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Direct Brain Recordings Identify a Causal Subsequent-Memory Effect
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Endogenous variation in brain state and stimulus-specific evoked activity can both contribute
to successful encoding. Previous studies, however, have not clearly distinguished among these
components. We address this question by analyzing intracranial EEG recorded from epilepsy
patients as they studied and subsequently recalled lists of words. We first trained classifiers
to predict recall of either single items or entire lists and found that both classifiers exhib-
ited similar performance. We found that list-level classifier output—a biomarker of successful
encoding—tracked item presentation and recall events, despite having no information about the
trial structure. Across widespread brain regions, decreased low- and increased high-frequency
activity (HFA) marked successful encoding of both items and lists. We found regional differ-
ences in the hippocampus and prefrontal cortex, where in the hippocampus HFA correlated
more strongly with item recall, whereas in the prefrontal cortex HFA correlated more strongly
with list performance. Despite subtle differences in item- and list-level features, the similarity
in overall classification performance, spectral signatures of successful recall, and fluctuations
of spectral activity across the encoding period argue for a shared endogenous process that
causally impacts the brain’s ability to learn new information.
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Fluctuations in neural processes during encoding con-
tribute to the likelihood of recalling a given experience
(Griffiths, Mazaheri, Debener, & Hanslmayr, 2016; deBet-
tencourt, Norman, & Turk-Browne, 2018). Studies using
functional neuroimaging and electrophysiological methods
have demonstrated that neural activity measured during en-
coding of individual items reliably predicts their subsequent
retrieval, an effect termed the subsequent memory effect
(SME) (Wagner et al., 1998; Paller & Wagner, 2002; Seder-
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berg, Kahana, Howard, Donner, & Madsen, 2003; Kim,
2011). However, key questions remain unanswered regard-
ing the relationship of the SME to memory encoding states.
First, most SME findings focus on individual items, where
factors such as serial position, semantic characteristics, or id-
iosyncratic autobiographical associations may independently
influence encoding success regardless of ongoing cognitive
processes in the brain, leading to the possibility that the SME
largely reflects these exogenous factors instead of memory-
related internal states (Bainbridge, Hall, & Baker, 2019;
Aka, Phan, & Kahana, 2021; Halpern, Tubridy, Davachi, &
Gureckis, 2021). Second, the extent to which neural sig-
nals associated with SMEs reflect item-specific processing
versus longer time-scale fluctuations in the brain’s ability to
encode information, remains unknown. Thus, the question
of whether the SME truly captures endogenously varying
memory-related states, and how to more effectively measure
such states, is unresolved.

Some studies have addressed the question of exogenous
versus endogenous sources of encoding by controlling for
temporal order effects known to predict recall (Serruya,
Sederberg, & Kahana, 2014; Kahana, Aggarwal, & Phan,
2018; Aka et al., 2021; Weidemann & Kahana, 2021).
Weidemann and Kahana (2021) show that even controlling
for such variables, scalp EEG-recorded activity significantly
predicts recall, suggesting that we can observe meaningful
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internal states with neural recordings. Consistent with the
finding of endogenous factors underlying recall, Kahana et
al. (2018) show that accounting for external predictors of re-
call such as alertness, temporal order, and a general measure
of recallability, still leaves a large proportion of variability in
performance unexplained—variability that we may be able to
partially explain if neural activity can reveal internal states.

As Weidemann and Kahana (2021) demonstrate, one way
to control for some of the confounds affecting memory, such
as serial position, is to average neural activity and perfor-
mance over multiple items. This multi-item analysis may
also reveal different, longer time-scale aspects of the brain’s
ability to encode information. Findings of pre-stimulus
SMEs in the hippocampus hint at the importance of con-
sidering longer time periods in predicting memory perfor-
mance (Park & Rugg, 2010; Urgolites, Wixted, Goldinger,
Papesh, & Treiman, 2020). Since the brain cements episodic
memories over extended periods of time, examining slightly
longer-term SMEs may reveal unique neural mechanisms
and systems, that contribute to encoding and integration of
new memories into existing schema (Preston & Eichenbaum,
2013). Thus, investigating memory encoding across multiple
studied items could give more complete insight into the phys-
iology underlying encoding states, leading to a more accurate
assessment of such states.

To this end, we constructed multivariate classifiers based
on intracranial EEG recordings to predict recall over multi-
ple items, and compared the performance of these classifiers
to those predicting single item-level recall. We then inves-
tigated the temporal dynamics of classifier output to deter-
mine if multi-item level classifiers could reveal internal en-
coding states, acting as biomarkers of successful encoding.
Finally we examined the important neural features of multi-
item classifiers and single item-level classifiers, to better un-
derstand the neural underpinnings of good encoding states.

