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SUMMARY
Time and space are primary dimensions of human experience. Separate lines of investigation have identified
neural correlates of time and space, yet little is known about how these representations converge during self-
guided experience. Here, 10 subjects with intracranially implanted microelectrodes play a timed, virtual nav-
igation game featuring object search and retrieval tasks separated by fixed delays. Time cells and place cells
activate in parallel during timed navigation intervals, whereas a separate time cell sequence spans inter-task
delays. The prevalence, firing rates, and behavioral coding strengths of time cells and place cells are indis-
tinguishable—yet time cells selectively remap between search and retrieval tasks, while place cell responses
remain stable. Thus, the brain can represent time and space as overlapping but dissociable dimensions. Time
cells and place cells may constitute a biological basis for the cognitive map of spatiotemporal context onto
which memories are written.
INTRODUCTION

Time and space help to organize our experiences, allowing us to

reconstruct the past and envision the future. Lesions to the

medial temporal lobe (MTL) and prefrontal cortex (PFC) disrupt

associations between events and their temporal1,2 and spatial3–5

contexts. Parallel lines of research have uncovered neurons in

these regions that fire at specific locations within a given environ-

ment (‘‘place cells’’6) or specific moments within a stable interval

(‘‘time cells’’7–10), providing a candidate biological basis for a

cognitive map of time and space. Our understanding of these

neurons, however, stems largely from studying them in isolation:

place cells are usually recorded during exploratory or goal-

directed navigation absent time constraints, while time cells

are recorded at fixed locations under timed conditions.9 Thus,

despite the long-standing assumption that the brain encodes ex-

periences within their spatiotemporal contexts,11–13 we lack an

understanding of how neuronal representations of time and

space converge during experience.

Recordings of neuronal responses in the human brain have

now established the existence of place-responsive cells that

appear analogous in many ways to place cells in the rodent hip-

pocampus.14–17 Recent studies also suggest the existence of

neurons that appear selective to time in both verbal list learning18

and image sequence learning19 tasks. Yet it remains unclear if
This is an open access article under the CC BY-N
neurons in humans encode time during task-free conditions

analogous to those studied in animals, or if time cells only appear

in tasks requiring explicit attention to time or sequentially pre-

sented stimuli.

To address these questions, we recruited 10 neurosurgical

patients with intracranially implanted depth electrodes (Figure

1) to play a time-constrained, spatial navigation computer

game called Goldmine, in which they earned points by collect-

ing gold in a visually sparse, underground mine (Figure 2 and

Video S1). Each trial consisted of four timed events: first, sub-

jects waited passively for 10 s at a fixed location, the mine base

(Delay1). Next, they had 30 s to search for gold that appeared

throughout the mine in randomized locations on every trial

(Gold Search). Subjects then waited an additional 10 s in the

mine base under identical conditions to the first delay (Delay2).

Finally, they had 30 s to return to remembered gold locations

and dig for gold, now invisible (Gold Dig). After each Gold

Search and Gold Dig interval, subjects were instructed to navi-

gate back to the mine base if they were not already there at the

end of 30 s (untimed Return-to-base period, median duration =

1.6 s across subjects). This sequence repeated for 36 trials per

session. All subjects performed capably, collecting 54% (range

35%–73%) of gold that was found during Gold Search while

maintaining 47% (range 19%–71%) digging accuracy (STAR

Methods).
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Figure 1. Recording locations

Approximate locations of 457 neurons across 10

participants are overlaid on a glass brain inMontreal

Neurological Institute (MNI) space. Round markers

indicate the positions of microwire bundles, each

consisting of eight recording electrodes, fromwhich

one or more units was recorded. Marker size and

color are proportional to the number of units re-

corded at a given location.
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Usingmicrowires that extended from implanted electrode tips,

we recorded extracellular action potentials from a combination

of 457 single and multiple units (13–73 units per session, here-

after referred to as neurons) that were primarily located in the

MTL and medial PFC (mPFC) (Figure 1; Table 1). Here we inves-

tigated associations between these neurons’ firing rates and the

spatiotemporal structure of the task.

