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Abstract

We develop a neural network model of paired-associate learning based upon an auto-
associative learning mechanism. We show that this relatively simple neural network can
replicate complex human behavioral data, but only when the correlation between forward and
backward learning is highly correlated. This network-based analysis is used to constrain
psychological theories of association in humans. ( 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In the human memory literature, there are two competing theoretical views regard-
ing the nature of associative formation. The independent associations hypothesis
(IAH) maintains that if two symbols, A and B are encoded successively, the forward
association between A and B will tend to be stronger than the backward association
between B and A. Additionally, the strengths of forward and backward associations
are hypothesized to be independent [8]. In contrast to this position, representatives of
Gestalt psychology viewed symbolic associations as composite representations, incor-
porating elements of each to-be-remembered symbol into a new entity [1,6]. We refer
to this view as the associative symmetry hypothesis (ASH). According to this position,
the strengths of forward and backward associations are highly correlated with one
another.
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Early research addressing this issue was concerned with the relative recall probabilit-
ies of forward and backward tests. The experimental paradigm used in these studies was
the classic method of paired-associate learning. A pair is studied in the order A then
B and tested either in the forward order (A!?) or the backward order (B!?). Evidence
for a forward recall advantage, if obtained, would support the independent associations
view. The surprising failure to "nd any such advantage in a number of experimental
paradigms seemed to lend support for the associative symmetry hypothesis [1,7].

However, even if forward and backward recall are equal on average, this would not
demonstrate associative symmetry [8]. It is easy to conceive of two independent
processes producing results which are equal on average. A more direct approach to
solve this problem requires an examination of the correlation between forward and
backward recall for a pair of items studied by a given subject. This item-by-item
correlational analysis involves testing subjects on the same pair of items twice and
measuring the dependency between forward and backward recall. Here we present
a neural network formalism for analyzing and modeling such paired associate learn-
ing data.

2. A neural network model

We developed an auto-associative neural network model to simulate the successive
forward and backward recall of symbol pairs. Although an auto-associative architec-
ture is typically used to encode a single neural representation, here we store the
concatenation of a symbol pair, storing both auto-associative and hetero-associative
information in di!erent quadrants of the memory matrix. In our model, the general
form of the storage equation for a list of ¸ symbol pairs is given by,
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(al = bl)(al= bl)T, (1)

where al and bl are binary ($1), N-element vectors representing the items to be
associated. The symbol = denotes the concatenation of two vectors, and= repres-
ents the 2N]2N weight matrix. Two quadrants of the matrix contain auto-asso-
ciative information (aaT and bbT), while the other two quadrants contain hetero-
associative information (abT and baT).

In our model, not every weight in the resulting matrix is correctly stored. We utilize
a probabilistic encoding algorithm which enables the network to account for the e!ect
of repetition on performance (i.e. learning). The hetero-associative quadrants of the
matrix drive the associative recall process and we introduce two random variables,
c
&

and c
"
, which control learning in the forward and the backward directions,

respectively.
For an item in the list, the probability of storing each hetero-associative weight in

the quadrant that mediates forward recall (i.e., baT) is given by
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where sl"(al = bl) and c
&
&N(k,p). Similarly, the probability of storing each

hetero-associative weight which mediates backward recall is given by c
"
&N(k,p).

The remaining two quadrants have their learning probabilities set exactly to k. The
parameter k represents the mean probability of encoding at a particular level of
learning in the associative learning experiment. To simulate the e!ects of repeated
presentations on recall, we "t k separately for each of the three levels of learning,
thereby quantitatively "tting the learning data without constraining the model to
a particular mechanism.

If c
&

and c
"

are perfectly correlated with one another, the model implements the
ASH. If c

&
and c

"
are independent of one another, the model implements the IAH.

Rather than pitting the two hypotheses against each other, we can allow the model to
determine the correlation between c

&
and c

"
, denoted o(c

&
, c

"
), that best "ts the data.

The power of this parameter lies in its ability to change the behavior of the model from
that approximating the IAH when o approaches zero, to that approximating the ASH
when o approaches unity.

After each iteration the state of the network is compared to the target symbol. If the
cosine of the angle between the two vectors is greater than a constant criterion then
the target is `recovereda. If not, the process repeats until a maximum number of
iterations has been reached. At this time, if the network has not reached the criterion
level of item recovery, that item is considered non-recallable.