Methods

From a pool of 259 total participants who performed either
random or categorized free recall, we first selected 66 who
performed both versions. We then selected patients who re-
called an average of at least one item per list, contributed data
from at least 10 lists per session, and from at least 24 lists in
total (i.e., across all sessions). This resulted in a sample of
62 patients. We trained two types of classifiers to predict
either individual item recall or list-level recall performance,
based on neural activity during word presentation or average
activity over entire lists, respectively.

Participants

All patients, who had medication-resistant epilepsy, pro-
vided informed consent to be enrolled in the Defense Ad-
vanced Research Projects Agency (DARPA) Restoring Ac-
tive Memory (RAM) project. Patients underwent neurosurgi-

cal implantation of electrodes to identify and monitor seizure
activity. During this time they also performed a variety of
cognitive tasks. Data were collected across the following
eight participating institutions: Columbia University Hospi-
tal (New York, NY), Dartmouth-Hitchcock Medical Center
(Lebanon, NH), Emory University Hospital (Atlanta, GA),
Hospital of the University of Pennsylvania (Philadelphia,
PA), Mayo Clinic (Rochester, MN), National Institutes of
Health (Bethesda, MD), Thomas Jefferson University Hospi-
tal (Philadelphia, PA), and University of Texas Southwestern
Medical Center (Dallas, TX). Experimental protocols were
approved by each Institutional Review Board.

Free Recall Task

Patients performed two versions of a verbal delayed free
recall task in which each session consisted of up to 25
lists with 12 words each. In one version, words were
drawn randomly from a pool of 300 commonly used nouns
(http://memory.psych.upenn.edu/WordPools). In the catego-
rized version, words were drawn from a separate pool such
that each list consisted of four words from three semantic
categories (data previously published in Weidemann et al.
(2019)). In each list, words were displayed for 1.6 s each,
with randomly jittered inter-stimulus intervals of 0.75–1 s.
Each word list thus lasted �30 s. Following list presenta-
tion, patients performed a 20 s arithmetic distractor task of
simple addition problems. Finally, patients had 30 s to re-
call as many words as possible. Patients completed as many
sessions as was comfortable. The number of total sessions
completed ranged from two to 13; 40 patients completed be-
tween two and four sessions, and 22 completed five or more
sessions.

iEEG Recording and Localization

We recorded neural activity using depth and surface elec-
trode contacts. We constructed virtual bipolar contacts by
subtracting the signal between adjacent monopolar contacts,
and localized them to the midpoints of the two monopolar
contacts. Monopolar contacts of a given bipolar pair were
located within 20 mm of each other, outside of any clinician-
determined seizure onset zone or region showing epileptic
spikes. We registered post- and pre-implantation imaging
using Advanced Neuroimaging Tools (ANTs) (Avants, Ep-
stein, Grossman, & Gee, 2008). We localized surface con-
tacts based on MRI segmentation using FreeSurfer (Desikan
et al., 2006), and clinical neurophysiologists localized sub-
cortical sources.

iEEG Spectral Preprocessing

We aggregated recording segments from 0.3 to 1.6 s
post word onset, for each list. We used Morlet wavelets
(# cycles = 5) implemented in MNE-Python (Gramfort et al.,
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2013) to calculate spectral power at eight logarithmically-
spaced frequencies from 3 to 180 Hz (3, 5, 10, 17, 31, 56,
100, 180) with a 1.2 s buffer period on each side of each seg-
ment. For each session and frequency, we log-transformed
and z-scored the power. For list-level analyses we averaged
power over all word presentation segments for each list. For
analyses in which we applied the classifier to longer, continu-
ous epochs (all 30 s before, during, and after list presentation,
or the 4 s surrounding each item), we averaged power over
the whole list presentation period, including inter-stimulus
epochs, and after calculating power we down-sampled data
to 500 Hz and averaged power over 1 s epochs incremented
by 0.1 s.

