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Endogenous variation in brain state and stimulus-specific evoked activity can both contribute to successful encoding. Previous studies,
however, have not clearly distinguished among these components. We address this question by analysing intracranial EEG recorded
from epilepsy patients as they studied and subsequently recalled lists of words. We first trained classifiers to predict recall of either
single items or entire lists and found that both classifiers exhibited similar performance. We found that list-level classifier output—a
biomarker of successful encoding—tracked item presentation and recall events, despite having no information about the trial structure.
Across widespread brain regions, decreased low- and increased high-frequency activity (HFA) marked successful encoding of both
items and lists. We found regional differences in the hippocampus and prefrontal cortex, where in the hippocampus HFA correlated
more strongly with item recall, whereas, in the prefrontal cortex, HFA correlated more strongly with list performance. Despite subtle
differences in item- and list-level features, the similarity in overall classification performance, spectral signatures of successful recall
and fluctuations of spectral activity across the encoding period argue for a shared endogenous process that causally impacts the brain’s
ability to learn new information.
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Introduction
Fluctuations in neural processes during encoding contribute to
the likelihood of recalling a given experience (Griffiths et al. 2016;
deBettencourt et al. 2018). Studies using functional neuroimaging
and electrophysiological methods have demonstrated that
neural activity measured during encoding of individual items
reliably predicts their subsequent retrieval, an effect termed
the subsequent memory effect (SME; Wagner et al. 1998; Paller
and Wagner 2002; Sederberg et al. 2003; Kim 2011). However, key
questions remain unanswered regarding the relationship of the
SME to memory encoding states. First, most SME findings focus on
individual items, where factors such as serial position, semantic
characteristics or idiosyncratic autobiographical associations
may independently influence encoding success regardless of
ongoing cognitive processes in the brain, leading to the possibility
that the SME largely reflects these exogenous factors instead of
memory-related internal states (Bainbridge et al. 2019; Aka et al.
2021; Halpern et al. 2021). Second, the extent to which neural
signals associated with SMEs reflect item-specific processing
versus longer time-scale fluctuations in the brain’s ability to
encode information, remains unknown. Thus, the question of
whether the SME truly captures endogenously varying memory-
related states, and how to more effectively measure such states,
is unresolved.

Some studies have addressed the question of exogenous versus
endogenous sources of encoding by controlling for temporal order
effects known to predict recall (Serruya et al. 2014; Kahana et al.

2018; Aka et al. 2021; Weidemann and Kahana 2021). Weidemann
and Kahana (2021) show that even controlling for such variables,
scalp EEG-recorded activity significantly predicts recall, suggest-
ing that we can observe meaningful internal states with neural
recordings. Consistent with the finding of endogenous factors
underlying recall, Kahana et al. (2018) show that accounting for
external predictors of recall, such as alertness, temporal order and
a general measure of recallability, still leaves a large proportion of
variability in performance unexplained—variability that we may
be able to partially explain if neural activity can reveal internal
states.

As Weidemann and Kahana (2021) demonstrate, one way to
control for some of the confounds affecting memory, such as
serial position, is to average neural activity and performance over
multiple items. This multi-item analysis may also reveal different,
longer time-scale aspects of the brain’s ability to encode informa-
tion, as has been shown using fMRI in a study of state-related SME
(Donaldson et al. 2001; Otten et al. 2002). Findings of pre-stimulus
SMEs in the hippocampus also hint at the importance of con-
sidering longer time periods in predicting memory performance
(Park and Rugg 2010; Urgolites et al. 2020). As the brain cements
episodic memories over extended periods of time, examining
slightly longer term SMEs may reveal unique neural mechanisms
and systems that contribute to encoding and integration of new
memories into existing schema (Preston and Eichenbaum 2013;
Sheehan et al. 2018). Thus, investigating memory encoding across
multiple studied items could give more complete insight into the
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physiology underlying encoding states, leading to a more accurate
assessment of such states.

To this end, we constructed multivariate classifiers based
on intracranial EEG recordings to predict recall over multiple
items, and compared the performance of these classifiers with
those predicting single item-level recall. We then investigated
the temporal dynamics of classifier output to determine if multi-
item level classifiers could reveal internal encoding states, acting
as biomarkers of successful encoding. Finally, we examined
the important neural features of multi-item classifiers and
single item-level classifiers to better understand the neural
underpinnings of good encoding states.

Materials and methods
From a pool of 259 total participants who performed either ran-
dom or categorised free recall, we first selected 66 patients who
performed both versions, to increase the amount of data for each
subject and allow our results to generalise across task manipula-
tions, although we did not account for task version in any analyses
here. We then selected patients who recalled an average of at
least one item per list, contributed data from at least 10 lists per
session and from at least 24 lists in total (i.e. across all sessions).
This resulted in a sample of 62 patients. We trained two types of
classifiers to predict either individual item recall or list-level recall
performance, based on neural activity during word presentation
or average activity over entire lists, respectively.