3. Experiment

We applied our model to a dataset on paired associate learning [4]. Subjects
studied a list of 12 unique word pairs. Each pair was presented visually for two
seconds each followed by a one second inter-stimulus interval. Subjects were instruc-
ted to read the words aloud from left to right in order to ensure that they processed the
two words in temporal succession. To assess learning, equal numbers of word pairs
were presented either one, three, or "ve times in each list. The order of presentation
was random, subject to the constraint that identical pairs were never repeated
successively. After studying the list of word pairs, subjects performed a distractor task
(pattern matching) in order to minimize the role of recency sensitive retrieval processes
[3]. In the "rst test phase, subjects were tested on each of the studied pairs* half in the
forward direction (A!?) and half in the backward direction (?!B). In the second test
phase, half of those pairs that were "rst tested in the forward order were tested in the
backward order, and the other half were again tested in the forward order. The same
was true of pairs that were tested in the backward order in the "rst test phase. This
produced a 2]2 factorial of test 1 * test 2 possibilities (Forward}Forward, For-
ward}Backward, Backward}Forward, and Backward}Backward).

A contingency table was constructed for each of the four conditions, allowing us to
measure probabilities of recall as well as the correlation between the two tests, as
measured by Yule's Q. For a contingency table given by

C
a b

c dD,
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Table 1
Experimental results compared to the best model "t (in parentheses) at each presentation level. The last
three columns contain the best "tting values of o, p, and k for each presentation level

Yule's Q Accuracy Best "tting parameters
(% Correct)

Same Reversed k p o

1p 0.99 (0.99) 0.92 (0.89) 34.6 (33.2) 0.42 0.25 0.92
3p 0.99 (0.99) 0.96 (0.93) 64.3 (65.0) 0.54 0.27 1.00
5p 0.99 (0.99) 0.96 (0.91) 73.3 (75.6) 0.62 0.23 0.95

Yule's Q is given by the equation, Q"(ad!bc)/(ad#bc), and varies from !1 to 1
[2]. According to both the IAH and the ASH, the correlation between successive
identical tests (e.g., forward on test one and forward on test two) should be near unity.
However, according to the IAH, the correlation between reversed tests (e.g., forward
on test one and backward on test two) should be near zero. The ASH predicts the
correlation between tests in opposite directions should be near unity.

Two primary "ndings are consistent with the ASH. First, there were no signi"cant
di!erences between forward and backward recall probabilities within any presenta-
tion level (see Table 1). Second, comparable correlations were observed between
identical tests and between reversed tests. Averaged across di!erent numbers of
presentations, Yule's Q was 0.99 for identical successive tests (i.e., Forward}Forward
or Backward}Backward) and 0.95 for reverse successive tests (i.e., Forward}Back-
ward and Backward}Forward).

4. Simulating the experimental results

Applying our network model to the experimental results, we "t k, p, and o separate-
ly for one, three, and "ve presentations. For each learning level we "t the model to the
contingency tables for the Same and Reversed conditions. By "tting each (normalized)
quadrant of the contingency tables, the model was able to simultaneously "t correla-
tions and accuracy on tests one and two. In each case, we fail to reject the null
hypothesis that the simulated results are generated from the same underlying distribu-
tion as the empirical data (for one presentation, s2"0.57, df"3, p'0.5, for three
presentations, s2"0.60, df"3, p'0.5, and for "ve presentations, s2"0.80, df"3,
p'0.5). The best "tting parameters for each presentation level are shown in Table 1.
As expected, the mean level of encoding (k) increases with learning. Most importantly,
the best "tting values of o indicate that very strong correlations between forward and
backward storage are necessary to "t the human behavioral data at every level of
learning.

Once the optimal mean learning probability for each presentation level was found,
we completed a comprehensive search of the local parameter space while keeping the
mean level of encoding "xed. Fig. 1 plots the correlation between simulated successive
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Fig. 1. Simulated correlation between forward and backward recall as a function of p and o.

tests in opposite directions for words presented "ve times as a function of both o and
p. It is apparent that the only way of producing high correlations in the retrieval of
forward and backward associations is to have extremely high correlations between
c
&

and c
"
. In addition, there is a monotonic relationship between the correlation of

learning the forward}backward associations and the correlation in recall between
successive tests in opposite directions.

5. Conclusions

Our model's strength relies upon its ability to modulate its behavior between the
two distinct hypotheses (ASH vs. IAH) of associative formation. Via the correlational
parameter, o, the behavior of the auto-associative neural network was able to
modulate intermediately between the two boundary conditions and settle into the best
"tting region of the parameter space. The fact that the best "tting parameter sets for
all levels of learning included a oK1 is strong evidence for symmetric paired-
associate learning. It is useful to note that symmetry of retrieval probabilities is not
always the rule. Learning of longer lists produces an asymmetric advantage for
forward retrieval both in free recall [3] and in serial recall [5].

Our auto-associative network model of hetero-associative memory implements
a stochastic learning algorithm acting at the level of the `synapsea and quantitatively
"ts human accuracy and correlation data from a paired associate learning task. In
addition, data on the correlations between successive forward and backward recall
tests support the notion that an auto-associative mechanism may underly at least
some forms of hetero-associative learning.
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