List-level Predictions

To predict performance of a given list, we implemented
Ridge regression with the ‘sklearn’ ‘Ridge’ package in
Python, using a regularization parameter α of 1/(2 � 0.0007)
based on previously published results (Weidemann et al.,
2019). We trained models on all but one list and predicted
recall performance on the held-out, test list (with each list
held out once), using features of encoding epoch power at all
eight frequencies, over all contacts. To normalize power, we
z-scored the training set of list-level power values within ses-
sion, using the mean and standard deviation of the test list’s
session to normalize the test list. To normalize list perfor-
mance, we logit-transformed list performance, p, adjusting
for performance of 0% or 100% (p = 0 or p = 1) by using:
ln[(p + 0.5

12 )/(1 � p + 0.5
12 )] (Stevens, Valderas, Doran, Per-

era, & Kontopantelis, 2016). Otherwise we used the standard
formula: ln[p/(1� p)]. Next, we mean-subtracted list perfor-
mances within each session, first omitting the held-out list’s
performance to protect the training data from testing data.
We then subtracted the mean performance of the correspond-
ing session from the test list’s performance. Finally, we cor-
related predicted and observed list performance to quantify
the overall performance of the model for a given subject. For
parametric statistical tests, we used the Fisher transformation
of the correlation values. We also performed permutation
testing to obtain a distribution of 50 baseline correlation val-
ues by randomly shuffling list performances within each ses-
sion and recalculating the correlation between predicted and
observed list performance. Correlation values were deemed
significant if greater than 95% of the baseline values.

Item-level Classification

We performed item-level classification similarly to list-
level prediction, except instead of a Ridge regression, we
used L2-regularized logistic regression, implemented using
the ‘sklearn’ ‘LogisticRegression’ package in Python, with
a regularization parameter C of 0.0007 (Weidemann et al.,
2019). For each test list, we trained the model on all items
from all other lists. To evaluate the classifier we compared

observed recall to classifier-predicted probability of recall.
We also calculated classifier-predicted list performance by
summing the predicted probabilities of each individual item
in the held-out test list. We constructed permutation-based
baseline values similarly to in list-level classification.

Recallability Correction

To correct for item and list recallability in item- and list-
level prediction, we first measured item recallability as in
Kahana et al. (2018), by calculating the probability of item
recall within each patient and averaging these probabilities
across patients. For each patient, we calculated this recalla-
bility measure for each item viewed based on all other pa-
tients. During recall classification, we first used this recalla-
bility measure to predict recall for all items excluding those
in the held-out list, in a linear regression model. We applied
this same model to items in the held-out list. We then used
the residuals from these predictions as the new recall val-
ues, which we trained the linear regression models to pre-
dict, as above, based on neural activity measures. For the
list-level analysis the individual item recallabilities were av-
eraged over each list to generate list-level recallability mea-
sures.

Cross Classification

To assess the relative performance of the classifiers, we
tested the item-level classifiers on list-level recall prediction,
and vice versa. First, we trained the item-level classifier as
above, and tested it on the neural features of the held-out
list to generate the prediction of recall. We correlated these
predictions with the observed list recall performance. To test
the list-level classifier on item-level prediction, we trained
the list-level classifier as above and tested it on the neural
features of each item of the held-out list. We correlated these
predictions of recall performance with observed item-level
recall (a point-biserial correlation).

Temporal Analysis of Encoding State

Temporal analysis of classifier output. We analyzed
temporal fluctuations of classifier output by first training an
item-level or list-level classifier as described above, except
that for the training epochs of the list-level classifier we av-
eraged power over the whole list instead of just word pre-
sentation epochs. For each test list, we applied the trained
classifier to 1–second sliding windows, from 31 s before,
to 61 s after onset of the first word of the list, increment-
ing by 100 ms. We also applied the classifier to windows
from 2 s before to 2 s after individual words, to construct a
peri-stimulus time course of classifier output. For both time
courses, we averaged them for each subject to generate the
subject-level mean.
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Spectro-temporal analysis of classifier performance.
We analyzed fluctuations in classifier performance over time
and frequency using a similar temporal segmentation struc-
ture as above, but focusing only on the list presentation epoch
(from 1 s before, to 31 s after onset of the first word), using
10 s time windows sliding by 1 s. For each time window we
trained the list-level classifier on neural power from that time
window alone and using only one of the eight frequencies, to
predict performance on the entire list. We correlated these
predictions of list performance with observed performances,
over all lists, to quantify the classifier performance for that
time-frequency cell. Similarly, we analyzed fluctuations in
classifier performance over time alone, by training the list-
level classifier on each 10 s time window using all eight fre-
quencies.