Participants
All patients, who had medication-resistant epilepsy, provided
informed consent to be enrolled in the Defense Advanced
Research Projects Agency Restoring Active Memory project.
Patients underwent neurosurgical implantation of electrodes to
identify and monitor seizure activity. During this time they also
performed a variety of cognitive tasks. Data were collected across
the following eight participating institutions: Columbia University
Hospital (New York, NY), Dartmouth-Hitchcock Medical Center
(Lebanon, NH), Emory University Hospital (Atlanta, GA), Hospital
of the University of Pennsylvania (Philadelphia, PA), Mayo Clinic
(Rochester, MN), National Institutes of Health (Bethesda, MD),
Thomas Jefferson University Hospital (Philadelphia, PA) and
University of Texas Southwestern Medical Center (Dallas, TX).
Experimental protocols were approved by each Institutional
Review Board.

Free recall task
Patients performed two versions of a verbal delayed free recall
task in which each session consisted of up to 25 lists with 12
words each. In one version, words were drawn randomly from a
pool of 300 commonly used nouns (http://memory.psych.upenn.
edu/WordPools). In the categorised version, words were drawn
from a separate pool such that each list consisted of four words
from three semantic categories (data previously published in
Weidemann et al. 2019). In each list, words were displayed for
1.6 s each, with randomly jittered inter-stimulus intervals of 0.75–
1 s. Each word list thus lasted ∼30 s. Following list presentation,
patients performed a 20-s arithmetic distractor task of simple
addition problems. Finally, patients had 30 s to recall as many
words as possible. Patients completed as many sessions as was
comfortable. The number of total sessions completed ranged from
2 to 13; 40 patients completed between two and four sessions, and
22 completed five or more sessions.

iEEG recording and localisation
We recorded neural activity using depth and surface electrode
contacts. We constructed virtual bipolar contacts by subtracting
the signal between adjacent monopolar contacts, and localised
them to the midpoints of the two monopolar contacts. Monopolar
contacts of a given bipolar pair were located within 20 mm of
each other, outside of any clinician-determined seizure onset
zone or region showing epileptic spikes. We registered post- and
pre-implantation imaging using Advanced Neuroimaging Tools
(Avants et al. 2008). We localised surface contacts based on MRI
segmentation using FreeSurfer (Desikan et al. 2006), and clinical
neurophysiologists localised subcortical sources.

iEEG spectral preprocessing
We aggregated recording segments from 0.3 to 1.6 s post-word
onset, for each list. We used Morlet wavelets (# cycles = 5) imple-
mented in MNE-Python (Gramfort et al. 2013) to calculate spec-
tral power at eight logarithmically spaced frequencies from 3 to
180 Hz (3, 5, 10, 17, 31, 56, 100, 180) with a 1.2-s buffer period on
each side of each segment. For each session and frequency, we
log-transformed and z-scored the power. For list-level analyses,
we averaged power over all word presentation segments for each
list. For analyses in which we applied the classifier to longer, con-
tinuous epochs (all 30 s before, during and after list presentation,
or the 4 s surrounding each item), we averaged power over the
whole list presentation period, including inter-stimulus epochs,
and after calculating power, we down-sampled data to 500 Hz and
averaged power over 1-s epochs incremented by 0.1 s.

List-level predictions
To predict the performance of a given list, we implemented a
linear regression model using the “sklearn” “Ridge” package in
Python, with an L2 regularisation parameter α of 1/(2 × 0.0007),
based on previously published results (Weidemann et al. 2019;
Weidemann and Kahana 2021). We trained models on all but
one list and predicted recall performance on the held-out, test
list (with each list held out once), using features of encoding
epoch power at all eight frequencies, in all contacts (eight features
per contact). To normalise power, we z-scored the training set
of list-level power values within session, using the mean and
standard deviation of the test list’s session to normalise the test
list. To normalise list performance, we logit-transformed list per-
formance, p, adjusting for performance of 0 or 100% (P = 0 or 1) by
using: ln

[(
p + 0.5

12

)
/
(
1 − p + 0.5

12

)]
(Stevens et al. 2016). Otherwise,

we used the standard formula: ln
[
p/

(
1 − p

)]
. Next, we mean-

subtracted list performances within each session, first omitting
the held-out list’s performance to protect the training data from
testing data. We then subtracted the mean performance of the
corresponding session from the test list’s performance. Finally, we
correlated predicted and observed list performance to quantify
the overall performance of the model for a given subject. For
parametric statistical tests, we used the Fisher transformation of
the correlation values. We also performed permutation testing to
obtain a distribution of 50 baseline correlation values by randomly
shuffling list performances within each session and recalculating
the correlation between predicted and observed list performance.
Correlation values were deemed significant if greater than 95% of
the baseline values.

Item-level classification
We performed item-level classification similarly to list-level pre-
diction, except instead of using linear regression, we used logistic
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regression, which is more appropriate for binary variables. We
used L2-regularised logistic regression, implemented using the
“sklearn” “LogisticRegression” package in Python, with a regu-
larisation parameter C of 0.0007, to be analogous with the L2
regularisation performed in list-level predictions and to be con-
sistent with prior work (Weidemann et al. 2019; Weidemann and
Kahana 2021). We set the “balanced” class weight parameter,
which adjusts weights inversely proportional to the class frequen-
cies, to account for the imbalance of recalled and unrecalled
items. For each test list, we trained the model on all items from
all other lists. To evaluate the classifier, we compared observed
recall with the classifier-predicted probability of recall. We also
calculated classifier-predicted list performance by summing the
predicted probabilities of each individual item in the held-out test
list. We constructed permutation-based baseline values similarly
to in list-level classification.

