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Abstract

Computational models of rodent physiology implicate hippocampal theta as a key mod-

ulator of learning and memory (Buzsaki & Moser, 2013; J. E. Lisman & Jensen, 2013),

yet human hippocampal recordings have shown divergent theta correlates of memory forma-

tion. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask

narrowband theta increases. Their survey also suggests that theta’s role in memory appears

strongest in contrasts that isolate associative retrieval processes and when aggregating signals

across large brain regions. We evaluate these hypotheses by analyzing human hippocampal

recordings captured as 162 neurosurgical patients performed a free recall task. Using the

irregular-resampling auto-spectral analysis to separate broad and narrow-band components

of the field potential we show: 1) Broadband and narrowband components of theta exhibit

opposite effects, with broadband signals decreasing and narrow-band theta increasing during

successful encoding; 2) Whereas low-frequency theta oscillations increase prior to successful

recall, higher-frequency theta and alpha oscillations decrease, masking theta’s positive effect

when aggregating across the full band; 3) Theta’s effects on memory encoding and retrieval

do not differ between reference schemes that accentuate local signals (bipolar) and those that

aggregate across large reference (whole brain average). In line with computational models

that ascribe a fundamental role for hippocampal theta in memory our large-scale study of

human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during

successful memory encoding and prior to spontaneous recall of previously studied items.
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Significance statement

Analyzing recordings from 162 patients we resolve a long-standing question regarding the role

of hippocampal theta oscillations in the formation and retrieval of context-dependent, episodic,

memories. We show that broadband spectral changes confound estimates of narrowband theta ac-

tivity, thereby accounting for inconsistent results in the literature. After accounting for broadband

effects, we find that increased theta activity marks successful encoding and retrieval of episodic

memories, supporting rodent models that ascribe a key role for hippocampal theta in memory

function.
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1 Introduction

Since the classic work of (Scoville & Milner, 1957), we have known that the hippocampal forma-

tion plays a crucial role in human context-dependent (episodic) memory. Whereas lesion studies

reified the single-case study of H.M. (Squire, Knowlton, & Musen, 1993), further advances in

our understanding of hippocampal physiology arose from recording field potentials and neuronal

spiking in awake behaving mammals (e.g., O’Keefe & Dostrovsky, 1971; Knierim, Kudrimoti, &

McNaughton, 1995; McNaughton, Barnes, & O’Keefe, 1983). These studies led to discoveries

regarding the role of theta oscillations and place cell activity in animal learning (see J. Lisman,

Jensen, & Kahana, 2001, for a review). While human scalp EEG studies had suggested some

role for theta rhythms in cognitive processes (e.g., Schacter, 1977) it was only at the turn of the

21st century that depth-electrode recordings in neurosurgical patients specifically implicated theta

oscillations in human spatial and verbal memory (Kahana, Sekuler, Caplan, Kirschen, & Madsen,

1999; Sederberg, Kahana, Howard, Donner, & Madsen, 2003; Ekstrom et al., 2005). The ability to

record neural activity from indwelling electrodes synchronized with computer-controlled memory

experiments spawned a series of important discoveries regarding the electrophysiology of human

learning and memory (Johnson & Knight, 2015)

Despite recent progress in the neurophysiology of human memory, considerable confusion sur-

rounds the role of hippocampal theta activity in key memory processes, such as successful encoding

and retrieval. To isolate neural correlates of successful memory encoding, researchers typically sort

studied items into two groups: those that are subsequently recalled or recognized and those that

are subsequently “forgotten”. Neuroimaging studies employing this contrast have frequently iden-

tified the hippocampus as a region of increased heamodynamic activity during successful encoding.

To isolate neural correlates of memory retrieval, researchers often compare the period during which

recollection occurs with a control period comprising either a matched deliberation interval (Burke,

Sharan, et al., 2014) or a period preceding a retrieval error (Long et al., 2017).

In a recent review Herweg et al. (2020) identify a highly inconsistent pattern of findings, partic-

ularly with regards to data from direct recordings from the human medial-temporal lobe (MTL).