RESULTS

Time during task-free delays
We first analyzed neural activity during delay events (Figure 2A),

which replicated conditions in which time cells are found in the

rodent hippocampus.9 To prevent time from being confounded

with other behavioral variables, we teleported subjects to the

exact same location at the start of every delay, where they

viewed a static image of a door to the mine that was identical

across trials (Figure 2C). As in animal time cell studies, subjects

were neither instructed nor incentivized to explicitly attend to

time. The delays therefore provided a strict test of the hypothesis

that neurons encode time within clearly defined, repeating inter-

vals with fixed external context.

Figure 3A shows a selection of neurons that fired in a time-

constrained manner consistently across trials, illustrating the

range of typical responses. Among the 457 recorded neurons,

99 neurons (22%) exhibited a significant main effect of time

(10 discrete, 1-s bins), independent of event (Delay1 or Delay2)

and its interactions with time (permutation test against circularly

shifted spikes; see STAR Methods; Figures 3A and 3C). These

‘‘delay time cells’’ were present at rates well above chance in

the hippocampus and other recorded regions, with no difference

in the proportion of significantly responding neurons between

the hippocampus, surroundingMTL (combining amygdala, ento-

rhinal cortex, and parahippocampal/fusiform gyrus), and mPFC

(p > 0.05, permutation test controlling for differences in neurons

recorded per region, between subjects; Table 2). In contrast,

only 26 neurons (6%) exhibited a significant time 3 event

interaction, not exceeding chance (Figure 3C). A majority of

time-coding neurons during delays therefore did not distinguish

between Delay1 and Delay2.

Next we examined the distribution of mean firing rates over

time for all main-effect time cells, sorted by their maximal firing

time (Figure 3D). Individual neurons had highly variable firing

rate peaks, and the number of neurons that peaked in each third

of the delay was significantly above chance (p < 0.05, binomial

tests with Bonferroni-Holm correction). Thus, time cells were
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not restricted to one portion of the delay but instead spanned

the entire 10-s duration. However, similarly to time cells in ani-

mals,7,8,20 more time cells peaked near delay onset than at later

times (Figure 3D), and time cells with earlier peaks also showed

larger magnitude responses above their baseline activity (r =

�0.47, p < 0.0001; peak firing time versus maximum Z-scored

firing rate).

While time cells did not distinguish between Delay1 and

Delay2, a distinct group of neurons (n = 70, 15%) responded to

event as a main effect, independent of time (Figures 3B and

3C). Some of these ‘‘event-specific cells’’ had dramatically

different firing rates between the two delays, as shown for an or-

bitofrontal cortex neuron that almost never fired during the 36

Delay1 trials yet was active in sustained bursts throughout

Delay2 (Figure 3B, top). A similar number of event-specific cells

fired more during Delay1 than Delay2 (n = 39, 56%) as showed

the opposite response, and like time cells, these neurons ap-

peared throughout the regions we recorded but did not differ

significantly between regions (Table 2).

Given the prevalence of time cells at the unit recording level,

we next asked if time could be decoded from neural activity pat-

terns at the population level. Indeed, support vector machines

trained on firing rates of all recorded neurons decoded time

within 1.9 ± 0.1 s on held-out test trials, significantly outperform-

ing the 3.2 ± 0.1 s error expected by chance (p < 0.0001, paired t

test versus null model classifiers; see STAR Methods). Mirroring

the clustering of time cell peaks near delay onset, classifier error

was lowest at delay onset and increased steadily over time, while

still remaining better than chance in every time bin (Figure 3E).

In spatial navigation studies, place decoding is informed both

by place cells and ‘‘non-place’’ cells that lack individually inter-

pretable responses, indicating that spatial location is repre-

sented by a distributed neural code.21 We compared classifiers

that were trained to decode time from all neuron firing rates

against classifiers trained only on time cells (n = 125, including

time as a main effect or interaction) or only on non-time cells

(n = 332), respectively. Whereas time-cell-only classifiers per-

formed significantly better than all-neuron classifiers (p =

0.0070, paired t test; Figures 3E and 3G), non-time cell classifier

predictions were no better than chance (p > 0.05, paired t test).