Recallability correction
To correct for item and list recallability in item- and list-level
prediction, we first measured item recallability as in Kahana
et al. (2018), by calculating the probability of item recall within
each patient and averaging these probabilities across patients. For
each patient, we calculated this recallability measure for each
item viewed based on all other patients. During recall classifica-
tion, we first used this recallability measure to predict recall for
all items excluding those in the held-out list, in a linear regression
model. We applied this same model to items in the held-out list.
We then used the residuals from these predictions as the new
recall values, which we trained the linear regression models to
predict, as above, based on neural activity measures. For the list-
level analysis, the individual item recallabilities were averaged
over each list to generate list-level recallability measures.

Shuffled list control
To dissociate the confounding effects of item-level SME from list-
level SME, we used the approach from Weidemann and Kahana
(2021) and generated new lists for each subject according to
the following procedure: within each session, we aggregated the
recalled and unrecalled items and randomly shuffled each of
them, separately. For each list within each session, we picked
recalled items from the shuffled set until the list contained the
same number of recalls as in the true data. We then picked the
remainder from the set of unrecalled items. We excluded those
picked items from being chosen for subsequent lists; that is,
items were picked without replacement. Finally, we repeated the
list-level performance prediction procedure described above, 50
times, to generate 50 values of correlation between observed and
predicted list-level performance. We used the mean of these 50
repetitions for each subject.

Cross classification
To assess the relative performance of the classifiers, we tested the
item-level classifiers on list-level recall prediction, and vice versa.
First, we trained the item-level classifier as above, and tested it on
the neural features of the held-out list to generate the prediction
of recall. We correlated these predictions with the observed list
recall performance. To test the list-level classifier on item-level
prediction, we trained the list-level classifier as above and tested
it on the neural features of each item of the held-out list. We
correlated these predictions of recall performance with observed
item-level recall (a point-biserial correlation).

Temporal analysis of encoding state
Temporal analysis of classifier output
We analysed temporal fluctuations of classifier output by first
training an item- or list-level classifier as described above, except
that for the training epochs of the list-level classifier, we aver-
aged power over the whole list instead of just word presentation
epochs. For each test list, we applied the trained classifier to
1-s sliding windows, from 31 s before, to 61 s after onset of the
first word of the list, incrementing by 100 ms. We also applied
the classifier to windows from 2 s before to 2 s after individual
words, to construct a peri-stimulus time course of the classifier
output. For both time courses, we averaged them for each subject
to generate the subject-level mean.

Spectro-temporal analysis of classifier performance
We analysed fluctuations in classifier performance over time and
frequency using a similar temporal segmentation structure as
above, but focusing only on the list presentation epoch (from
1 s before, to 31 s after onset of the first word), using 10-s time
windows sliding by 1 s. For each time window, we trained the list-
level classifier on neural power from that time window alone and
using only one of the eight frequencies, to predict performance
on the entire list. We correlated these predictions of list perfor-
mance with observed performances, over all lists, to quantify the
classifier performance for that time-frequency cell. Similarly, we
analysed fluctuations in classifier performance over time alone,
by training the list-level classifier on each 10-s time window using
all eight frequencies.

Correlation between spectral power and
performance
For each subject, we correlated both item- and list-level per-
formance with power at each contact for each frequency. We
averaged correlations across all contacts for a given frequency
to compare the item- and list-level correlations by frequency.
To compare the item- and list-level correlations by region and
frequency, we first aggregated contacts and averaged correlations
over nine ROIs based on the grouping used in Weidemann et al.
(2019): inferior frontal gyrus (IFG), middle frontal gyrus (MFG),
superior frontal gyrus (SFG), temporal cortex (TC), hippocam-
pus (HC), parahippocampal gyrus (PHG), inferior parietal cortex
(IPC), superior parietal cortex (SPC) and occipital cortex (OC). We
performed multiple comparisons correction for statistical tests
using false discovery rate (FDR, q < 0.05) on permutation-based
P-values (Benjamini and Hochberg 1995). We calculated P-values
by randomly shuffling region labels of electrode contacts 1000
times, at the subject level, recalculating the group-level mean
correlations for each permutation, and comparing these with the
true mean correlation.

Results
Our investigation addressed four main questions: (i) Can we reli-
ably classify list-level recall performance and how does the per-
formance of these classifiers compare with standard item-level
prediction? (ii) Do classifiers trained on items exhibit strong trans-
fer to list-level recall, and vice versa? (iii) Do fluctuations in
predicted recall during encoding correspond with task-relevant
events, thus enabling its use as a biomarker for encoding state?
(iv) Which aspects of neural activity—along the dimensions of
time, frequency and region—underlie recall prediction at the item
and list level?
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Fig. 1. Task and analytic strategy. (A) Depiction of free recall task, consisting of up to 25 repeating blocks of encoding, distractor and free recall epochs.
(B) Depiction of analyses, where we generate item-level classifiers to predict probabilities of individual item recalls (p(recall)), and list-level classifiers to
predict list-level performance. We evaluate classifier performance by correlating observed recall performance and predicted recall performance.