They find that most studies either report negative associations between MTL theta and mem-
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ory, or mixed patterns of results with some electrodes exhibiting increases and other exhibiting

decreases in theta power. Herweg et al (2020) propose several possible accounts for the discrep-

ancies across these studies. First, they suggest that estimates of theta-band spectral power are

confounded with broadband power changes, with the former reflecting synchronous oscillations and

the latter reflecting broadband noise (e.g., Burke, Ramayya, & Kahana, 2015). They suggest that

negative effects largely reflect broadband activity and that these effects mask the positive theta

effects in the data. They also suggest that theta increases arise primarily during tasks that require

associative memory retrieval and that the standard subsequent memory effect (SME) analysis will

largely pick up changes in global attention rather than memory-specific encoding processes. As

such, they note that studies looking at retrieval processes may be more suited to identify increases

in hippocampal theta. Finally, they note that magnetoencephalography (MEG) and scalp EEG

studies consistently find positive theta effects, often overlying frontal regions. As such, it may be

that bipolar reference schemes used in many of the studies reporting decreases in theta may have

filtered out theta increases that appear synchronously over larger brain areas.

The present paper evaluates these three hypothesized accounts of the discrepant findings con-

cerning hippocampal theta and memory. To do so we analyze a large dataset comprising 162

neurosurgical patients fitted with hippocampal depth electrodes. Using standard wavelet methods

we analyze spectral activity during encoding and retrieval phases of a delayed free recall task.

We also separate broadband and narrowband components of spectral activity using irregular-

resampling auto-spectral analysis (IRASA) (Wen & Liu, 2016). In the discussion we compare this

method with several other modern approaches for isolating narrowband oscillations. To evaluate

the hypothesized role of hippocampal theta in memory retrieval we compare the 750 ms period

immediately preceding verbal recall with matched periods of deliberation, when patients are try-

ing to recall but no items come to mind. Finally, we evaluate the hypothesis that local spatial

referencing obscures theta’s role in memory by repeating the above comparisons separately us-

ing a global average reference of implanted electrodes (as compared with a bipolar reference that

localizes activity to the differential voltage between neighboring channels).
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2 Materials and Methods

2.1 Subjects

We analyzed hippocampal depth-electrode recordings from 162 patients who participated in the

DARPA-funded Restoring Active Memory project (e.g., Ezzyat et al., 2018; Solomon, Stein, et

al., 2019; Solomon, Lega, Sperling, & Kahana, 2019; Phan, Wachter, Solomon, & Kahana, 2019).

This publicly-shared dataset includes >300 patients with drug-resistant epilepsy who took part

in memory testing while undergoing a neurosurgical procedure to localize seizure activity and

functional tissue. Researchers obtained informed consent from each patient and the research

protocol was approved by the institutional review board (IRB) at the University of Pennsylvania

and each participating hospital.

We analyzed data only from patients who recalled at least, on average, one word per list; we

also limited this study to patients with at least one bipolar pair consisting of contacts localized

within the hippocampal formation (including regions CA1, CA2, CA3, CA4, dentate gyrus, and

subiculum).

2.2 Experimental Design

Patients completed a free recall task, in which they encoded a sequence of 12 words which appeared

on a blank screen for 1600 ms each during a study phase. The spacing between words is jittered

between 750 and 1000 ms. Following each study phase patients performed a 20 s arithmetic

distractor task in which they solved problems of the form X + Y + Z =??, where X, Y , and