Thus, the population code for time during delays depended on

the activity of bona fide time cells, and without these neurons,

there was no delay time code.

Finally, we considered whether time could be decoded from

cross-classifiers that were trained and tested on different delays

(train only on Delay1 intervals / test only on Delay2 intervals or



Table 1. Neurons by subject and region

Subject HPC AMY EC PHG/FSG HSGa mOCCa mPFC Other Sum

1b 19 6 5 23 0 13 0 0 66

2 5 0 0 19 0 0 0 0 24

3 11 5 1 0 0 0 1 7 25

4 9 6 10 0 0 0 8 0 33

5b 11 19 42 0 21 0 7 2 102

6 0 25 24 15 0 0 1 0 65

7 9 13 15 9 0 0 27 0 73

8 3 9 0 0 0 0 1 0 13

9 4 6 3 0 0 0 0 0 13

10 14 3 0 8 0 0 15 3 43

Sum 85 92 100 74 21 13 60 12 457

Number of neurons (single and multiple units) recorded from each subject in each region. HPC, hippocampus; AMY, amygdala; EC, entorhinal cortex;

PHG/FSG, parahippocampal gyrus/medial bank of the fusiform gyrus; HSG, Heschl’s gyrus; mOCC, medial occipital cortex; mPFC, medial prefrontal

cortex (including medial orbitofrontal, anterior cingulate, and pre-supplementary motor area). Subjects are listed in the order tested.
aSample from one patient.
bSubjects with two sessions of data.
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vice versa), as suggested by the prevalence of main-effect time

cells over time 3 event interaction cells. Successful decoding

performance depended on the existence of a stable population

code for time that was similarly expressed between Delay1 and

Delay2. We found that cross-delay classifiers (Figures 3F and

3H) performed comparably to classifiers that were trained

and tested on the same delay (Figures 3E and 3G). In summary,

population neural activity was sufficient to decode time, and the

two delays shared an overlapping neural time code.

Time and place during navigation
Having observed time-coding neurons during delays, we next

asked if similar time coding appeared during virtual navigation,

when subjects alternated between searching and digging for

gold in the mine (Figure 2A). To identify neural responses to

time independent of place, we regressed each neuron’s firing

rate against elapsed time (10 discrete, 3-s bins), place (12 re-

gions; Figures S1 and S2), event (Gold Search or Gold Dig),

and their first-order interactions. We then identified neurons for

which removing the main effect of time or the interaction be-

tween time and another variable caused a significant decline in

model performance, relative to a null distribution of circularly

shifted firing rates (STAR Methods). Additionally, to ensure that

time and placewere sufficiently behaviorally decorrelated, we al-

lowed subjects to exit the base through only one of three doors

on a given trial (left, right, or center; counterbalanced across tri-

als), requiring them to vary their routes through the mine. This

manipulation severed all but weaker correlations (r < 0.2) be-

tween temporal and spatial bins, with the exception that subjects

always began navigation at the mine base (Figure S3). Models

with additional covariates for head direction, movement, visible

objects (gold) and landmarks (mine base), and dig times yielded

qualitatively similar results (Figure S4; STAR Methods).

Holding place constant, we observed many neurons that fired

in a time-dependent manner during navigation (Figure 4A). Most

of these time-coding neurons were context-specific, with a sig-

nificant number of neurons (n = 64, 14%) representing interac-
tions between time and event, while the number of neurons

with a significant main effect of time (n = 23, 5%) was at chance

level (Figure 4C). In this respect, time cells during navigation

differedmarkedly from delay time cells that fired analogously be-

tweenDelay1 andDelay2. In addition, classifiers trained on neural

firing during delays failed to predict time above chance during

navigation (Figure S5), and population neural activity was nega-

tively correlated between delay and navigation events, such that

neurons that were more active during delays were usually less

active during navigation and vice versa (Figure S6). Insofar as

neurons encoded time during navigation, they therefore did not

adhere to the delay time code.