Item- and list-level classification of memory
encoding
To evaluate list-level prediction of memory performance, we first
used a leave-one-list-out scheme to predict recall performance
for each list, and then correlated the classifier-generated predic-
tions of recall performance with observed performance (Fig. 1;
see Methods for details). To have a comparable measure for the
evaluation of the item-level classifier, we correlated its predic-
tions with the binary recall status of the corresponding items
(i.e. a point-biserial correlation). At the individual subject level,
list-level prediction was significant (permutation test, P < 0.05)
in 40 of 62 patients. The distribution of correlations between
predicted and observed list-level recall, across our 62 subjects,
had a mean value of 0.25 (95% CI: [0.19, 0.31]) (t-test: t(61) = 8.8,
SE = 0.029, P < 0.001). Item-level classification was significant in
60 of 62 patients, and the distribution of correlations for item-
level recall had a slightly lower mean value of 0.22 (95% CI: [0.19,
0.24]) (t-test: t(61) = 18.2, SE = 0.012, P < 0.001). A statistical com-
parison of the item- and list-level correlations failed to detect any
reliable differences (M = 0.027, paired t-test: t(61) = 1.44, SE = 0.027,
P = 0.15). Figure 2 shows the comparable levels of performance of
item- and list-level classifiers, and highlights the difference in
variance.

To verify that recall predictability was not solely due to item
memorability effects, we repeated the above analysis but with
first measuring and correcting for item recallability (Fig. S3).
After this correction, item-level classification was significant
in 58 subjects, with a group mean of 0.17 (95% CI: [0.14,
0.19]) (t-test: t(61) = 12.8, SE = 0.013, P < 0.001). Although still
highly significant, these predictions were significantly decreased
compared with no recallability correction (M = 0.049, paired
t-test: t(61) = 11.3, SE = 4.5 × 10−3, P < 0.001). In contrast, list-level
prediction of recall was not significantly affected by recallability
correction (M = 3.7 × 10−4, paired t-test: t(61) = 0.60, SE = 3.2 × 10−3,
P = 0.55). List-level classification after recallability correction was
significant in 39 subjects, with a group mean of 0.25 (95% CI: [0.19,
0.31]) (t-test: t(61) = 8.7, SE = 0.030, P < 0.001).

To dissociate the confounding effects of item-level SMEs from
the list level, which is necessarily composed of items, we syn-
thesised new lists while maintaining the true number of recalled
items in each list. If the list-level performance predictions are sig-
nificantly reduced, this would imply there is useful information at
the list level that is not found at the item level. We found this to be

Fig. 2. Classifier performance. We quantified classifier performance
as the correlation between predicted probability and observed recall
(for item level) or predicted and observed list performance (for list
level). We trained classifiers on either item-level recall (blue) or list-
level performance (orange), and tested on either left-out items (outer
bars) or lists (inner bars). For cross-decoding, we trained the classifiers
on item-level recall and tested them on left-out lists (hatched blue),
or vice versa (hatched orange). We used permutation testing to derive
the expected null correlation (dotted baselines), in which we randomly
shuffled recall performances prior to classification for each subject (#
permutations = 50). Error bars indicate ±1 SEM.

the case that shuffling lists significantly reduced the correlation
between observed and predicted list-level performance in 56 of
62 subjects, and with a group mean difference of −0.15 (95% CI:
[−0.20, −0.10]) (paired t-test: t(61) = −6.2, SE = 0.025, P < 0.001).

Item-level classifiers exhibited significant transfer to list-level
predictability, and vice versa (i.e. cross-decoding) (Fig. 2, hatched
bars). Classifiers trained on item recall and tested on list perfor-
mance exhibited a mean correlation of 0.27 (95% CI: [0.22, 0.32])
(t-test: t(61) = 10.4, SE = 0.026, P < 0.001). Prediction of item recall
by classifiers trained on lists showed the lowest mean correlation
value of 0.11 (95% CI: [0.09, 0.13]) but was still significantly positive
(t-test: t(61) = 11.1, SE = 0.010, P < 0.001). Figure 2 shows that when
predicting item recall, item-level classifiers performed better than
list-level classifiers (paired t-test: t(61) = 11.0, SE = 0.010, P < 0.001).
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Fig. 3. Classifier predictions. (A, B) Time course of item- (A) and list-level (B) classifier predictions over the course of encoding lists, showing
correspondence with task-relevant events. We normalised list-level classifier prediction by subtracting the test list session’s mean performance. Dotted
lines indicate the average time of task events including the start of countdown before list (black), word presentation times (brown), start/end of math
distractor task (orange) and start/end of recall period (green). (C, D) Peri-stimulus time course of classifier predictions for item- (C) and list-level
(D) classifier, time-locked to word presentation time, highlighting peak classifier predictions at 800 (item level) and 900 ms (list level). All shaded error
regions indicate ±1 SEM.

However, when predicting list performance, list-level classifiers
did not perform better than item-level classifiers (paired t-test:
t(61) = −1.02, SE = 0.018, P = 0.31). Overall, these results demon-
strate that list performance is predictable to a comparable degree
as single item recall, and given the cross-decoding success, the
underlying neural features of item- and list-level encoding states
may largely overlap.

Temporal dynamics of classifier predictions
We next asked if classifier output could serve as a biomarker
for encoding state. That is, would the temporal dynamics of
classifier predictions of recall correspond to task-relevant events,
and how would these dynamics differ between the two classi-
fiers trained on item- and list-level recall performance? From
the cross-decoding results showing generalisability between item-
and list-level classifiers, we hypothesised that the output of the
two classifiers would display similar slow but not item-level
temporal patterns, as the list-level classifier has no access to
this scale of neural activity. However, Fig. 3 shows that both the
item- and list-level classifiers exhibit similar item-level temporal
fluctuations, peaking at 800 and 900 ms after word onset, respec-
tively (Fig. 3C and D). We also observed similarities in more slowly
varying encoding state, such that both increased with onset of
list presentation, distractor phase, recall period and countdown
period (Fig. 3A and B). However, we also observed subtle differ-
ences at this temporal scale. Although solely descriptive and not a
statistical analysis, item-level classifier predictions were highest
during the first item and declined rapidly over the first half of the
list, whereas list-level classifier output peaked at the second item
of the list and was flatter over time.

These results show temporal fluctuations correspond to task-
relevant events and phases, and suggest that classifier output
may be used as a biomarker of the internal encoding state. Despite
broad similarities between item- and list-level classifier outputs,

especially at the single item level, minor differences suggest they
reveal unique aspects of the encoding state.

Physiological substrates of classification
With evidence that the classifiers reflect internal encoding states,
we next examined the neural activity supporting classification.
First, were there certain times during list presentation that were
more useful in predicting whole-list performance? Given that
recall of early-list items better predicts overall list performance
(Fig. S4), we hypothesised that early-list time windows of neural
activity would also allow for better list-level recall predictions.
However, list-level classifiers performed significantly better using
the last time window compared with the first window (paired
t-test: t(61) = 2.00, SE = 0.031 P = 0.0498); Fig. 4(A) shows that this
increase was relatively constant over the course of the list. The
pattern of increasing predictability over time was generally com-
mon across frequencies but was particularly strong in alpha and
high gamma frequencies (Fig. 4B). Thus, neural activity at the
end of the list may contribute more to list-level classification
compared with activity at the beginning.

In addition to investigating the temporal aspects of the neural
basis of multi-item encoding states, we investigated their spec-
tral and regional aspects. Item- and list-level correlation pat-
terns were similar, with the greatest negative correlation in the
theta/alpha range, and the greatest positive correlation in the
high gamma range (Fig. 5A). The greatest item-level correlations
between performance and power were at 5 (M = −0.026, 95% CI:
[−0.034, −0.018]) and 100 Hz (M = 0.016, 95% CI: [0.011, 0.020]).
The greatest list-level correlations were at 10 (M = −0.054, 95%
CI: [−0.067, −0.027]) and 56 Hz (M = 0.021, 95% CI: [0.005, 0.036]).
Correlations were significant with Bonferroni correction for mul-
tiple comparisons (uncorrected p’s < 0.002), except for item-level
correlations at 31 Hz, and list-level correlations at 31 Hz and
above.
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A

B

Fig. 4. Spectro-temporal analysis of list performance prediction. (A) Representation of most useful times and frequencies for prediction of list
performance. For each time point, we calculated spectral power in the 10-s time window centered on the time shown, relative to list onset. We then
predicted list performance using power at this time point, with leave-one-list-out cross-validation. List-level classifiers perform significantly better
when using the end of the list compared with the beginning (P < 0.05). (B) Same as (A), except instead of using all frequencies together, we used one
frequency at a time to predict list performance.

Finally, we computed correlations between performance and
frequency-specific power for specific regions of interest. Item-
and list-level correlation patterns by region were similar, with
low-frequency negative correlations in parahippocampal regions
and higher positive correlations in frontal and occipital regions.
However, in contrast to item-level correlations, list-level correla-
tions were relatively higher in frontal regions and exhibited less
spectral tilt in temporal regions, especially in the hippocampus
(Fig. 5B). We specifically tested the difference between item- and
list-level correlations in the hippocampus and DLPFC (middle
frontal gyrus) in a subset of patients who had electrode contacts
in both regions (n = 36) and found that univariate correlations
between hippocampal high-frequency activity (HFA) and recall
performance were higher at the item level compared with the
list level (paired t-test: t(35) = 2.28, SE = 0.014, P = 0.029). Conversely,
correlations between prefrontal HFA and recall were higher at
the list level (paired t-test: t(35) = 2.52, SE = 0.011, P = 0.016) (Fig. 6).
Correlations between hippocampal HFA and recall performance
were significantly positive at the item level with a mean of 0.010
(95% CI: [0.0008, 0.019]) (t-test: t(35) = 2.21, SE = 0.0044, P = 0.033),
and although numerically negative at the list level with a mean
of −0.021 (95% CI: [−0.052, 0.0097]), they were not significantly dif-
ferent from 0 (t-test: t(35) = −1.39, SE = 0.015, P = 0.17). Correlations
between prefrontal HFA and recall were significantly positive at
both the item (t-test: t(35) = 2.29, SE = 0.0047, P = 0.028) and the
list level (t-test: t(35) = 3.05, SE = 0.013, P = 0.0044) with means of

0.011 (95% CI: [0.0012, 0.020]) and 0.040 (95% CI: [0.013, 0.066]),
respectively. Thus, although the broad physiological phenomenon
of spectral tilt was apparent in both item- and list-level SMEs,
some specific patterns of regional contributions differed between
the two temporal scales.

Discussion
The question of whether SMEs reflect causal internal encoding
state has been unresolved due to confounding factors of item-
specific characteristics. We approached answering this question
by examining a longer term SME over the multiple items in a list,
and examining the time course of predicted encoding, using mul-
tivariate classifiers based on intracranial recordings. We demon-
strate that this approach not only controls for some item-specific
aspects, but also establishes a biomarker of encoding that reveals
temporal dynamics of endogenous state. We also provide a more
complete understanding of the SME in general by highlighting
the similar and complementary regional contributions to SMEs
at different time scales.

Whether using a short window of time to predict encoding
success of a single item, or a long time window to predict
encoding of multiple items, we found similar performance
of encoding prediction. Performance was qualitatively higher
using lists compared with single items, but not significantly so.
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Fig. 5. Univariate correlations between power and performance. (A) We demonstrate a spectral tilt effect for item- (blue) and list-level (orange)
correlations between brain-wide power and recall performance at various frequencies. Shaded area around lines indicates ±1 SEM. (B) Same as (A),
except here we report correlations by region of interest (IFG: inferior frontal gyrus; MFG: middle frontal gyrus; SFG: superior frontal gyrus; TC: temporal
cortex; HC: hippocampus; PHG: parahippocampal gyrus; IPC: inferior parietal cortex; SPC: superior parietal cortex; OC: occipital cortex). Asterisks in
cells denote statistical significance as determined by FDR correction at Q < 0.05 after regional permutation analysis.

Previous work employing a nearly identical free recall task with
scalp EEG also found that predictions of recall from list-based
classifiers correlated slightly better with observed performance
than item-based classifiers, although a direct comparison was
not performed (Weidemann and Kahana 2021). Although that
study sampled healthy volunteers instead of patients with
epilepsy, SMEs in both populations follow similar patterns
(Hill et al. 2020).

One factor that complicates our direct comparisons of item-
and list-level classification is the large disparity in data quantity:
item-level classifiers have 12 times the observations as the list-
level classifiers, which affects the variance of the classification
performance. We can somewhat account for the data disparity by
repeating item-level classification analyses with smaller subsets
of serial positions. Dividing the item-level classification analyses
into four subgroups of serial positions (1–3, 4–6, 7–9 and 10–12) we
find that the average correlations between predicted and observed
recall drops from 0.22 to 0.14 (Fig. S1). There was no significant
difference between the average correlation of any of the individual
subgroups, which ranged from 0.13 to 0.15 (p’s > 0.10). Although
those subgroup-based classifiers have multiple times more data
than the list-level classifiers, list-level classification correlations
are likely higher due to the higher signal-to-noise ratio resulting
from averaging features over longer time periods. With more
data, list-level classifiers might be yet more accurate—when
recalculating list-level classification performance using variable

numbers of sessions in a subset of patients with the greatest
number of sessions recorded, we find that classifier performance
steadily increases from two to five sessions (Fig. S2).

The success of list-level classification of memory performance
is consistent with, and related to, previous studies of pre-
stimulus and state-related SMEs (Donaldson et al. 2001; Otten
et al. 2002), especially in the hippocampus (Park and Rugg
2010; Urgolites et al. 2020), although some suggest that this
signal is only relevant for recognition memory and not free
recall (Merkow et al. 2014). Nevertheless, both pre-stimulus
and list-level classification support the notion that neural
activity outside of item presentation can still reliably predict
memory encoding. With respect to list-level classification,
previous work has shown that the effect is not driven solely by
the predictability of the constituent items, as rearranging the
items into new lists abolishes the ability to predict list-level
performance (Weidemann and Kahana 2021). To dissociate the
confounding effects of item- and list-level SMEs, we replicated
this analysis from Weidemann and Kahana (2021) and also
found that shuffling lists significantly reduced the correlation
between observed and predicted list-level performance in 56 of
62 subjects, with a group mean difference of −0.15 (95% CI: [−0.20,
−0.10]) (paired t-test: t(61) = −6.2, SE = 0.025, P < 0.001). Relatedly,
we retrained the list-level predictions model using only the
inter-stimulus intervals (700 ms preceding word presentations)
instead of word presentation times, and recalculated the
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Fig. 6. DLPFC and hippocampal contribution to item- versus list-level
encoding. We averaged correlations between power and recall perfor-
mance over all contacts within a given region (hippocampus: left; DLPFC
or middle frontal gyrus: right) and all high gamma frequencies (56, 100,
180 Hz) for both item- (blue) and list-level (orange) correlations, for
each subject with contacts in both regions (n = 36). Hippocampal list-level
correlations were not significantly different from 0 (P = 0.17). Paired t-tests
reveal significantly greater item-level correlation with performance in the
hippocampus, and greater list-level correlation in the DLPFC. Error bars
indicate ±1 SEM. ∗P < 0.05, ∗∗∗P < 0.005.

time series of encoding prediction over time. Although the
resulting time series is noisier than when trained on the
presentation time windows, the dynamics are overall the same
(Fig. S6). This suggests that the temporal dynamics of list-level
predictions in Fig. 3(B) follow item presentation timing not simply
due to being trained on item-presentation windows. We also
found that item-level classifiers generalised to predict list-level
performance and vice versa (Fig. 2), further suggesting that neural
predictors of encoding success vary slowly.

Causal versus non-causal SME
One major question arising from the SME studies has been
whether correlations between neural activity and recall are
causal, or rather represent correlations with external factors
(Halpern et al. 2021) such as item memorability (Bainbridge et al.
2019), serial position (Murdock 1962) or semantic characteristics
across items in a list (Aka et al. 2021). We argue here that
external characteristics of the words cannot be the only factor
underlying prediction of recall, for multiple reasons. First, even
when correcting for recallability, we find significant predictive
success of the classifiers (Fig. S3). Item-level classification success
was significantly reduced, suggesting some contribution of
item-specific effects to the item-level SME; however, average
correlations between predicted and observed recall was still
highly significant. Furthermore, controlling for recallability did
not affect list-level classification, confirming our hypothesis that
averaging over individual items would abolish some effects of
item-specific characteristics.

A second confound that may theoretically underlie item-level
classification is serial position, but this cannot account for the
list-level classification because the training data contains no
serial position information. Furthermore, despite the stronger
association of early-item recall with whole-list performance, com-
pared with later-item recall (Fig. S4), time segments later in the list
provide the list-level classifier with better predictive information
than time segments early in the list. This implies that predictors
of list-level performance are not simply making use of aggregate
item-level signals.

The inference that the SME identifies neural signals that
specifically impact successful encoding of long-term memories,
has recently been called into question. Specifically, Halpern
et al. (2021) argue that well-known covariates of successful
memory, such as serial position effects, item difficulty or linguistic
properties that make certain items more memorable than others,
may actually underlie previous studies claiming to identify neural
correlates of success memory encoding. They report an fMRI
study that controls for these variables that finds no evidence
for SME in regions where it had previously been found. Here,
by establishing list-level correlates of successful memory that
remove any effects of serial position, and by showing that
these effects remain robust even after controlling for item-
level differences in word memorability, we see evidence for a
causal SME.

However, as our study is inherently correlational, we cannot
draw strong causal inferences about the specific brain states
that lead to better memory. For example, variables that we have
not controlled may lead to the observed brain states that are
correlated with subsequent memory. Similarly, the observed SMEs
may lead to other states that more directly cause memory forma-
tion. Although absolute causality is therefore impossible to prove,
we have eliminated item-specific characteristics as the entire
explanation of the SME, and therefore conclude that the neural
SME used by the classifier here is likely at least partly causal.

Encoding state dynamics
Our finding that the temporal dynamics of the classifier output
clearly coincide with task phases, supports the notion that the
classifier output reveals internal encoding state. While the oscilla-
tions of classifier prediction with word presentation may possibly
be related to item-level characteristics, the rise in prediction at
the beginning of the distractor period, and especially during the
recall period where there is no external stimulus, strongly sug-
gest association with internal states untied to exogenous seman-
tic measures. Furthermore, classifier predictions during recall
increase more in high-performing lists (Fig. S5). This is not merely
a continuation of higher predictions during the encoding phase,
as predictions during the distractor phase are similar between
low- and high-performing lists. The oscillations with word pre-
sentation were particularly notable for the list-level classifier.
One expects the item-level classifier to exhibit such dynamics as
the training window is limited to the item presentation window;
however, the list-level classifier is trained only on the average
power over the whole list, including the inter-stimulus windows,
and still displays the identical pattern of encoding state peaks at
800–900 ms post word onset. This time course is consistent with
previous findings that HFA-based SME peaks at around 700 ms,
depending on the region (Sederberg et al. 2003; Burke et al. 2014).
The two classifiers differed, however, regarding the serial position
effect. The item-level encoding state exhibited a dramatic serial
position effect, reminiscent of the shifts in power observed by
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(Serruya et al. 2014) that also predicted subsequent recall. How-
ever, the list-level classifier exhibited a more subtle serial position
effect, where encoding state peaked at the second item instead of
the first, and declined to a lesser extent.

The rapid decline of the item-level classifier prediction may
reflect attention-related processes or neural resources that grad-
ually fatigue over time, and are renewed after a short break
(Tulving and Rosenbaum 2006; Serruya et al. 2014). During high-
performing lists as well as low-performing lists, classifier predic-
tion of item-level recall increases at the start of the distractor
period (Fig. S5). In contrast, only in low-performing lists does
the list-level predicted recall increase at the start of distractor
periods, suggesting that during higher memory performance (per-
haps related to greater contextual clustering), list-level predic-
tions are more memory-specific. More concrete modeling studies
will further quantify these descriptive interpretations. Overall
though, the time courses of item- and list-level encoding states
both appear to reflect times of increased task engagement, with
transient rises at task-relevant moments.

We also examined the list-level classifier performance over
time, to test if certain times during list presentation were more
useful in predicting whole-list performance, and thus understand
how individuals encode over time. Figure 4 suggests that items
are not simply encoded sequentially, with each item’s encoding
ceasing with the end of its presentation window. Instead, encoding
of early items may continue in time such that by the end of the list,
all preceding items are experiencing some degree of simultaneous
encoding. Although speculative, this notion is consistent with the
phenomenon of rehearsal. Specifically, when instructed to overtly
rehearse during a free recall task, individuals generally rehearsed
items cumulatively (Corballis 1969). This may mirror covert, silent
rehearsal strategies, such that, by the end of the list, the subject is
rehearsing more items than at the beginning, and therefore there
may be more list-level relevant information in neural signals at
the end of the list than at the beginning.