Z were positive or negative numbers between 1 and 9. Responses were made on a keypad, with

presentation of additional math problems following each response (i.e., a self-paced task). After

the delay, a row of asterisks accompanied by an 800 Hz auditory tone signaled the start of the

recall period. At this point patients recalled out loud all the words they could remember from

the list in 30 seconds. They repeat this sequence 25 times to complete the experiment, but not

all patients complete a full 25 trials. Many patients repeat this process for multiple experimental

sessions.
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Figure 1: Methods. A) Patients performed a free recall task in which they were presented with a list of words
on a blank screen in sequence, completed a math distractor task, and were then prompted to recall as many of the
presented words as possible during a 30 second free recall period. B) Data for this analysis were collected from
electrodes located in the bilateral hippocampus across 162 patients. C) IRASA treats an EEG trace as a linear
combination of an oscillatory component and a “fractal” pink noise component which is assumed to follow a power
law distribution. IRASA capitalizes on a mathematical property of fractals called self-affinity that causes them to
behave differently under re-sampling than other signals, thereby allowing us to separate the components and obtain
a purely oscillatory power spectrum.
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2.3 Electrode Recordings: Localization and Preprocessing

To precisely localize MTL depth electrodes, hippocampal subfields and MTL cortices were auto-

matically labeled in a pre-implant, T2-weighted MRI using the automatic segmentation of hip-

pocampal subfields (ASHS) multi-atlas segmentation method (Yushkevich et al., 2015). Post-

implant CT images were coregistered with presurgical T1 and T2 weighted structural scans with

Advanced Normalization Tools (Avants, Epstein, Grossman, & Gee, 2008). For the majority of

subjects in this dataset, MTL depth electrodes that were visible on CT scans were then manually

annotated with localizations within MTL subregions by neuroradiologists with expertise in MTL

anatomy. The electrodes used in this analysis appear in Figure 1 in transformed MNI coordinate

space. The original sampling rates for these recordings vary by hospital and patient, but are all at

least 500 Hz. For analysis, we resampled each recording to 500 Hz for consistency. We re-referenced

the EEG using a bipolar montage in order to mitigate noise and increase the spatial resolution of

the recordings, except for one analysis that explicitly compares this bipolar reference to a common

average reference scheme. Applying a Butterworth bandstop filter of order 4 removed 60 Hz line

noise from the recordings.

2.4 Separating broadband and narrowband effects with IRASA

IRASA, introduced by Wen and Liu (2016), is a method for separating oscillations from the pink

noise background. We first assume that the EEG timeseries is a mixed signal containing both

fractal (f(t)) and oscillatory (x(t)) components.

y(t) = f(t) + x(t)

Fractals are mathematically interesting for a number of reasons, but a property of particular im-

portance is that they exhibit self-affinity. This means that fractals are scale free; geometrically,

magnifying a portion of a fractal will produce qualitatively the same pattern. Expressed mathe-
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matically, when a fractal time series is resampled by a factor h,

fh(t) , hHf(t)

which means that the statistical distribution of the resampled time series is the same as the sta-

tistical distribution of the original time series multiplied by a scaling term (The Hurst exponent H

is related to the time series’ auto-correlation). In the frequency domain, this self-affinity manifests

even more directly as

Fh(ω) = hHF (ω)

which states that the Fourier transform after resampling is equal to the Fourier transform of the

original time series multiplied by a scaling factor. This property is useful because resampling causes

non-fractal signals to shift in the frequency domain. For an example of how signals typically shift

in frequency space under resampling, consider an oscillation at 5 Hz in a recording sampled at 1000

Hz. This oscillation completes a full cycle every 200 samples. If the recording is downsampled to

500Hz, then essentially every other sample is removed. Now, the same 5 Hz oscillation completes a

cycle in only 100 samples. Without properly correcting for the change in sampling rate, it appears

as if the speed of the oscillation has doubled to 10 Hz.

By identifying the components of a signal which do not shift (which we accomplish by taking

the median power across resampling factors), we can isolate the fractal component. We subtract

fractal power from the total power to isolate oscillations. See Figure 1 for an example of the

method applied to simulated data. We refer the reader to the original methods paper (Wen & Liu,

2016) for a more detailed description of IRASA.

2.4.1 Isolating rhythmic oscillations

In order to isolate the oscillatory components of the neural power spectrum, we applied IRASA

to an epoch of 300-1300ms following word presentation for every event in the task’s encoding

phase. To study the electrophysiology of memory retrieval we repeated the analysis for the epochs

from 800-50ms prior to recall vocalization. These time windows were chosen to balance the trade-
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off between having a sufficiently long window to assess power in the low theta band and being

sufficiently specific to an individual, temporally punctate behavioral event.