Most time 3 event neurons fired in a time-modulated manner

during one navigation event but had a flat or unrelated firing

rate during the other, similar to the place cell phenomenon of

‘‘global remapping.’’22 For example, the entorhinal cortex

neuron shown in the bottom-right subpanel of Figure 4A fired

at a uniform rate throughout Gold Search events but increased

its firing rate more than 3-fold from the beginning to end of

Gold Dig events. As during delays, firing rate peaks for

time 3 event cells spanned entire event durations and were

overrepresented near navigation onset (Figure S7). Time 3

event cell proportions did not differ significantly between re-

gions, nor did we find regional differences between other

behavioral variables during navigation (Table 2).

Classifiers trained on population neural activity during naviga-

tion echoed the unit-level results, decoding time within 3.8 ±

0.2 s on held-out test trials (chance: 10.1 ± 0.2 s), with increasing

error at later times from event onset (Figures S8A and S8C).

However, contrasting the delay results, time cell cross-classi-

fiers that were trained and tested on different navigation events

(e.g., trained to decode time on Gold Search trials and tested

for time decoding ability on Gold Dig trials) failed to generalize,

performing no better than chance (p > 0.05, paired t test;

Figures S8B and S8D). Thus, while the two delays were repre-

sented by an overlapping time cell code, Gold Search and

Gold Dig events used orthogonal codes.
Cell Reports 42, 113238, November 28, 2023 3
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Figure 2. Goldmine task

(A) Trial structure and timing.

(B) Top-down view of the mine layout. The yellow line shows an example route by a subject (red circle).

(C) Gameplay screenshots duringDelay (top left), Gold Search (top right, bottom left), andGoldDig (bottom right) events. See also Figures S1 andS2 andVideoS1.
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As in untimed navigation studies,14–17,23 a significant number

of neurons (n = 60, 13%) encoded place as a main effect during

timed navigation, and these ‘‘place cells’’ exhibited a wide range

of receptive fields in different regions of themine (Figures 4B and

4C). In contrast, the number of neurons with a significant place3

event interaction (n = 25, 6%) did not exceed chance. This result

revealed a dissociation between time cell and place cell re-

sponses to changes in task context, with place cells remaining

stable betweenGold Search andGold Dig events while time cells

remapped. We confirmed this conclusion by comparing correla-

tions between Gold Search and Gold Dig event firing rates: (1)

across time bins, for each of the 85 neurons with a main effect

of time or a time 3 event interaction (r = 0.0 ± 0.05 SEM across

neurons); and (2) across spatial regions, for each of the 82 neu-

rons with amain effect of place or a place3 event interaction (r =

0.31 ± 0.04; Figure 4D). Despite this remapping dissociation,

time cells and place cells did not differ significantly in prevalence

(time cells: 19% of all neurons; place cells: 18%; p > 0.05, chi-

squared test of equal proportions), firing rate during navigation

(time cells: 3.5 ± 0.6 Hz SEM; place cells: 4.2 ± 0.7 Hz;

p > 0.05, Welch’s t test), or Z-scored strength of time and place

coding, respectively, relative to null distributions of circularly

shifted firing rates (time cells: Z = 3.8 ± 0.4 SEM; place cells:

Z = 3.6 ± 0.3; p > 0.05, Welch’s t test). These variables therefore

could not explain the time cell-specific remapping effect.

Prior animal and human studies have found that place cells are

often influenced by additional variables including head direction,

goal location, and visual cues.14,15,24,25We asked if time similarly

modulates place representations by identifying neurons whose

activity reflected interactionsbetweenplace and time, controlling

for their main effects. We identified 43 such place 3 time cells

(9%) whose firing rates at a given location depended on the

time it was visited relative to navigation onset (Figure 4E). These

neuronswere significantlymore prevalent than chance, including

in models that further controlled for head direction and visual

landmarks (Figure S4). Thus, while time and place were generally

represented by different neuronal populations, a small number of

neurons conveyed information about joint spatiotemporal

context, reflecting a higher level of feature abstraction.

Alongside neurons that encoded time and place, we identified

a significant number of neurons (n = 59, 13%) that represented
4 Cell Reports 42, 113238, November 28, 2023
event information as a main effect. These neurons were approx-

imately evenly divided between cells that fired preferentially dur-

ing Gold Search and cells that were active more during Gold Dig.

These navigation-event cells overlapped minimally with the

delay-event cells described previously (Figure 3B), such that all

four trial events were represented by distinct neural populations.

Having analyzed neural activity during delay and navigation

periods separately, we consideredwhether some neurons repre-

sented different features in different phases of the trial, as has

been observed in rodents.9 Indeed, we found that some neurons

that acted as time cells or event cells during delays encoded a

different variable, such as place, during navigation. However,

these examples of cross-event coding were uncommon and

did not differ significantly from the number expected given

chance overlap, with one exception: 25 of 70 (36%) delay-event

neurons (which fired preferentially during Delay1 or Delay2,

respectively) also showed significant time 3 event interactions

during navigation. This number was substantially higher than ex-

pected if these delay and navigation responses had occurred

independently (p < 0.0001, chi-square test of independent pro-

portions). These neurons tended to change their firing rates

gradually over the course of each Goldmine trial, and their activ-

ity may be better characterized as being tuned at the trial level

rather than at the level of delay and navigation events within

the trial (Figure S9).

Representing time over long durations
During both delay and navigation events, the neural time code

gradually erodes (Figures 3E, 3G, S8A, and S8C), as reported

previously in animals.26–28 Given this loss of temporal informa-

tion, how do we retain a sense of time over long durations?

Behavioral studies of temporal memory suggest that some

eventsmight act as ‘‘landmarks’’ in time by realigning the internal

clock with the external passage of time.29 Landmarks play a par-

allel role in spatial navigation, where they can correct cumulative

path integration error and offer an alternative to direction-based

navigation.30,31

TheGoldmine task contained two levels of temporal structure:

time within each delay and navigation event, and time across the

four events in a trial (Figure 2A). If neurons used the boundaries

between these events as temporal landmarks, we reasoned that
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Figure 3. Time cells during task-free delays

(A) Subpanels show trial-wise spike rasters and firing rates (mean ±SEM; solid red line: 500msmoving average; dashed blue line: grand average) for six time cells

in the hippocampus (top row), medial occipital cortex, parahippocampal gyrus, and amygdala (bottom row, L to R). The left subpanel for each neuron shows

Delay1 activity, and the right subpanel shows Delay2 activity.

(B) Event-specific cells in orbitofrontal cortex (top) and parahippocampal gyrus.

(C) Percent of neurons with significant responses to each main effect and interaction (red line: type 1 error rate). ***p < 0.0001, binomial test with Bonferroni-Holm

correction.

(D) Z-scored firing rates for all main effect time cells (each row = one neuron), sorted by time of maximum Z-scored firing.

(E) Mean ± SEM prediction errors, across trials, for classifiers that were trained and tested on the same delay event (e.g., both Delay1) to decode time from firing

rates of: all neurons (solid blue line), the 125 neurons that responded to time as amain effect or interaction with event (dashed green line), 332 neurons that did not

respond significantly to time (dash-dot red line), and chance-level results from null model classifiers (dotted gray line).

(F) Same as (E) but for classifiers that were trained and tested on different delay events (e.g., Delay1 / Delay2).

(G and H) Confusion matrices for same-delay (G) and cross-delay (H) time cell classifiers. Matrix rows sum to 1, with each value indicating the mean probability

across held-out test trials.

Article
ll

OPEN ACCESS
(1) it should be possible to decode time across the whole trial at

once, and (2) decoding accuracy should decrease steadily within

each trial event but increase following the transition from one

event to the next.