A previous investigation of encoding state based on pupil size
produced a remarkably similar time course to that shown in
Fig. 3(A) and (B) (Kucewicz et al. 2018). The pupil size increased
more during words that were recalled than unrecalled, and also
during the retrieval period, demonstrating that pupil size was
sensitive to the internal state rather than simply reflecting visual
stimulation. Similar to our list-level analyses (Fig. 3B), the pupil
size peaked at the second word presentation of the list and similar
to our item-level analyses (Fig. 3A), relative pupil size rose dramat-
ically at the start of the distractor period. However, in contrast
to the timing of our classifier predictions, which peak at 800–
900 ms after word onset, the pupil size peaks at 1–2 s after word
onset. Further work is needed to establish a direct correspondence
between these measures of brain activity and pupil size, and
to establish the extent to which they reflect specific encoding
processes or more general task engagement.

Regional contributions
Having found evidence that we can gage encoding state from both
single-item and list-level classifiers, we investigated how different
patterns of activity contribute to successful encoding states. We
found that spectral tilt across most regions was associated with
better recall, similar to prior findings (Ezzyat et al. 2017). Inter-
estingly though, the general brain-wide pattern of spectral tilt
observed in item-level correlations was altered slightly in the list-
level correlations, highlighting two key regions underlying mem-
ory encoding—the prefrontal cortex and hippocampus (Kuhl et al.
2012; Preston and Eichenbaum 2013). In the list-level correlations,

although we observed spectral tilt patterns in association areas
and especially in prefrontal cortex, we did not observe the same
pattern in medial temporal areas, especially in hippocampus. This
lack of spectral tilt in the hippocampus suggests that this region
does not sustain its contribution to encoding state over multiple
items.

Previous work has probed the idea of neural fatigue during
encoding in the context of free recall, and in the process also illu-
minated regional differences in the dynamics of encoding state.
Lohnas et al. (2020) tested the hypothesis that the hippocampus,
which contributes to good encoding state through HFA (Sederberg
et al. 2003; Long et al. 2014), can experience a depletion in neural
resources that may then contribute to a poor encoding state.
They compared hippocampal HFA during presentation of sub-
sequently unrecalled items that followed a good encoding state
(subsequently recalled items), to those that followed a similarly
poor encoding state (subsequently unrecalled items), and found
reduced HFA during items that followed good encoding states. In
contrast to the hippocampus, which exhibited this evidence of
neural fatigue, the DLPFC showed an opposite pattern of more
persistent encoding state, where items following good encoding
states had greater HFA than those following poor encoding states.

Building on these results, we hypothesised that these regional
differences in neural fatigue would also relate to the temporal
scale of hippocampal and DLPFC contributions to encoding state.
Specifically, as the hippocampus fatigues at a fast rate of sin-
gle items (as indexed by HFA), then hippocampal HFA should
contribute to the item-level encoding state more than the list-
level one. Conversely, as DLPFC HFA exhibits a more persistent
contribution to encoding, there HFA should contribute more to a
list- than item-level state. Indeed, our results show exactly this
pattern (Fig. 6); univariate correlations between hippocampal HFA
and recall performance are stronger at the item level compared
with the list level, whereas correlations between DLPFC HFA and
recall are stronger at the list level. Although our results align with
previous findings (Lohnas et al. 2020), elucidating their relation to
neural fatigue would necessitate further analyses of the temporal
dynamics of encoding-related activity.

Our findings and those from Lohnas et al. (2020) support
the idea of complementary roles of the prefrontal cortex and
hippocampus, in which new memories may shift from their
reliance on hippocampal systems to prefrontal systems, over
time (Preston and Eichenbaum 2013). They also support previous
work suggesting a greater role for the prefrontal cortex in coding
for coarse, compared with fine, temporal context (Jenkins and
Ranganath 2010). Besides contributing more to longer-term mem-
ory state, the prefrontal cortex is likely involved in modulation of
other attention and memory systems during encoding (Reinhart
et al. 2015). Thus, although the neural basis of the list-level
encoding state overlaps significantly with the item-level state,
they are also complementary, comprising different parts of a
neural basis for memory encoding over longer time scales.

Conclusions
The study of memory requires (often significant) delays between
encoding of the memoranda and the memory assessment. The
lack of explicit responses reflecting encoding success as it hap-
pens thus presents a challenge that researchers have sought to
overcome through the use of implicit measures of brain activity.
Our characterisation of the temporal dynamics of brain states
predicting subsequent memory performance complements pre-
vious work that strongly suggested that SMEs reflect endogenous
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processes related to encoding success rather than external factors
that are correlated with recall performance (Urgolites et al. 2020;
Weidemann and Kahana 2021). We found that iEEG-based list-
level classifiers of successful encoding perform on par with item-
level classifiers, and likely reflect meaningful internal states of
encoding and/or task engagement. Our work thus confirms the
value of subsequent-memory analyses for the study of encoding
processes, and opens up new possibilities for studying the associ-
ated dynamics.
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