IRASA decomposes the power spectrum into fractal and oscillatory components for each event

and channel within every patient. The choice of resampling factors h controls the extent to which

the method is robust to outliers, but trades robustness for spectral smoothing that decreases our

frequency resolution. As we wanted to ensure our analysis did not unintentionally include noise

artifacts created by large oscillations, but are also interested in having a high-resolution spectral

decomposition that can distinguish between different narrowband effects, we chose a relatively

conservative set of resampling factors from 1.1 to 2.0, linearly spaced by 0.05. This is the default

set of resampling factors recommended and used in the original methods paper.

As IRASA explicitly extracts only the fractal component from the power spectrum, in order

to isolate the oscillatory component we need to take the difference of the full spectrum and the

fractal component. This is simple enough, but poses a challenge when log-transforming to suppress

extreme values and normalize the data. If the fractal estimate is greater than the mixed power

spectrum, the oscillatory power will be negative and the log transform undefined. We therefore

introduce a Shifted Symmetric Log transform (SSL) to achieve the same goals without issue. This

transform is defined as follows:

SSL(x) =
x

|x|
log(1 + |x|)

This function retains the useful properties of the logarithm, but it is symmetric about the x-axis

and does not go to negative infinity at very small values.

2.4.2 Wavelet power

We computed wavelet power at both encoding and retrieval to serve as a baseline against which we

can compare our results using IRASA. We computed power at logarithmically spaced frequencies

using Morlet wavelets with a width of 4 cycles. For this analysis, we included buffers on either

side which corresponded to at least two cycles at the lowest frequency being analyzed (to avoid

edge effects). At retrieval, we excluded recalls which were preceded by a vocalization during the

buffer period preceding the epoch; we also implemented a mirrored buffer following the epoch in
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order to avoid contaminating our spectral estimates with vocalization artifacts from recall onset.

2.5 Data and Code Availability

Raw electrophysiogical data used in this study are freely available at https://memory.psych

.upenn.edu/Electrophysiological Data. Analysis and data visualization code is also available

for direct download from https://memory.psych.upenn.edu/files/pubs/RudoEtal22.code.tgz.

The Python implementation of the IRASA method used for this study is publicly available at

https://github.com/pennmem/irasa, and other custom processing scripts used for this project

can be found at https://github.com/pennmem/ or are otherwise available by request.

3 Results

As our analyses sought to elucidate the role of hippocampal theta oscillations in episodic memory

encoding and retrieval, we identified all patients with hippocampal electrodes in the multi-center

Restoring Active Memory project (see Methods). Out of a total of N=281 patients who completed

the same free recall task, 162 had at least one bipolar electrode pairs whose contacts both fell within

the hippocampal formation defined as including regions CA1, CA2, CA3, CA4, dentate gyrus, and

subiculum, but excluding non-hippocampal MTL regions such as perirhinal and parahippocampal

cortices. Each patient performed a memory task in which they studied 12 words which they

attempted to recall following a brief arithmetic distractor task (see Fig.1A for a schematic of

the experimental task). During the 30 s recall period, patients attempted to say as many words

as they could remember from the most recent list, in any order. Each patient contributed data

from multiple study-test trials (see Methods for details). As patients performed this memory task,

intraparenchymal depth electrodes captured hippocampal field potentials (Figure 1b; see Methods

details regarding electrode localization.