To evaluate these hypotheses, we trained classifiers to

decode time (40, 2-s bins) from all neuron firing rates across
the 80-s trial and then tested them on held-out trials (Figure 5).

As classifiersmerely selected themost probable time binwithout

knowing anything about the trial event structure, above-chance

performance can only be explained by distinctive neural patterns

in each time bin relative to others across the four timed trial

events. Consistent with our first hypothesis, classifier accuracy
Cell Reports 42, 113238, November 28, 2023 5



Table 2. Neuron responses by region

Trial events Behav. Variable HPC AMY EC PHG/FSG HSGa mOCCa mPFC Other Total

Delay1, Delay2 time 10 (12%) 22 (24%) 21 (21%) 22 (30%) 4 (19%) 5 (38%) 13 (22%) 2 (17%) 99 (22%)

Delay1, Delay2 event 11 (13%) 15 (16%) 25 (25%) 9 (12%) 0 (0%) 2 (15%) 6 (10%) 2 (17%) 70 (15%)

Delay1, Delay2 time 3 event 4 (5%) 7 (8%) 4 (4%) 1 (1%) 3 (14%) 2 (15%) 5 (8%) 0 (0%) 26 (6%)

Search, Dig time 2 (2%) 4 (4%) 4 (4%) 8 (11%) 0 (0%) 2 (15%) 2 (3%) 1 (8%) 23 (5%)

Search, Dig place 7 (8%) 6 (7%) 15 (15%) 16 (22%) 1 (5%) 3 (23%) 11 (18%) 1 (8%) 60 (13%)

Search, Dig event 8 (9%) 13 (14%) 12 (12%) 12 (16%) 1 (5%) 2 (15%) 10 (17%) 1 (8%) 59 (13%)

Search, Dig time 3 event 9 (11%) 10 (11%) 22 (22%) 8 (11%) 0 (0%) 2 (15%) 12 (20%) 1 (8%) 64 (14%)

Search, Dig place 3 event 4 (5%) 3 (3%) 6 (6%) 4 (5%) 1 (5%) 0 (0%) 6 (10%) 1 (8%) 25 (5%)

Search, Dig place 3 time 5 (6%) 8 (9%) 8 (8%) 8 (11%) 6 (29%) 4 (31%) 4 (7%) 0 (0%) 43 (9%)

Number and percentage of neurons in each region, across subjects, with significant responses to each behavioral variable.
aSample from one patient.

Article
ll

OPEN ACCESS
on held-out trials was well above chance (observed: 25% ± 3%

SEM across trials; chance: 2.5%), and classifier-predicted time

was closely aligned with actual time throughout the trial duration

(Figure 5B). Consistent with the second hypothesis, classifier

accuracy increased sharply at the beginning of each delay and

navigation event then decreased at a predictable rate over

time (Figure 5A). Population neural activity was therefore suffi-

cient to decode time across sequential trial events.

DISCUSSION

Our study reveals neurons in the MTL and mPFC that encode

time and space during exploration in a virtual environment for

fixed durations. Time cells activated at rest in the absence of

movement or other external contextual change, while distinct

time cells and place cells emerged during navigation and ex-

hibited divergent responses to changing tasks. These results

demonstrate a neuron-level code for spatiotemporal context in

the human brain, in which time and space are simultaneously

represented but not wholly conjoined.

Fixing the duration of navigation events allowed us to investi-

gate concomitant temporal and spatial codes, and we find the

brain maintains largely independent time and place representa-

tions within a given context. Our data moreover reveal a dissoci-

ation between place cell and time cell responses, with place cells

firing similarly between gold searching and digging tasks, while

time cells completely remapped. This result could reflect differ-

ences in how subjects perceived time and place in Goldmine,

akin to differences in how people judge the time and place of

events in daily life. That is, place cells were stable because sub-

jects needed to return to the same locations during gold search-

ing and digging, while time cells remapped to track the temporal

progression of these events (first search, then dig) within each

trial. This interpretation implies that different experimental condi-

tions could elicit a reversed remapping effect in which place cell

activity varies across contexts for which time cells are stable,

with implications for how events within these contexts are later

organized in memory.32

Two recent studies in humans described neurons with tempo-

rally correlated activity during verbal list learning18 and image

sequence learning19 tasks. These studies provided initial evi-

dence for neuronal time coding under conditions in which sub-
6 Cell Reports 42, 113238, November 28, 2023
jects had to attend to sequential information. Here we extend

these findings to show that time codes are present even in the

absence of task engagement, serial item presentation, or chang-

ing external stimuli. This finding suggests that neurons map time

by default, providing a stable scaffold onto which events are

bound to their times of occurrence across diverse contexts.

Our task additionally enabled direct comparison between human

and animal neuronal responses to time, revealing broadly

conserved qualities across species. Specifically, we find that

human time cells (1) span entire event durations7,8,20; (2) accu-

mulate error in the absence of external cues26–28; (3) remap be-

tween events for which context discrimination (here gold search-

ing versus digging) is behaviorally adaptive7,8,20,27; (4) are

encoded independently of place10,33–35; and (5) reside in the

MTL7,28,36–41 and mPFC.42,43 Consistent with the original time

cell study in rodents,7 we also found an inverse correlation be-

tween population firing rates during delay and navigation inter-

vals, denoting sharp contextual boundaries between these

states. Lastly, we found some evidence for neural tuning at the

trial level, consistent with prior literature in rodents.44

Episodic memory is distinguished from other forms of memory

by the recall of events together with the unique, spatiotemporal

contexts in which they occurred—the ‘‘what,’’ ‘‘when,’’ and

‘‘where’’ of experience.11,12 Neural representations of these fea-

tures are thought to converge in the MTL, where neurons fire

selectively to image categories and multimodal percepts

(‘‘what’’),45–47 and to specific locations and orientations in an

environment (‘‘where’’).14–17,23 Here we confirm a neuron-level

basis for encoding ‘‘when’’ an event occurs, separably from

‘‘where.’’ The convergence of these time and place codes may

provide a contextual framework for organizing the contents of

our experiences into separable but associated memories,

providing a biological mechanism for Tulving’s defining view of

memory 50 years ago.11

Limitations of the study
Whereas time coding was robust to potentially confounding fac-

tors such as task, place, head direction, and visual cues, we

cannot dismiss the possibility that latent factors (e.g., attention,

planning, or anticipation) could have influenced neuronal re-

sponses. This concern is also applicable to animal time cell

studies that informed our experimental design, and it may be
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Figure 4. Time and place cells during navigation

(A) Spike raster and firing rate plots (mean ±SEM; solid red line: 500msmoving average; dashed blue line: grand average) are shown for four time3 event neurons

in the entorhinal cortex (top left, bottom right), amygdala (top right), and orbitofrontal cortex.

(B) Four place cells in the fusiform gyrus (top left), entorhinal cortex (top right, bottom left), and anterior cingulate. Paths traveled (white lines) and spikes (red

circles) are overlaid on firing rate heatmaps (color bar) in each mine region. The left subpanel for each neuron in (A) and (B) shows activity during Gold Search

events, and the right subpanel shows activity during Gold Dig events.

(C) Percent of neurons that responded significantly to each main effect and interaction (red line: type 1 error rate). ***p < 0.0001, binomial test with Bonferroni-

Holm correction.

(D) Correlated firing rates between Gold Search andGold Dig events, computed: (left bar) across time bins, for neurons with amain effect of time or a time3 event

interaction (each point = one neuron); (right bar) across mine regions, for neurons with a main effect of place or a place3 event interaction. Bars show the mean

across neurons, and error bars show the standard error. ***p < 0.0001, Welch’s t test.

