specific relation
between HFA and reward expectation. We refer to electrodes that
demonstrated any expectation-related modulation of post-reward or
post-penalty HFA as “putative learning electrodes”. We identified 433
putative learning electrodes (32.9% of valence-encoding electrodes), a
more frequent occurrence than expected by chance (counts t-test,
t(25) = 6.10, p b 0.001; false-positive rate = 10%). Two example
putative learning electrodes are shown in Fig. 3b.

To characterize the anatomical distribution of putative learning elec-
trodes, we studied the proportion of valence-encoding electrodes that
were modulated by reward expectation in several ROIs (Fig. 4a). We
only included regions in which we identified valence-encoding elec-
trodes from at least five subjects (after filtering data based on our learn-
ing criteria). We found that putative learning electrodes were more
frequently observed than expected by chance in several ROIs (Table 4,
counts t-test, FDR-corrected p b 0.05). In addition to prefrontal regions,
where they have previously been described, we also frequently ob-
served putative learning electrodes in occipital, temporal and parietal
regions, where they have rarely been described. We observed a trend
towards these signals occuringmore frequently in the right hemisphere
than in the left hemisphere (t(17)=−1.89, p=0.076). Thus, putative
learning electrodes were widely distributed throughout the human
brain and showed a trend towards greater prominence in the right
hemisphere.

Having characterized the anatomical properties of putative learning
electrodes, we sought to study their functional properties. Particularly,
wewanted to study themanner inwhichHFA at valence-encoding elec-
trodes was modulated by reward expectation, in order to shed light on
the manner in which these neural signals integrate information about
valence and reward expectation. Because previous monkey single-unit
studies have shown that cortical neurons frequently encodeunexpected
outcomes with increases in firing rate (Asaad and Eskandar, 2011), one
might expect to frequently observe post-reward HFA and post-penalty
HFA to demonstrate opposing relations with reward expectation.
Table 3
Summary of Q model fits. Mean (± s.e.m. across subjects) shown for best-fitting
parameter values and goodness-of-fit measures (see Materials and methods section).

α β Mean sq. error Mean sq. error (null)

.20 (±0.04) 0.23 (±0.04) 0.14 (±0.01) 0.26 (±0.01)
Post-reward HFA should demonstrate a negative relation with reward
expectation, indicating that HFA is greater when reward expectation is
low (unexpected rewards), compared to when reward expectation is
high (expected rewards). In contrast, post-penalty HFA should show a
positive relationwith reward expectation, indicating that HFA is greater
when reward expectation is high (unexpected penalties), compared to
when it is low (expected penalties). Consistent with this view, we
found that post-reward HFA more frequently showed a negative rela-
tion with reward expectation (n = 222, 16.8%) than a positive relation
with reward expectation (n = 59, 4.49%, counts t-test, t(25) = 3.12,
p=0.004), whereas post-penalty HFA more frequently showed a posi-
tive relation with reward expectation (n = 130, 9.89%t, t(25) = 2.35,
p = 0.027, Fig. 4b). Thus, the most common patterns of expectation-
related modulations in HFA were consistent with representations of
unexpected rewards and penalties (“UR” and “UP,” respectively). We
observed minimal overlap between these groups of electrodes as only
1.7% of valence-encoding electrodes demonstrated both patterns of
activity. We observed UR electrodes more frequently than expected by
chance in several right hemisphere ROIs (occipital, fusiform, temporal,
and ventrolateral prefrontal; FDR-corrected p b 0.05), and a trend
towards this effect in the left temporal and right sensorimotor ROIs
(uncorrected p b 0.05). We observed trends towards observing UP elec-
trodes more frequently than expected by chance in the right temporal,
parietal, and sensorimotor ROIs (uncorrected p b 0.05).

If UR andUP electrodes reflect neural signals that guide learning, one
might expect to observe a correlation between the strength of
expectation-related changes in these electrodes and subjects' learning
during the task. Tomeasure the strength of these signals in each subject,
we averaged the t-statistics associated with post-reward βQ among all
UR electrodes and the post-penalty βQ among all UP electrodes in that
subject, respectively. To index learning during the task, we computed
the mean tendency that each subject showed towards choosing the
high-probability item during the last 10 trials of each item pair
(“accuracy”). Across subjects, we observed a significant correlation be-
tween accuracy and the strength of UR representations (r = 0.65,
p b 0.001, Fig. 4c), but did not observe such a correlation with UP repre-
sentations (p N 0.5). These results demonstrate that the strength of UR
neural signals was correlated with subjects' learning during the task,
suggesting that these electrodes reflect neural processes that are func-
tionally relevant for learning.

Discussion

Bymeasuring intracranially-recorded high-frequency activity (HFA)
as neurosurgical patients performed a two-alternative probability
learning task, we found a significant number of electrode sites for
which HFA distinguished between rewards and penalties. The broad
anatomical distribution of valence-encoding electrodes is consistent
with the findings of a recent fMRI study that used multi-voxel pattern
analysis to decode outcome valence from almost all human brain re-
gions (Vickery et al., 2011). Inmost brain regions sampled, we observed
strongly heterogeneous responses, with a mixture of recording sites
exhibiting relative HFA increases following rewards andother recording
sites exhibiting relative HFA increases following penalties. Because HFA
is thought to reflect the summed activity of a large population of local
neurons (Nir et al., 2007; Ray et al., 2008; Miller, 2010; Burke et al.,
2015), our results suggest that neuronal populations in most human
brain regions encode outcome valence in a heterogeneous manner
(i.e., some neurons show relative increases following rewards, whereas
others show relative increases following penalties). Such heteroge-
neous encoding patterns have been demonstrated in cortical regions
by several monkey single-unit studies during reinforcement learning
(Matsumoto et al., 2007; Asaad and Eskandar, 2011), and have
been suggested as a reason why univariate functional neuroimaging
studies may not be able to detect many cognitive signals when averag-
ing activity within brain regions (Wallis and Kennerley, 2011). Such
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heterogeneous neural patterns may also explain recording sites that
demonstrated relative reward- and penalty-related increases in HFA
during distinct time intervals (Fig. 2).

Theories of reinforcement learning posit that individuals learn by
encoding reward prediction errors that result in greater learning follow-
ing unexpected outcomes than following expected outcomes (Bush and
Mosteller, 1951; Rescorla and Wagner, 1972; Sutton and Barto, 1990).
To assess whether these broadly distributed valence signals were
related to reinforcement learning, we assessed the degree to which
they were modulated by reward expectation. At each valence-
encoding electrode, we correlated HFA during the time interval that
HFA distinguished between rewards and penalties to trial-by-trial esti-
mates of reward expectation (by applying a regression framework
that controlled for variation in time on task and stimulus novelty). To
obtain reliable trial-by-trial estimates of reward expectation, we only
included behavioral and neural data from stimulus pairs for which sub-
jects demonstrated evidence of learning.Wewanted to test the hypoth-
esis that electrodes that encoded both outcome valence and reward
expectation (putative learning electrodes) were widely distributed
throughout the brain.

We found that reward expectation reliably modulated valence
signals in several regions of interest, including those in prefrontal,
sensori-motor, parietal, temporal, and occipital cortices (Table 4).
Whereas functional neuroimaging studies have primarily identified
neural populations that encode putative learning signals in brain
regions that receive prominent inputs from dopaminergic neurons
(e.g., ventral striatum, medial prefrontal and orbitofrontal cortices;
Berns et al., 2001;McClure et al., 2003; Pessiglione et al., 2006; Rutledge
et al., 2010), we observed putative learning signals both in regions that
receive prominent DA inputs (e.g., lateral prefrontal regions, and trends
towards significance in medial and orbitofrontal cortices), and
those that receive only sparse inputs from midbrain DA neurons
(e.g., parietal, temporal, and occipital regions; Haber and Knutson,
2009). We did not observe a significant frequency of putative learning
electrodes in the medial temporal lobe (recently linked to reinforce-
ment learning; Foerde and Shohamy, 2011), however, this may be due
to reduced power due to relatively low electrode counts. These results
provide electrophysiological support for the emerging view that rein-
forcement learning is driven bywidespread learning signals throughout
the human brain.

Our results also shed light on themanner inwhich the brain encodes
learning signals. At electrode sites that encoded learning signals, we
found that post-reward HFA typically showed a negative relation with
reward expectation (indicating greater HFA following unexpected com-
pared to expected rewards), whereas post-penalty HFA typically
showed a positive relation with reward expectation (indicating greater
HFA following unexpected penalties to expected penalties). These re-
sults suggest that neural populations in the human brain typically en-
code unexpected outcomes with increases in firing rate, an encoding
scheme that has been commonly demonstrated in cortical neural popu-
lations by monkey single-unit studies (Matsumoto et al., 2007; Asaad
and Eskandar, 2011; Wallis and Kennerley, 2011). Because we typically
observed representations of unexpected rewards and penalties on dis-
tinct electrodes, our results suggest that the brainmay adopt a distribut-
ed and opponent-encoding scheme to represent unexpected outcomes
— some neural populations encode unexpected rewards with increases
in firing rate, whereas other populations encode unexpected penalties
with increases in firing rate. Such an encoding scheme might emerge
if unexpected rewards and penalty representations are generated by
distinct neural systems (Daw et al., 2002). In contrast to neural
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Table 4
Frequency of expectation-modulated valence-encoding electrodes. For regions in which we observed valence encoding electrodes in at least 5 subjects, we list the number of valence-
encoding electrodes (column 1), number of subjects in which at least one valence-encoding electrode was observed (column 2), and the frequency that they were modulated by reward
expectation. Positive t-statistics indicate frequencies that are greater than expected, whereas negative t-statistics indicate frequencies that are lower than expected. Bold texts in column 3
indicate regions that showed valence-encoding electrodes more frequently than expected by chance (FDR-corrected p b 0.05).

Region of interest Number of valence-encoding electrodes Number of subjects Frequency of expectation-modulated electrodes; counts t-test results

R. OFC 18 9 0.44; t(8) = 2.05, p = 0.075
L. dlPFC 47 10 0.26; t(9) = 2.02, p = 0.075
R. dlPFC 126 12 0.44; t(11) = 3.35, p = 0.006
L. vlPFC 17 8 0.35; t(7) = 1.87, p = 0.103
R. vlPFC 28 9 0.57; t(8) = 3.41, p = 0.009
L. anterior medial frontal 53 9 0.17; t(8) = 1.69, p = 0.130
R. anterior medial frontal 65 10 0.29; t(9) = 2.55, p = 0.031
L. sensorimotor 77 11 0.18; t(10) = 3.62, p = 0.005
R. sensorimotor 116 12 0.29; t(11) = 3.22, p = 0.008
L. parietal 91 14 0.24; t(13) = 2.37, p = 0.034
R. parietal 103 12 0.26; t(11) = 3.32, p = 0.007
L. temporal 162 17 0.35; t(16) = 4.83, p b 0.001
R. temporal 132 17 0.44; t(16) = 4.22, p b 0.001
L. fusiform 18 10 0.39; t(9) = 2.50, p = 0.034
R. fusiform 30 10 0.57; t(9) = 2.91, p = 0.017
L. occipital 56 12 0.25; t(11) = 1.40, p = 0.190
R. occipital 40 10 0.45; t(9) = 3.26, p = 0.009
L. MTL 24 5 0.21; t(4) = 1.56, p = 0.157
R. MTL 14 9 0.36; t(8) = 1.57, p = 0.192
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populations in the cortex, those in deep brain structures such as the
midbrain dopaminergic nuclei have been shown to demonstrate more
homogenous representations of unexpected outcomes (Schultz et al.,
1997; Bayer and Glimcher, 2005; Bromberg-Martin et al., 2010;
Glimcher, 2011; although, see Matsumoto and Hikosaka, 2009).
Human electrophysiology studies in deeper brain structures have large-
ly been consistent with these studies (Zaghloul et al., 2009; Patel et al.,
2012; Lega et al., 2011; Ramayya et al., 2014b).

If electrodes encoding unexpected rewards and penalties reflect
neural processes that are functionally related to learning, onemight ex-
pect to observe a relation between the strength of these neural signals
and subjects' behavioral performance during the task. We assessed
whether there was a correlation between subjects' frequency of
selecting the high reward probability item during the last 10 presenta-
tions of an item pair (“accuracy;” a measure of how well they encoded
stimulus–reward associations), and the strength of unexpected reward
and penalty signals, respectively. We found that the strength of unex-
pected reward representations was positively correlated with subjects'
accuracy during the task. One interpretation of this result is that subjects
who performed better during the taskwere better able to neurally repre-
sent unexpected rewards and penalties. Alternatively, it may be the case
that we were better able to measure unexpected reward signals in sub-
jects who performed well. In either case, this result provides evidence
that widespread unexpected reward signals are functionally related to
reinforcement learning. We did not observe a significant correlation be-
tween behavioral performance and the strength of unexpected penalty
representations, however, this may reflect inadequate power as we ob-
served fewer unexpected penalty than unexpected reward representa-
tions across the dataset.
Limitations

First, a subset of identified valence-encoding signalsmay reflect per-
ceptual differences between reward and penalty feedback conditions
(e.g., green vs. red screen, and cash-register vs. error tone). However,
the widespread nature of these signals and their relation with reward
expectation argue against this view (for a control analysis, see Supple-
mentary material). Second, our analysis framework identifies putative
learning signals by assessing the relation between valence-encoding
neural signals and reward expectation.We are unable to assesswhether
these neural signals specifically represent reward prediction errors
(Glimcher, 2011) because it is difficult to rule out the contribution of
neural populations that encode other cognitive signals that may
mimic reward prediction errors (e.g., salience; Pearce and Hall, 1980).
Future studies may mitigate this issue by experimentally manipulating
reward magnitude in addition to reward probability so as to
apply more rigorous tests of specific reinforcement learning signals
(e.g., reward prediction errors vs. salience; Rutledge et al., 2010).
Conclusions

Neural processes that encode both outcome valence and reward ex-
pectation were widely distributed throughout the human brain, and
commonly observed in regions that receive sparse inputs from mid-
brain dopaminergic neurons (e.g., temporal, parietal, occipital). These
neural processes typically showed increased activity following unex-
pected outcomes, as compared with expected outcomes, an encoding
scheme which is consistent with previous findings from monkey
single-unit studies (Asaad and Eskandar, 2011). The strength of neural
processes that encoded unexpected rewards was correlated with be-
havioral performance during the task, suggesting a functional relevance
for reinforcement learning. Our findings lend further support to the
emerging view of reinforcement learning as a highly distributed brain
function.
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