The present study seeks to clarify the role of hippocampal neural oscillations in the formation

and retrieval of episodic memories. As most prior work involving direct brain recordings used stan-

dard spectral decomposition procedures (e.g., wavelet transforms, multi-tapers, other windowed
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Figure 2: Subsequent Memory Effect Comparison of spectral power for successful and unsuccessful memory
encoding events (remembered - forgotten) based on hippocampal depth electrode recordings from 300-1300ms
following item presentation. An independent t-test comparing remembered and forgotten words produced difference
scores for every channel and frequency for a given patient. Averaging these scores across channels produces the
t-statistics shown above. To test for statistical significance at each frequency, we performed an FDR-corrected one-
sample t-test against zero. A) Power computed using traditional Morlet wavelets. B) The mixed power spectrum
(before separating broadband and narrowband effects) shows the expected theta and alpha decreases, analogous to
the results using wavelets. C) The fractal power spectrum (broadband only) likewise shows broad decreases in low
frequency. D) The oscillatory power spectrum, which is computed as the difference of the mixed and fractal power
specra, exhibits an increase in theta power, while retaining the same decrease in alpha power.

FFT methods, etc.) these studies cannot disambiguate oscillations from broadband components

of neural activity underlying successful mnemonic function. To address this limitation, we ana-

lyzed neural signals using the irregular-resampling auto-spectral analysis (IRASA), which exploits

the fractal properties of the power-law distributed broadband component to isolate it from the

mixed power spectrum (see Methods). Figure 1c shows how IRASA decomposes a simulated EEG

trace into broadband and narrowband components. The simulated data in 1c contain a single

sine wave at a known frequency (“narrowband”) and pink noise (“broadband”). IRASA estimates

this broadband component (see Methods) and subtracts it from the mixed autopower spectrum to

isolate the residual oscillatory power.

12



The formation of episodic memories occurs when patients study words for a subsequent recall

task. To identify the spectral correlates of successful encoding we examined the 1 second interval

beginning 300 ms following item presentation, thereby excluding brain signals related to perceptual

processing of the presented word. Spectral analyses of hippocampal field potentials during this

encoding period typically show a tilt in the power spectrum, with decreases in low frequency power

and increases in high frequency power predicting subsequent recall. This spectral tilt manifests as a

flattening of the overall spectrum in log-log space, resulting in a change in the power law exponent.

IRASA, by isolating the power-law distributed background and removing that component from

the power spectrum, reveals a more accurate estimate of the narrowband oscillatory patterns that

coexist with broadband changes.

As shown in Figure 3, the mixed autopower spectrum - analogous to traditional wavelet or

multitaper methods - shows the expected theta decreases. Likewise, the isolated broadband com-

ponent shows decreases in theta power. The oscillatory spectrum, however, shows theta increases.

We used scores from an independent t-test comparing recalled and not recalled power as a proxy

for power differences between the two conditions. To test for significance, we compared the dis-

tribution of t-scores across patients at each frequency to a null hypothesis of zero-mean using a

one-sample t-test. We then corrected for multiple comparisons by using the Benjamini-Hochberg

procedure for controlling false discovery rate. This method is appropriate when tests are positively

correlated, as are spectral estimates at similar frequencies.

Our finding of a positive theta subsequent-memory effect in the human hippocampus contrasts

with previous studies that found predominantly negative theta effects using wavelet methods and

aggregate indices of hippocampal activity. These results confirm the hypothesis offered by Herweg

et al. (2020) that broadband decreases in low frequency activity mask narrowband increases in

theta activity. We next turn to the question of memory retrieval, asking whether isolation of

narrow-band spectral components can resolve mixed findings regarding theta’s role in retrieval

processes.

We used the same decomposition approach to estimate oscillatory power during a 750 ms epoch

between 800 ms and 50 ms prior to recall onset. The theta increase observed during encoding is
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even more pronounced at retrieval; it even shows up in traditional power decompositions like

Morlet wavelets and IRASA’s mixed spectrum (see Figure 3A,B). Positive theta during retrieval

has previously been reported from intracianial electrodes in the right temporal pole (Burke, Sharan,

et al., 2014), but these findings were called into question by subsequent studies with far greater

statistical power showing either decreases or no significant effect (Solomon, Lega, et al., 2019;

Weidemann et al., 2019). We note that most prior work averaged wavelet power over the traditional

theta band from either 3 or 4 Hz to 8 Hz, which blends together the positive and negative effects

shown in Figure 3. Assessing a more continuous spectrum instead of averaging within bands, we

recover a strong positive effect at low frequencies. So, oscillatory power obtained with IRASA

for the memory retrieval contrast matches the results obtained using traditional wavelet power,

though we do obtain somewhat better resolution that reveals multiple distinct components in the

high theta/alpha range.