Correlation between Spectral Power and Performance

For each subject, we correlated both item- and list-level
performance with power at each contact for each frequency.
We averaged correlations across all contacts for a given fre-
quency to compare the item- and list-level correlations by
frequency. To compare the item- and list-level correlations
by region and frequency, we first aggregated contacts and
averaged correlations over nine ROIs based on the group-
ing used in Weidemann et al. (2019): inferior frontal gyrus
(IFG), middle frontal gyrus (MFG), superior frontal gyrus
(SFG), temporal cortex (TC), hippocampus (HC), parahip-
pocampal gyrus (PHG), inferior parietal cortex (IPC), supe-
rior parietal cortex (SPC), and occipital cortex (OC). We per-
formed multiple comparisons correction for statistical tests
using false discovery rate (FDR, q < 0.05) on permutation-
based p values (Benjamini & Hochberg, 1995). We calcu-
lated p values by randomly shuffling region labels of elec-
trode contacts 1000 times, at the subject-level, recalculating
the group-level mean correlations for each permutation, and
comparing these to the true mean correlation.

Results

Our investigation addressed four main questions: 1) Can
we reliably classify list-level recall performance and how
does the performance of these classifiers compare with stan-
dard item-level prediction? 2) Do classifiers trained on items
exhibit strong transfer to list-level recall, and vice versa?
3) Do fluctuations in predicted recall during encoding cor-
respond with task-relevant events, thus enabling its use as
a biomarker for encoding state? 4) Which aspects of neu-
ral activity—along the dimensions of time, frequency, and
region—underlie recall prediction at the item and list level?

Item- and List-level Classification of Memory Encoding

To evaluate list-level prediction of memory performance
we first used a leave-one-list-out scheme to predict recall

Encoding (~30 sec)
HAT
1.6s

. . .BUS
0.75-1s

(x12)

Train classifier

Item-level

List-level
Free recall (30 sec)

...hat...car...

}
Task Design Analysis

Predict item recall

Predict list performance

A B

Distractor (20 sec)
2+4+1=?

Classifier Performance
        (correlation)

corr(p(recall),
observed recall)

corr(predicted list perf.,
observed list perf.)

7+7+3=? . . .

Classifier Prediction

Figure 1. Task and Analytic Strategy. (A) Depiction of free
recall task, consisting of up to 25 repeating blocks of encoding, dis-
tractor, and free recall epochs. (B) Depiction of analyses, where we
generate item-level classifiers to predict probabilities of individual
item recalls (p(recall)), and list-level classifiers to predict list-level
performance. We evaluate classifier performance by correlating ob-
served recall performance and predicted recall performance.

performance for each list, and then correlated the classifier-
generated predictions of recall performance with observed
performance (see Methods for details). To have a compa-
rable measure for evaluation of the item-level classifier we
correlated its predictions with the binary recall status of the
corresponding items (i.e., a point-biserial correlation). At
the individual subject level, list-level prediction was signifi-
cant (permutation test, p < 0.05) in 40 of 62 patients. The
distribution of correlations between predicted and observed
list-level recall, across our 62 subjects, had a mean value of
0.25 (95% CI: [0.19, 0.31]) (t-test: t(61) = 8.8, S E = 0.029,
p < 0.001). Item-level classification was significant in 60
of 62 patients, and the distribution of correlations for item-
level recall had a slightly lower mean value of 0.22 (95% CI:
[0.19, 0.24]) (t-test: t(61) = 18.2, S E = 0.012, p < 0.001).
A statistical comparison of the item and list level correlations
failed to detect any reliable differences (M = 0.027, paired
t-test: t(30) = 1.44, S E = 0.027, p = 0.15). Figure 2 shows
the comparable levels of performance of item- and list-level
classifiers, and highlights the difference in variance.

To verify that recall predictability was not solely due to
item memorability effects, we repeated the above analysis
but with first measuring and correcting for item recallability
(Figure S3). After this correction, item-level classification
was significant in 58 subjects, with a group mean of 0.17
(95% CI: [0.14, 0.19]) (t-test: t(61) = 12.8, S E = 0.013,
p < 0.001). While still highly significant, these predic-
tions were significantly decreased compared to no recalla-
bility correction (M = 0.049, paired t-test: t(61) = 11.3,
S E = 4.5 � 10�3, p < 0.001). In contrast, list-level predic-
tion of recall was not significantly affected by recallability
correction (M = 3.7 � 10�4, paired t-test: t(61) = 0.60,
S E = 3.2 � 10�3, p = 0.55). List-level classification af-
ter recallability correction was significant in 39 subjects,
with a group mean of 0.25 (95% CI: [0.19, 0.31]) (t-test:


