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Abstract
Spectral features of human electroencephalographic (EEG) recordings pre-
dict variability in both memory encoding and retrieval. Here we develop
and test a non-invasive closed-loop (NICL) system for optimizing human
learning in real time by capitalizing on these fluctuating neural features.
Participants play a virtual navigation and memory game; recording multi-
session data across days allowed us to build participant-specific classification
models of recall success. In subsequent closed-loop sessions, our platform
manipulated the timing of memory encoding, selectively presenting items
during periods of predicted good or poor memory function based on EEG
features decoded in real time. Whereas this manipulation of stimulus tim-
ing did not reliably modulate recall performance, we hypothesized that our
ability to predict memory performance from EEG would dictate the suc-
cess of the procedure. We confirm this by showing that the induced recall
differences between presentation conditions correlated with a participant’s
out-of-sample classification performance. These findings present a proof-
of-concept for using non-invasive closed-loop technology to optimize human
learning and memory and provide evidence that generalizing prediction to
new recording sessions is a key hurdle to the success of these systems.

Introduction

Memory performance exhibits marked variability across time, as evident in momen-
tary memory lapses that can cause us frustration or embarrassment. Sometimes we can
identify external factors that trigger or interfere with our ability to learn and remember;
for instance, the order in which items are presented affects the probability that they are
subsequently recalled (Murdock, 1962; Deese & Kaufman, 1957). Some recall variability
can also be attributed to item memorability or external contextual features (Aka, Phan, &
Kahana, 2021; Rubin, 1985; Xie, Bainbridge, Inati, Baker, & Zaghloul, 2020). Recent work
even shows that superior recall can be induced through model-based cue selection (Cornell,
Norman, Griffiths, & Zhang, 2023). In addition to variability that can be predicted from
exogenous variables, recent evidence suggests that at least some and possibly a large share
of this variability arises endogenously (Kahana, Aggarwal, & Phan, 2018). One might ex-
pect that such endogenous variability is a function of observable neural activity – there
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OPTIMIZING LEARNING 2

is robust evidence that neural activity before and during memory encoding correlate with
subsequent recall success, a phenomenon known as the subsequent memory effect (SME)
(Sanquist et al., 1980; Paller & Wagner, 2002; Sederberg et al., 2003; Fell et al., 2011;
Long et al., 2014; Griffiths et al., 2016; Rudoler et al., 2023). However, it is not yet clear
if these patterns of neural activity that correlate with successful memory actually cause
the observed variability (Weidemann & Kahana, 2021; Rubinstein, Weidemann, Sperling,
& Kahana, 2023; Halpern, Tubridy, Davachi, & Gureckis, 2023).

The existence of the SME implies that we can reliably forecast successful memory en-
coding, and machine learning algorithms applied to both invasive and non-invasive record-
ings of brain activity have successfully predicted variation in memory performance at the
level of both items (second-to-second) and lists (minute-to-minute) (Noh et al., 2014; Höhne
et al., 2016; Astrand, 2018; Kragel et al., 2017; Phan et al., 2019; Chakravarty et al., 2020;
Noh et al., 2018; Li et al., 2023; Weidemann et al., 2019; Weidemann & Kahana, 2021; Ru-
binstein et al., 2023). Accurately predicting downstream behavior based on neural activity
laid the foundation for developing brain-computer interfaces for therapeutic intervention.
In particular, recent studies have used model-based, closed-loop electrical stimulation of
lateral temporal cortex to improve memory in neurosurgical patients (Ezzyat et al., 2018;
Kahana et al., 2023).

Whereas these studies illustrate the promise of model-based closed-loop electrical
stimulation as therapeutic intervention, other research has applied similar classification
strategies to optimize learning without the use of electrical stimulation. One innovative
study by deBettencourt et al. (2015) used real-time fMRI data to non-invasively train at-
tention, though they did not directly examine the impact this might have on memory perfor-
mance. In a follow-up study, they used fMRI-based neurofeedback to maximize contextual
reinstatement. They showed that this procedure causally manipulated the probability of
recalling items from a target reinstated context, as compared with items from an alter-
native context (deBettencourt, Turke-Browne, & Norman, 2019). Fukuda and Woodman
(2015) derived electrophysiological biomarkers of encoding that predicted subsequent item
recognition and found that "poorly-studied" items benefited from remedial study more than
"well-studied" items. Another study unsuccessfully attempted to use a brain-computer in-
terface to improve memory by optimizing the timing of item encoding (Burke, Merkow,
Jacobs, Kahana, & Zaghloul, 2015). In that study, item presentation was triggered by
univariate biomarkers associated with successful memory in earlier studies. Here, we build
upon this approach by using regularized, multivariate regression models, which offer greater
flexibility and predictive power. We also extend this approach to a more naturalistic recall
paradigm.

The present study implemented a non-invasive closed-loop (NICL) procedure to opti-
mize the timing of study-events to either improve or impair subsequent recall performance.
Training multivariate classifiers on spectral EEG features, we manipulated the timing of
study items to coincide with predicted good memory states (i.e., the set of brain states that
predict encoding success) as opposed to bad memory states. We then examined whether
these memory states causally affect subsequent memory performance. We hypothesized
that classifier accuracy would modulate the efficacy of this procedure. Our study targeted
a healthy population of young adults, and we embedded our memory task in a naturalistic
virtual reality game with greater ecological validity than standard word-list tasks. Partic-
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ipants played the role of a bicycle courier, actively navigating through a virtual town to
deliver objects to target locations (stores) and later attempting to recall all of the delivered
objects. Dougherty et al. (Submitted) explore behavior in this task in detail and further
discusses spatio-temporal memory dynamics.

We first designed a software platform for triggering item presentation based on clas-
sifier predictions from EEG features decoded in real time. Whereas prior work established
the ability of classifiers to forecast out-of-session data, those studies retroactively used the
full holdout session to normalize features, an approach incompatible with a real-time closed-
loop system. Here, we demonstrate that classifiers are able to predict memory success in
new sessions with just a modest amount of initial data used for normalization (though the
success of this model generalization is highly variable across participants). Using models
pre-trained on participant-specific task data, we then tested participants on separate days
in closed-loop sessions where the timing of item encoding was triggered by predicted good
encoding (’optimize’ condition), predicted poor encoding (’impair’ condition), or randomly
(control condition).

Ultimately, we did not observe significant differences between conditions when aver-
aging across the entire sample. However, since the closed-loop system is crucially dependent
on the predictive model, we would expect the magnitude of differences between conditions
to depend on the ability of the predictive model to classify mnemonic success. We therefore
examined whether classifier performance moderated the success of the overall system, and
found that performance correlates with recall differences across conditions in the expected
direction. In other words, when we can reliably predict a given participant’s memory func-
tion, we are better able to manipulate it. These results point the way to building teaching
systems that use the brain’s current state to optimize learning by presenting information
to the user when it is most likely to stick.

Methods

Participants

A total of 49 participants consented to this study, but a number suffered from motion
sickness, COVID exposures that interrupted the multi-day procedure, or technical issues
with the closed loop technology (7 participants comprising the first round of testing), re-
sulting in 21 participants who completed the entire experiment. All participants were young
adults (ages 18–35) recruited among the students and staff at the University of Pennsylva-
nia and neighboring institutions. The study was approved by University of Pennsylvania
Human Research Protections Program (HRPP), and all adult participants provided written
informed consent to participate in this study.

Courier hybrid spatial-episodic memory task

Participants played the role of a courier in a hybrid spatial-episodic memory task,
riding a bicycle and delivering parcels to stores located within a virtual town, as described
above. Each experimental session consisted of a series of delivery days (i.e., trials), within
which which participants navigated to a series of 15 stores. Participants were directed
to each store with a text prompt (e.g. "Please find the grocery store"), Upon arriving at
each store, after a 1±0.25 s jittered delay, they learned what objects they had delivered
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Figure 1 . Paradigm. A. Participants performed a spatial navigation and episodic memory task in which
they delivered items to various stores distributed about a virtual town. After a sequence of 15 deliveries,
they had 90 seconds to recall as many of the delivered items as came to mind. B. Overhead view of
the virtual town, which consisted of 17 stores and 18 non-store buildings. C. In a closed-loop paradigm,
electrophysiological signals collected during the memory task were evaluated by a classifier in real-time to
predict whether a studied item would be subsequently recalled or forgotten. These predictions explicitly
affect gameplay, creating a feedback loop. D. Every participant completed 4-8 training sessions, followed by
2-4 closed-loop sessions. Within each closed-loop session, trials were split into 3 conditions in a randomized
order: memory optimization (items presented when the participant was predicted to recall them), memory
impairment (items presented when the participants was predicted to forget them), and a control (items
presented randomly).

(via auditory and visual word presentation) - the precise timing of this item presentation is
what our closed-loop system manipulated. At the end of each delivery day, participants were
directed to a final 16th store, and upon arrival the screen went black and they were asked
to freely recall that day’s delivered objects. During each recall phase in the experiment,
we recorded vocal responses and subsequently annotated them offline using Penn Total
Recall (https://memory.psych.upenn.edu/TotalRecall). For a detailed discussion of
the methods underlying this memory task and analysis of spatio-temporal memory, we refer
the reader to Dougherty et al. (Submitted).

The experiment comprised two multi-session phases: During Phase 1, participants
performed the hybrid spatial-episodic memory task - without any further manipulation -
while we recorded 129-channel EEG signals. Phase 1 data was used to train participant-
specific classifiers which discriminated between neural features predicting subsequent re-
membering and forgetting. In Phase 2, we evaluated closed-loop optimization of stimulus
timing, to determine whether items studied during EEG-predicted "good-encoding states"
resulted in better subsequent memory than items studied in EEG-predicted "poor-encoding
states". Specifically, we applied the classifiers to real-time neural activity, and modified the
timing of item presentations based on classifier outputs (see Closed-Loop Stimulus Presen-
tation). Each participant contributed between 5 and 8 Phase-1 recording sessions and 2-4
Phase-2 closed-loop sessions.
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EEG recording and closed-loop infrastructure

We recorded electroencephalographic (EEG) data using a 128-channel BioSemi system
with a 2048 Hz sampling rate. We used BioSemi’s proprietary software ActiView for data
acquisition and monitoring the incoming data. BioSemi systems record data in the BioSemi
Data Format (BDF), a 24-bit version of the popular European Data Format (EDF). Phase
1 sessions did not demand any use of the incoming data in real time, so we simply saved
the data for later analysis. Importantly, these data were used to train classifiers that we
subsequently employed during Phase 2 (closed-loop) sessions.

During Phase 2, we needed to modify the behavioral task in real time, based on
changing neural features recorded in short, overlapping time intervals. To accomplish this,
we split the incoming data stream so that we both saved a copy of the data to disk and also
forwarded the data immediately to our own custom Python program for post-processing and
analysis. The data pre-processing and feature extraction is described in the next section.

A primary challenge of implementing the closed-loop procedure is the need to analyze
overlapping data epochs, since we are interested in changes of brain activity on a timescale
which is shorter than the length of the data epoch (1 s) we analyze. This necessitates
efficient parallelization of the data analysis for each epoch. As soon as the data for an
epoch is collected, it is added to a queue which launches the analysis of that data in a
parallel process as soon as resources are available. We thoroughly tested this system to
ensure that the data collection rate did not in general exceed the speed of parallel analysis
- if it did, the system would accumulate a backlog of data in the queue. If the data are
not analyzed immediately, the classifier predictions become outdated. This system failure
still occurred in a small subset of sessions that we excluded from our closed-loop memory
improvement analyses (see Appendix A).

Once the spectral features of a data epoch were derived (a sub-200 ms process), we
used the classifier trained on record-only data to predict the probability that the neural
activity from that epoch represented a successful memory encoding state. This classifier
result was then communicated from the EEG acquisition computer to the behavioral task
computer by a TCP network connection. See Appendix A for detail about system perfor-
mance and the typical duration of feature derivation and classifier prediction. EEG epochs
of 2 seconds (including buffers) were collected every 250 ms. This essentially means that
we sample brain states at a rate of 4 Hz.

EEG Pre-Processing and Spectral Decomposition

To generate training data for classifying the success of memory encoding in Phase
1, we constructed 1 second epochs spanning from the time window from 300 to 1300 ms
following the onset of an item’s presentation. We applied a global average reference to
the raw EEG recording, subtracting the average of 128 channels from the signal at each
individual channel. A 1 Hz high-pass filter eliminated any residual channel-specific baseline
drift in the signal, and a fourth-order Butterworth bandstop filter removed electrical line
noise at 60 Hz as well as the 120 Hz harmonic. Next, we used the Morlet wavelet transform
to estimate spectral power, convolving the EEG signal with Gaussian wavelets with a width
corresponding to 5 cycles at the frequency of interest. We computed power separately for
each channel at 8 logarithmically spaced frequencies from 6 to 180 Hz. We included a
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buffer period equal to half the wavelet width at the lowest frequency of interest, in order to
avoid contaminating the power estimate with edge effects, and discarded the buffer period
from our time-resolved power estimates before proceeding. We excluded frequencies below
6 Hz from our analysis in order to preserve greater time resolution when later applying the
classifier in real-time during Phase 2.

These power estimates yielded 1024 features - frequency-by-channel pairs represent-
ing every combination of 8 frequencies and 128 channels - for every time sample of every
encoding event. We log-transformed these features and collapsed them by averaging over
time to obtain a single value to represent each feature for every encoding event. We then
z-scored the features - subtracting the mean and dividing by the standard deviation of all
encoding events within each session - to normalize the data and standardize units across
sessions. Normalization is an essential step for regularized regression because the scale of
the regression weights heavily impacts the penalty term of the optimized loss function.

The EEG-processing was identical during Phase 2, with the exception of feature
normalization. Since features had to be normalized in real time, instead of after data
collection was completed, we could not z-score across all events within a still-in-progress
session. Instead, we held out the first trial of each closed-loop session to establish a baseline
for normalization.

Closed-Loop Stimulus Presentation

The term closed-loop refers to the feedback loop created by this experimental
paradigm. A participant’s neural data collected during gameplay is used as input for a
classifier that predicts the probability that a stimulus presented at the current time will
be subsequently recalled. The classifier prediction is then used to manipulate gameplay
(specifically, the timing of stimulus presentation for memory encoding) in the task, which
indirectly influences that participant’s neural activity, which in turn is fed back into the
classifier... and so on.

Classifier Training. We trained L2-penalized logistic regression classifiers based
on item encoding events during record-only sessions. For each epoch corresponding to an
encoded item, we trained 1024 electrophysiological features (channel × frequency) against
binary labels reflecting successful or failed retrieval during subsequent free recall. We re-
sampled the training data to ensure balanced class weighting. To select the L2 penalty
parameter, we performed a leave-one-session-out cross validation and selected the penalty
term with the best average accuracy score across held-out sessions. Then, we retrained a
classifier on the full training set using the selected penalty term and applied that classifier
in closed-loop sessions.

Closed-Loop Timing Manipulation. During closed-loop sessions, our NICL sys-
tem manipulated the delay prior to word presentation. This was achieved by pausing
gameplay (i.e. during the delay between store arrival and item presentation; 1±0.25 s in
record-only sessions) and presenting the awaited item contingent upon binary classification
results (1 for predicted memory success and 0 for predicted memory failure). There were
three different trial conditions which corresponded to different timing manipulations:

1. Memory optimization: wait until a prediction of 1 is received.

2. Memory impairment: wait until a prediction of 0 is received.
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3. Control: wait a random amount of time sampled from a uniform distribution.

In addition to these three conditions, there was a trial at the beginning of each session
without any timing manipulation that was used as a baseline for normalizing subsequently
collected data. The timing of presentations on this trial was the same as in Phase 1: word
presentation was delayed by 1±0.25 s after arriving at a store. When awaiting classifier
results, the delay changed from the usual 1±0.25 s jitter to a 1 s delay and variable wait
until the arrival of the desired classification result, with a timeout of 5 s (6 s total; the
object was presented automatically at this point so the system did not wait for the target
memory state indefinitely). Importantly, if the classifier presented at a "timeout", the object
is not actually presented in the target state. In the control condition, the delay changed
from 1±0.25 s to a random delay sampled uniformly between 1 s and 6 s.

Statistical modeling of memory treatment effects

We are interested in modeling the causal effect that our closed-loop timing manip-
ulation at encoding has on subsequent recall performance. By randomizing the timing
condition (optimization, impairment, control) across lists, we control for confounders and
are able to estimate the "treatment effect" directly (Greenland, 1990). As we predict the
impairment, control, and optimization conditions to be ordered in terms of increasing re-
call, we encoded them as -1, 0, and 1 respectively. This allows us to test a single linear
treatment effect instead of many pairwise comparisons between conditions. Given that the
success of the timing manipulation hinges on the degree to which participants’ multivariate
classifiers generalized from record-only to closed-loop sessions, we also investigated whether
and how classifier accuracy shaped the NICL system’s influence on memory performance.
To that end, we fit a linear mixed-effects model (Bates, Mächler, Bolker, & Walker, 2015)
regressing average subsequent recall on trial type, closed-loop AUC, and their interaction
(as in Figure 2B) with random intercepts for each participant. To ensure proper estima-
tion of the effects and their standard errors, we initially tried to fit a maximal model that
also included random slopes for both fixed effects and incrementally reduced the model
complexity to remove zero-variance components and avoid singularities in the estimated
variance-covariance matrix (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017; Bates,
Kliegl, Vasishth, & Baayen, 2018).

Data and Code Availability

Raw data and code for this study are freely available online. Behavioral and elec-
trophysiological data comply with the Brain Imaging Data Standard (BIDS; Pernet et al.,
2019; Appelhoff et al., 2019) and can be downloaded from OpenNeuro (Markiewicz et al.,
2021) at https://openneuro.org/datasets/ds004706. Analysis code for all figures can
be found at https://memory.psych.upenn.edu/Publications attached to the citation for
this study, and additional scripts for data handling and preprocessing are publicly available
at https://github.com/pennmem.

Results

A model-driven intervention depends on accurate prediction - we therefore hypoth-
esized that our approach would improve memory only if the underlying classifiers predict
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memory success above chance levels. In cases where classification is unreliable, we cannot
evaluate the efficacy of our closed-loop optimization procedure. It is important to disam-
biguate failures to classify memory in the first place and failures to improve memory by
optimizing encoding.

Our primary analyses focus on evaluating both our models and our closed-loop proce-
dure. First, how well do machine learning classifiers trained on record-only sessions predict
mnemonic success in closed-loop sessions? Second, how does the closed-loop task manipu-
lation affect subsequent recall probability?

Dougherty et al. (Submitted) describe behavioral and physiological correlates of suc-
cessful memory encoding and retrieval from just the record-only phase of this task. Here,
we focus on the results obtained in the subsequent experimental sessions during which we
used pre-trained classifiers to manipulate stimulus timing.

Classifier Performance. We first trained participant-specific multivariate classi-
fiers to distinguish encoding epochs of subsequently recalled and non-recalled items. Using
a leave-one-session-out cross-validation scheme we computed the area under the Receiver
Operating Characteristic function ("area under curve" or AUC) over the predicted recall
probabilities of encoding events in the hold-out sessions. We evaluated the statistical robust-
ness of an individual classifier via permutation testing: we randomly shuffled the test labels
and recomputed the AUC 10,000 times, and set a threshold for above-chance classification
at the 95th percentile of this distribution. This tests whether the observed performance
could have been generated by chance, under the null assumption that the model has no
useful information for predicting labels, since there is no meaningful statistical relationship
between the features in the hold-out sets and their permuted labels.

Figure 2A summarizes classifier performance across all training data and also shows
data for each individual participant. At the group level (mean AUC = 0.529, SE = 0.01),
the distribution of the observed AUCs significantly exceeded the chance-level score of 0.5
(t(21) = 3.08, p = 0.006).

Cross-validation in the training set, however, is only an estimate of classifier per-
formance when generalizing to new sessions. Many sources of noise can change between
sessions, and causing a shift in the distribution of neural features for recalled and forgotten
items. In addition, in order to match average timing across conditions in the evaluation
trials, the range of inter-stimulus intervals was expanded to between 1 and 6 seconds –
the performance of the classifiers may have been affected by this task change. To evaluate
the classifier’s ability to generalize to the true data distribution in the closed-loop sessions,
we computed AUC for the predictions made on control trials with random timing of item
presentation. Importantly, to get an unbiased measure of real-time out-of-sample perfor-
mance we normalized the data in the same manner as our closed-loop procedure – that is,
by holding out the first list of each session and using it to compute a mean and standard de-
viation for z-scoring each feature (rather than computing the mean and standard deviation
across the entire session). Figure 2B summarizes classifier performance on test data from
closed-loop sessions (specifically, trials without the timing manipulation). At the group
level (mean AUC = 0.549, SE = 0.02), the distribution of the observed AUCs significantly
exceeded the chance-level score of 0.5 (t(21) = 2.26, p = 0.035).

Memory Improvement with Closed-Loop Stimulus Timing. During Phase
2 (closed-loop) sessions we used classifiers trained during Phase 1 (record-only) sessions
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Figure 2 . Predicting subsequent memory. A. Receiver Operating Characteristic (ROC) curves for
training sessions. Black line indicates average across N = 21 participants. Participants with above-chance
prediction accuracy are marked with opaque lines while at-chance participants are transparent. Significance
was evaluated by comparing the observed AUC against a distribution of null AUCs obtained by randomly
shuffling test labels. B. Receiver Operating Characteristic (ROC) curves for closed-loop sessions. Closed
loop classification is evaluated only based on predictions for trials in which there is no systematic timing
manipulation - normalization trials and control (random timing) trials. Participants with above-chance
prediction accuracy are marked with opaque lines while at-chance participants are transparent. For each
participant, classifier significance was evaluated by comparing the observed AUC against a distribution of
null AUCs obtained by randomly shuffling test labels.

to control the timing of item presentation during memory encoding. Phase 2 sessions
included three conditions, which varied across trials: control trials with random stimulus
presentation, trials in which we optimize memory encoding by presenting stimuli when
participants are in a predicted good memory state, and trials in which we impair memory
encoding by presenting stimuli when participants are in a predicted poor memory state.

We predicted, a priori, that to the extent that classifiers reliably predicted successful
memory, subjects would exhibit higher recall for ’optimized’ timing lists than for ’impaired’
timing lists, with the control condition falling between these two extrema. Without condi-
tioning on classifier performance, our sample included subjects and sessions for whom the
classifier could not optimize the timing of stimulus presentation.

To test these predictions we fit a linear mixed-effects model to our data and estimated
the effects of trial condition, classifier performance, and their interaction on average recall
performance. This analysis did not reveal an overall main effect of trial condition on recall
performance (i.e. the effect without regard to classifier accuracy). That is, there was
no statistically significant difference in recall during trials with optimized timing across
the sample of participants in our study, as compared with the control and the memory
impairment conditions (see Figure 4A).
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Figure 3 . Classifier performance and recall effects. Change in average recall rate (the proportion of
studied items that are subsequently recalled) as a function of classifier accuracy. Error bands indicate 95%
confidence interval.

Consistent with our predictions, however, we find that treatment-induced differences
in memory interact with participant-level classifier performance. Figure 3 shows pairwise
differences in average recall by timing condition plotted against model performance on out-
of-sample data. These relationships all trend in the expected directions – with greater
predictive accuracy comes a larger memory boost on optimization trials as compared to
impairment and control trials, along with a larger deficit for impairment trials as compared
to control trials. Figure 4A shows the results from fitting a linear mixed effects model
of subsequent recall with random intercepts for each participant. Model estimates show
a significant positive correlation between average recall and the interaction of participant-
level average AUC with trial condition (t = 2.11, p = 0.04). Figure 4B shows the model-
predicted recall across trial conditions, at the highest observed out-of-sample AUC in our
study. Though we fail to improve memory performance at the group level, we take this
as an encouraging sign that a causal manipulation of subsequent memory may be possible
with improved out-of-sample neural decoding.

As this is, to our knowledge, the first attempt to apply closed-loop scalp EEG-classifier
methods to modulating human memory, we made various mis-steps along the way that
should guide future work. Perhaps the most significant limitation evident from our analy-
sis of the closed loop data was the generally poor level of classifier generalization between
record-only and closed-loop sessions. The very nature of closed-loop experiments is that
the classification is baked into the procedure, so even if one develops improved classification
methods after the fact, evaluating these improvements requires collection of new experimen-
tal data. The next few sections evaluate various approaches we have taken to improving
our classification methods. These approaches retroactively aid interpretation of the present
data, and can guide future developments in scalp EEG-based closed-loop systems.
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A B

Figure 4 . Modeling the effect of timing manipulations on subsequent recall. A. Linear mixed ef-
fects model coefficients for fixed effects, with 95% confidence intervals. The model includes random intercepts
for each participant, to account for individual differences in overall recall performance. B. Model-predicted
recall rates for each trial condition at the highest observed classifier performance among participants in the
study (AUC=0.72).

Improving Classification. Closed-loop studies impose a high degree of scientific
discipline on the researcher - a priori methodological choices by definition shape the unfold-
ing of the closed-loop experiment, and therefore cannot be revised post hoc. Moreover, the
technical constraints of the closed-loop architecture prevented us from applying certain stan-
dard methods used in scalp EEG to remove electromyographic artifacts, bad channels, etc.
We thus sought to evaluate our pre-processing pipeline, to determine what changes might
have led to superior out-of-sample classification performance. We compared cross-validated
classifier performance on Phase 1 data with different pre-processing methods.

Our default pre-processing, as described in Methods, used a global average reference
scheme coupled with a lowpass filter for drift and a bandpass filter to remove electrical
line noise. In search of improvement, we first tried applying an ICA-driven approach called
localized component filtering (DelPozo-Banos & Weidemann, 2017) to detect and remove
artifacts caused by blinking or other noise sources. Using this "clean" EEG data instead of
raw data did not improve classification (see Table D1, t(21)=0.193, p=0.85). We addition-
ally tried applying a bipolar reference instead of a global average reference, in the hopes
that a more finely resolved spatial filter would isolate informative features with specific
spatial topography. Our choice of reference scheme did not have a significant impact on
classifier accuracy either (see Table D1, t(21)=0.316, p=0.75).

A factor that we do know impacts classifier accuracy is data normalization. As
discussed in Methods, we normalized our training features by applying a z-transform to each
feature across all events within a session. This procedure, unfortunately, is impossible during
the real-time closed-loop experiment: we do not yet have access to data from all events
within the current session, as they have yet to be recorded. We negotiated a necessary trade-
off between collecting sufficient normalization data and maximizing our valid experimental
data: we first collect a subset of data (one trial or "delivery day") from the current closed-
loop session, and compute the mean and standard deviation of this subset in order to
apply a real-time z-transform to the rest of the data as it is collected. This approach
is unfortunately susceptible to low frequency drift and heteroscedasticity over the course
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Figure 5 . Feature normalization. Classifier performance in leave-one-session-out cross-validation on
Phase 1 data improves as a function of the proportion of encoding events used in calculating the mean and
standard deviation for the z-transform applied to the input features. Slope of increase is significant across
participants (t(21)=3.19, p=.005).

of a recording session. As the local mean and variance of the features change, the z-
transform will no longer correctly standardize the data to zero mean and unit variance.
There is a fundamental trade-off between collecting more normalization data and collecting
more closed-loop data, as the closed-loop procedure cannot begin until the normalization
parameters have been set. Figure 5 shows how classifier accuracy reliably increases as we
use more data for normalization (positive rate of increase is significant across participants;
t(21)=3.19, p=.005). We further discuss the importance of normalization and look towards
more advanced methods of aligning training and test domains in the Discussion.

Discussion

We developed and evaluated a closed-loop platform that optimized the timing of
memory encoding based on EEG classifiers trained to predict periods of good and poor
memory function. We hypothesized that presenting memoranda during predicted good
states - when the brain is ’ready’ to encode new information - should lead to better memory
than doing so during poor states. This hypothesis, however, hinges on the ability of trained
classifiers to accurately forecast memory performance in closed-loop sessions. Evaluating
this technology within the setting of an active virtual reality memory game afforded far
greater ecological validity than prior studies using closed-loop brain-computer interface
systems (Ezzyat & Suthana, in press; deBettencourt et al., 2015; Burke et al., 2015).

This proof-of-concept study led to three major conclusions supporting the viability of
scalp EEG closed-loop timing to enhance human learning: First, we were able to design and
implement a closed-loop system that applied multivariate decoding methods to EEG data
in real-time, allowing our system to successfully control the timing of stimulus presentation
based on decoded brain states. Second, we found that scalp EEG signals can reliably classify
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successful and unsuccessful learning on held-out sessions recorded on separate days, in a
spatial-episodic memory task that provides far more complexity and real-world validity than
previous experiments. Third, and most importantly, we found that the ability to decode
memory states correlates with experimentally induced changes in recall performance.

We did not find reliable evidence of a population-level memory improvement - instead,
we find that a successful demonstration of this type of closed-loop system’s overall causal
effect on memory would require even more precision than achieved here. While this study
obtained many more participants and sessions than earlier work, a crucial lesson for future
work is that the resulting effects are likely to be too variable to be detected with the current
design (see e.g. Figure 4b). One design flaw which we suspect impacted our results was
choosing a presentation threshold for predicted recall probability (0.5) which treats the
"good" and "bad" states as contiguous (see distributions in Appendix C); an alternative
would be to identify "good" states above one threshold (e.g. 0.6) and "bad" states below
another (e.g. 0.4) with a gap in between. The consequence of this choice is that many
"good" and "bad" states are not so far apart in neural feature space, which might limit the
behavioral differences caused by preferentially presenting in one or the other. Another major
potential source of imprecision was poor classifier generalization, which, assuming that the
mechanism of the potential success of such a closed-loop system was aligning stimulus timing
to causally relevant brain states, should place limits on the possible effect sizes achievable.
Specifically, although classifier performance was above chance in the aggregate, only a small
proportion of the participants in our study exhibited sufficiently reliable generalization to
closed-loop sessions.

We see great potential in advancing these non-invasive closed-loop methods by im-
proving our ability to build classifiers that generalize well to future recording sessions. Our
data suggest that one key to improving classification is effective data alignment: bring-
ing the training and test sets together into the same domain. Figure 5 shows that better
normalization (via more data) leads to better classifier generalization.

A fundamental challenge of supervised machine learning is that the learning algorithm
is trained on one dataset and subsequently asked to make predictions about an entirely
non-overlapping dataset that can differ from the original in unpredictable or uncontrollable
ways. Put another way, the classifier learns about one domain and is suddenly thrown
into a different one: new noise sources, new signals, perhaps even new correlations between
variables. Much can change between recording sessions: the precise locations of electrode
contacts shift slightly, the impedances of the electrodes could differ, or an electrode might
disconnect halfway through a session. A person’s underlying brain signals might change
too: perhaps they had a sleepless night and forgot to have their morning coffee, or are dis-
tracted thinking about a final exam they have later in the week. Normalization is basically
an attempt to put these potentially discrepant datasets on an equal footing. When normal-
ized retroactively with already-collected full-session data, we demonstrate good classifier
generalization to held out sessions recorded on different days. Thus, the challenge remains
generalizing pre-trained classifiers to closed-loop data streaming into the classifier in real
time.

This is an instance of a problem often referenced in the machine learning literature
as domain adaptation – adapting a model trained in one situation to a new one. Domain
adaptation is closely related to transfer learning, in which a pre-trained model is applied to
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a new task or problem. Our simplistic approach to this challenge was to apply a z-transform
to the spectral features within each recording session; this transforms every feature onto a
standard scale by subtracting the mean and dividing by the standard deviation. A limitation
of this method is that it ignores correlations between features (i.e., it assumes that the data’s
covariance matrix is diagonal). We know this not to be true - at the very least there are
spatial correlations among neighboring electrode contacts that pick up on the same brain
signals. Some simple domain adaptation algorithms (e.g. Sun, Feng, & Saenko, 2015) exploit
the full covariance structure of the data and thereby account for more of the differences
between learned domains. z-scoring across chronologically ordered events is also assumes
the data are stationary, another assumption that is in all likelihood violated in any EEG
data. Future work should explore time-sensitive, or adaptive, normalization techniques.
Another promising area for future work is to combine training data across participants and
thereby assemble a much larger training set. This would prevent overfitting an individual
participant’s data and likely improve classification accuracy.

Of theoretical importance – if our NICL system had successfully manipulated memory
encoding success, these findings would provide novel causal evidence for the importance of
endogenous neural fluctuations in shaping memory success (Weidemann & Kahana, 2021;
Halpern et al., 2023; Rubinstein et al., 2023). Decades of studies on the subsequent memory
effect (SME) show how brain states at the time of item presentation differ between successful
vs. unsuccessful memory encoding. We inverted this design here, which allowed for testing
whether the fate of a discrete learning experience (i.e. a given stimulus presentation) is
caused by the ’brain time’ at which it is presented. The correlation between our ability
to decode such states and the differences in recall performance hint at such a mechanism
underlying the results.

While this study did not produce the targeted group-level memory improvement,
careful analysis points the way forward to improved closed-loop systems and studies of those
systems. As machine learning methods continue to advance quickly, along with increasingly
affordable high-performance computing that can alleviate some computational challenges
discussed in the appendix, we are optimistic that future work will realize the potential for
memory improvement with brain-computer interfaces.
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Appendix A
Evaluating closed-loop system performance

Imperative to the success of the NICLS experimental paradigm is the efficiency of comput-
ing and communicating real-time classifier predictions. We found that system performance
was generally good, with most classifier results computed within about 200 ms. In some
cases, though, the system failed unpredictably and computation lagged, leading to a com-
pounding backlog of unprocessed data. When this happens, the classifier predictions are
not communicated back to the behavioral task in time to be actionable.
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Figure A1 . Distribution of durations for classifier computation.

Table A1 catalogs system performance for each participant and session in our closed-
loop dataset. The maximum duration of time after an EEG epoch is collected that a
classifier result can still be used to manipulate the task - before it “times out” and the item
is presented anyway – is 6 seconds. We labeled any classifier results that took this long to
compute as “overtime” and marked any sessions where this happened at least 5% of the
time. These sessions were excluded from our data analysis (7 sessions total).
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Table A1
System Performance Data for each subject and session in the closed-loop dataset, de-

tailing how long computation of classifier predictions lasted and whether or not the duration
of that computation exceeded our tolerance threshold of 6 seconds (the maximum compute
time that would still allow the prediction to be actionable)

classifier duration (ms) overtime excluded
mean median max

subject session

LTP462 0 206 184 1367 0.00 False
1 193 184 337 0.00 False

LTP468 0 212 197 440 0.00 False
1 190 181 444 0.00 False

LTP470 0 215 201 506 0.00 False
1 235 202 509 0.00 False

LTP473 0 211 193 466 0.00 False
1 199 187 545 0.00 False

LTP474 0 278 194 3001 0.00 False
1 194 183 388 0.00 False

LTP475 0 227 212 452 0.00 False
1 192 183 335 0.00 False

LTP476 0 186 178 322 0.00 False
1 206 190 525 0.00 False

LTP477 0 224 196 578 0.00 False
1 214 193 654 0.00 False

LTP478 0 214 201 552 0.00 False
1 34512 555 99007 0.47 True
2 201 190 341 0.00 False
3 28063 12656 66299 0.76 True

LTP479 0 220 204 656 0.00 False
1 205 195 452 0.00 False
2 48701 51115 144941 0.54 True
3 67329 83738 129480 0.93 True

LTP481 0 552 224 7312 0.03 False
1 205 185 768 0.00 False
2 31157 559 90197 0.47 True
3 193 186 351 0.00 False

LTP484 0 216 191 1487 0.00 False
1 198 187 432 0.00 False
2 210 194 603 0.00 False
3 198 189 308 0.00 False

LTP486 0 184 179 259 0.00 False
1 188 177 456 0.00 False

Continued on next page
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classifier duration (ms) overtime excluded
mean median max

subject session

2 248 190 4419 0.00 False
3 187 179 338 0.00 False

LTP488 0 179 174 271 0.00 False
1 200 189 412 0.00 False
2 192 179 514 0.00 False
3 222 212 521 0.00 False

LTP493 0 257 190 3966 0.00 False
1 216 182 1547 0.00 False
2 334 232 4729 0.00 False
3 195 187 485 0.00 False

LTP494 0 188 183 261 0.00 False
1 192 182 340 0.00 False
2 3649 210 18308 0.23 True
3 487 277 3042 0.00 False

LTP495 0 198 182 475 0.00 False
1 758 303 3787 0.00 False
2 217 210 359 0.00 False
3 205 194 520 0.00 False

LTP496 0 194 185 303 0.00 False
1 202 187 429 0.00 False
2 210 199 460 0.00 False
3 197 180 961 0.00 False

LTP497 0 197 189 337 0.00 False
1 198 188 406 0.00 False
2 181 175 247 0.00 False
3 191 182 434 0.00 False

LTP498 0 229 200 799 0.00 False
1 21990 449 76027 0.45 True
2 191 180 640 0.00 False
3 195 187 362 0.00 False

LTP500 0 202 191 433 0.00 False
1 214 202 602 0.00 False
2 179 175 236 0.00 False
3 191 185 290 0.00 False

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2023. ; https://doi.org/10.1101/2023.08.25.553563doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.25.553563
http://creativecommons.org/licenses/by-nc/4.0/


OPTIMIZING LEARNING 19

Appendix B
Timescale of classifier transitions

Classifier predictions, like the neural activity which the classifiers receive as input, are highly
autocorrelated. After all, neural features are continuous: we have artificially binarized them.
So, it takes some nonzero amount of time to transition from neural features associated with
failed encoding to one associated with successful encoding. One might ask approximately
how long it takes for "memory states" to transition. Figure C1 shows the distribution of
time that the NICLS task spent waiting for the arrival of the target classifier results. Note
the heavy weight close to zero - this reflects that at the time the encoding period began,
the participant was already in the target memory state. Note that if a given participant’s
classifier predicted a good/bad memory encoding state half the time, on average, then items
would be presented immediately roughly half the time.
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Figure B1 . Distribution of time spent waiting for desired classifier result, split by trial
condition.
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Appendix C
Distribution of classifier predictions

We expect the distribution of classifier predictions that triggered a presentation to differ
by trial condition, since they are explicitly constrained: "Optimize" trials only trigger pre-
sentation for predictions greater than 0.5 and "Impair" trials only trigger presentation for
predictions below 0.5. "Control" trials are unconstrained; they present randomly, so the as-
sociated predictions should represent the true underlying distribution of model predictions.

Notice in Figure C1, predictions are densely centered near 0.5 – meaning, the model
cannot distinguish class membership with confidence. This low confidence is an unintended
consequence of choosing the experiment’s decision threshold for item presentation to be 0.5.
That is to say, because neural activity is autocorrelated, if the experiment starts waiting
in the non-target state (e.g. waiting for a good memory state [>0.5] and the participant
is currently in a bad memory state [<0.5]) then the first prediction in the target state will
likely be close to the threshold.

There are also peaks at 0 and 1, representing predictions made with extremely high
confidence. This could be good or bad: for example, this could happen if the electrode cap
moves too much and distribution of neural features shifts dramatically from the learned
decision boundary, so that many or all events are predicted to belong to one class with high
confidence.
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Figure C1 . Distribution of classifier prediction values which triggered an item presentation,
split by trial condition.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2023. ; https://doi.org/10.1101/2023.08.25.553563doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.25.553563
http://creativecommons.org/licenses/by-nc/4.0/


OPTIMIZING LEARNING 21

Appendix D

Table D1
Preprocessing Methods and Classifier Performance We found no significant differ-
ence in classifier performance (AUC) between different pre-processing methods. Our default
pre-processing was to just use a global average reference scheme coupled with a lowpass filter
for drift and a bandpass filter to remove electrical line noise. We compared this approach to
pre-processing with ICA-based localized component filtering (t(21)=0.193, p=0.85) and also
to a bipolar reference scheme (t(21)=0.316, p=0.75).

subject AUC AUC (clean) AUC (bipolar)

0 LTP462 0.550 0.580 0.563
1 LTP468 0.486 0.513 0.504
2 LTP470 0.576 0.580 0.564
3 LTP473 0.522 0.505 0.534
4 LTP474 0.542 0.523 0.519
5 LTP475 0.590 0.514 0.585
6 LTP476 0.586 0.560 0.557
7 LTP477 0.620 0.610 0.607
8 LTP478 0.508 0.516 0.534
9 LTP479 0.611 0.595 0.583
10 LTP481 0.562 0.553 0.555
11 LTP484 0.619 0.606 0.618
12 LTP486 0.584 0.589 0.607
13 LTP488 0.548 0.586 0.532
14 LTP493 0.573 0.551 0.603
15 LTP494 0.554 0.568 0.568
16 LTP495 0.537 0.543 0.549
17 LTP496 0.492 0.492 0.509
18 LTP497 0.549 0.573 0.579
19 LTP498 0.524 0.584 0.573
21 LTP500 0.557 0.521 0.485
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Appendix E
Non-Invasive Closed Loop (NICL) System Design and Flaws

Closed Loop Design

The closed-loop design is split into two separate programs: the NiclServer and the
Task. The NiclServer is a backend which handles data flow from the BioSemi equipment,
preprocesses the EEG, and computes a classifier prediction. The Task is the virtual reality
game described above, which only differs from the original Courier game in that it listens for
TCP messages from the NiclServer and updates an internal boolean with the most recent
classifier result. Each components of NICLS is run on a separate computer, as both are
computationally expensive. Our lab’s standard scalp data collection setup already uses two
computers, to alleviate the computational burden of both running a virtual reality task and
collecting high-density neural recordings.

The closed-loop system is split into two phases: normalization and classification.
Normalization. The system starts in the normalization phase, during which it

computes a mean and standard deviation for each spectral feature for a series of encoding
events. This mean and standard deviation are used to z-score subsequent encoding events
before classifying it. The task waits until each encoding period and then sends a network
message to NiclServer that an encoding took place. NiclServer receives the message and
then updates a rolling mean and standard deviation with the corresponding EEG epoch.

Classification. In NiclServer, a classification happens every 125ms using the last
2 seconds of EEG data. This classification then sends a network message to the Task
indicating the boolean state of classification. The task uses a separate thread to maintain a
boolean of the most recent state of classification. It then uses the boolean for the closed-loop
stimulus presentation during the task’s encoding and cued retrieval phase.

Limitations

While it does not affect the majority of our experimental data, we include this cau-
tionary note as a warning for future system designers. The system uses two threads in a
process pool in order to run the classifications in parallel. This is effective for speeding up
the number of classifications per second, but the implementation does not guarantee that
the classifications would be finished and reported in the correct order. This is not very
problematic in our case for two reasons: there were only two parallel processes (causing a
125ms error) and the task decisions only relied on one value to be good or bad. If there
were more processes running at the same time (with the same number of classifications per
second) or if a task action required a number of the same classification decisions in a row,
the potential for errors would greatly increase.
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