Herweg et al (2020) proposed that choice of referencing scheme may potentially contribute to

the apparent inconsistencies between non-invasive and invasive analyses of theta’s role in mem-

ory. Scalp EEG and MEG studies often report positive theta correlates of memory encoding and

retrieval (Klimesch, Doppelmayr, Russegger, & Pachinger, 1996; Hanslmayr et al., 2011; Fellner,

Bäuml, & Hanslmayr, 2013; Kaplan et al., 2012) whereas many highly powered intracranial studies

have failed to show these effects. The two most commonly employed - and practically distinct -

methods of voltage referencing are the bipolar reference and the common average reference. In a

bipolar scheme, the potential difference is calculated between pairs of neighboring electrodes. This

is effectively a spatial filter, as any signal shared by both electrodes will be eliminated by the differ-

encing operation. An average reference is more sensitive to global changes in field potentials; it is

calculated by averaging the potential measured at all electrodes, and subtracting that average from

each one. Herweg et al (2020) observe that increases in theta power reported in scalp EEG and

MEG studies with average referencing often exhibit a broad topography across the scalp, centered

around frontal electrodes, and suggest that these effects might have been attenuated in intracranial

studies that frequently used bipolar referencing schemes. This is because bipolar referencing acts

as a spatial high-pass filter, attenuating theta effects that occur synchronously across neighboring
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Figure 3: Memory Retrieval Contrast Comparison of successful retrieval events and matched baseline delib-
eration events which we treat as “failed recall”. Power at logarithmically spaced frequencies were computed for the
750ms preceding recall vocalization. An independent t-test comparing spectra from pre-retrieval epochs and base-
line deliberation epochs produced difference scores for every channel and frequency for a given patient. Averaging
these scores across channels and performing a one-sample t-test against zero produces the t-statistics shown above.
Subplots show A) wavelet power, B) IRASA mixed power, C) IRASA fractal power, and D) IRASA oscillatory
power.

electrodes.

Comparing the memory-related power changes measured with each referencing scheme did

not reveal any reliable differences (see Figure 4). An FDR-corrected paired t-test comparing

bipolar to average reference (for 126 patients with monopolar recordings) did not identify significant

differences between the oscillatory power estimates for the two referencing schemes at any of the

frequencies of interest.

4 Discussion

We sought to resolve long-standing controversies regarding the role of hippocampal theta in learning

and memory. To do so, we reanalyzed a large dataset of human hippocampal activity recorded as

15



−0.4

−0.2

0.0

0.2

0.4

4 8 16

−0.3

−0.2

−0.1

0.0

0.1

0.2

4 8 16

Bipolar

E
nc
od
in
g

Average

−0.4

−0.2

0.0

0.2

0.4

4 8 16

−0.2

0.0

0.2

0.4

4 8 16

R
et
rie
va
l

A B

C D

Figure 4: Comparison of referencing schemes Average t-statistics for successful vs unsuccessful memory
contrasts A) with bipolar reference at encoding, B) with average reference at encoding, C) with bipolar reference
at retrieval, and D) with average reference at retrieval. The isolated oscillatory power spectra did not differ
significantly based on the spatial filter applied to the data.

neurosurgical patients performed multiple trials of a verbal delayed free recall task. Our dataset

comprised 797 hippocampal recordings across 162 patients. Whereas previous research found

inconsistent theta correlates of successful encoding and recall, we find narrow-band 4-Hz oscillations

to consistently increase during successful encoding (Figure 2) and preceding spontaneous free recall

(as compared with matched deliberation periods, Figure 3). Further, we show that increases in

theta activity appear similarly whether measured using a local spatial filter (bipolar referencing)

or a more global filter (referencing to the average of all electrodes, see Figure 4).

Although many studies report theta-correlates of memory in broader memory regions, only a

few studies specifically isolate hippocampal signals. Fell et al. (2011) analyzed hippocampal theta

during memory encoding in a continuous recognition procedure. Analyzing ∼100 hippocampal

electrodes they found a significant interaction between pre- and post-stimulus presentation changes

in theta power, with significant prestimulus theta increases predicting subsequent recognition. Dur-
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ing the post-stimulus item encoding period they found a modest decrease in theta (p ∼ 0.10) for

subsequently recognized items. Sederberg et al. (2007) analyzed hippocampal subsequent mem-

ory effects in a delayed free recall task. Their study, which included 186 hippocampal recordings

detected reliable high-frequency increases during successful encoding, but they failed to observe

reliable theta effects. In a much larger analysis of hippocampal recordings in delayed recall (401

hippocampal electrodes) Long, Burke, and Kahana (2014) observed negative theta SMEs during

successful encoding, and null-effects in the theta band during successful retrieval (Burke, Long,

et al., 2014). Lega, Jacobs, and Kahana (2012) examined 237 hippocampal recordings during de-

layed free recall (as in Sederberg et al., 2007). Recognizing the possibility that spectral measures

confound broadband and narrowband (oscillatory) effects, Lega applied an oscillation detection

algorithm (Caplan et al., 2003) to filter for electrodes that exhibited narrowband oscillations in

each of several frequency bands. Analyzing these channels revealed both positive and negative

theta effects at different electrodes. Although Lega’s study revealed striking positive theta effects

at specific electrodes, it found an even larger number of hippocampal recordings that exhibited

narrow-band decreases, thus offering a potential explanation for the negative and null-results de-

scribed above.

Standard methods used to analyze spectral EEG power (such as wavelets, multi-tapers and

windowed FFTs) mix narrow-band and broad-band signals, leaving open the possibility that a

negative broadband effect can mask a positive narrowband effect, and vice-versa. When analyzed

in this manner, our study replicated a number of previously published studies in showing decreased

hippocampal theta power during the encoding of subsequently forgotten items (e.g., Burke et al.,

2014; Solomon et al., 2019). By using irregular-resampling auto-spectral (IRASA), however, we

revealed a positive relation between 4-Hz theta and successful memory encoding that tends to be

obscured by a large negative relation between broadband power and encoding success.

Although we used IRASA to isolate narrow-band power, a number of other methods have

been developed to address this problem, usually by modelling the 1/f background and considering

deviations or residuals to be true narrowband, synchronous oscillations. The Better Oscillation

Detection Method (Caplan, Madsen, Raghavachari, & Kahana, 2001) characterizes oscillations by
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measuring when narrowband power exceeds a power threshold above the fitted 1/f spectrum for a

specified number of cycles at the frequency of interest; a newer method called FOOOF (Donoghue

et al., 2020) identifies oscillations by assuming they are Gaussians superposed on top of a 1/f

distribution and selecting oscillatory peaks through an iterative fitting algorithm. We expect that

using these related methods would lead to similar results regarding the increase in theta with

successful memory encoding.

Comparing the period immediately preceding correct recall of a studied item with matched

deliberation intervals revealed that while low-frequency (4 Hz) theta increased, higher-theta band

power decreased. In this case, separating narrow- and broad-band power did not prove necessary

to uncover the positive correlation between theta activity and successful recall. Finally, Herweg

et al hypothesized that bipolar referencing may obscure theta increases by filtering out activity

correlated across multiple neighboring electrodes. Our comparison of bipolar and average refer-

ences reveals clear theta increases irrespective of referencing scheme. In summary, our analyses

demonstrate a robust pattern of increased slow-theta (3-5 Hz) narrow-band hippocampal activity

accompanying both successful memory encoding and retrieval. These findings lend support to

numerous computational models of memory, mostly informed by studies in rodents, regarding a

role for theta in memory formation and retrieval.
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