(E) Firing rates in each mine region for two place 3 time interaction cells in the parahippocampal gyrus (top) and entorhinal cortex, averaged across all Gold

Search and Gold Dig events during the first, middle, and last 10 s of each event (left to right subpanels). See also Figures S3–S9.
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resolved by comparing time cell properties across different

timing paradigms. Secondly, while we attempted to decorrelate

time from place during navigation by directing subjects along

different starting routes, mild correlations remained in the behav-

ioral data (Figure S3) that complicate interpretation of some re-

sults. In particular, stronger time-by-place correlations at the

start of the task interval may have reduced our ability to identify

early-responding time cells after regressing out place effects,

while population neural decoders may have benefitted from

leveraging both temporal and spatial information to inform time

prediction early on. Finally, it is possible that task learning during

Gold Search influenced neural activity during subsequent de-

lays, and as such, exploring the presence or extent of neuronal

reactivation during delays warrants future investigation.

Another limitation concerns the regional specificity of our re-

sults. Although we observed significant numbers of time cells

and place cells in multiple regions within the MTL and mPFC,

we were unable to resolve differences in the proportions of these

neurons or their response properties between regions. We

expect that regional differences between time cell and place
cell codes likely do exist, but that we were underpowered to

detect these effects in a limited sample size with high inter-sub-

ject variability in electrode placement due to clinical constraints,

alongside highly variable numbers of time cells and place cells

recorded in different subjects.

Finally, our time cell and place cell recordings may appear

noisier than their rodent counterparts. However, factors aside

from interspecies differences might explain this observation.

First, tetrodes and high-density electrodes used in rodent

studies enable better unit isolation, and consequently lower

background firing, than can be attained with the single microwire

electrodes that we used. Second, our participants were patients

with epilepsy who were recorded during prolonged hospital

stays. Third, whereas time cells and place cells in rodents are

typically recorded in overtrained animals, our participants had

�10 min of tutorial training before beginning experimental trials

in a de novo environment. Fourth, the Goldmine environment

was more complex than spatial arenas in most rodent place

cell studies and lacked continually visible landmarks, optimizing

our ability to detect ‘‘pure’’ time and place responses but at a
Cell Reports 42, 113238, November 28, 2023 7



A B Figure 5. Decoding time across the trial

(A) Prediction accuracy by time (mean ± SEM

across held-out test trials) is shown for classifiers

trained to decode 2-s time bins from all neuron

firing rates, using actual (solid red line) or circularly

shifted (gray dotted line) time bins.

(B) Confusion matrix for classifiers trained on

actual (non-shifted) time bins. Matrix rows sum to

1, with each value indicating the mean probability

across held-out test trials.
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possible cost to individual neuron precision. Lastly, virtual navi-

gation studies in rodents usually involve running on a stationary

trackball,48 while our participants navigated using keyboard and

mouse controls absent normal locomotive proprioception. Simi-

larly noisy place cell recordings have been observed in other

studies of hand- or eye-movement-based virtual navigation in

humans and monkeys.14,15,17,49 Future studies that record intra-

cranial activity while subjects navigate through real-world envi-

ronments50 may permit more direct comparison between human

studies and the wealth of neuroscientific knowledge in animal

models from which they draw.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Itzhak Fried (IFried@

mednet.ucla.edu).

Materials availability
This study did not generate any new reagents.

Data and code availability
d All subject-deidentified data are freely available for use upon request to the lead contact.

d Original code used for all data preprocessing and analyses can be downloaded at Zenodo: https://doi.org/10.5281/zenodo.

8333600.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Subjects
We analyzed behavioral and single-unit data from 10 neurosurgical patients with drug-resistant epilepsy who completed a total of 12

testing sessions. Clinical teams determined the location and number of implanted electrodes, based on clinical criteria. All testing

was performed under informed consent after the nature and possible consequences of the experiment were explained, and exper-

iments were approved by institutional review boards at the University of California, Los Angeles and the University of Pennsylvania.

METHOD DETAILS

Electrophysiological recording
Patients were stereotactically implanted with 7–12 Behnke-Fried electrodes with 40mm diameter microwire extensions (eight high-

impedance recording wires and one low-impedance reference wire per depth electrode) that capture local field potentials (LFPs)

and extracellular spike waveforms.59 Microwire electrophysiology data were amplified and recorded at 30 kHz on a BlackrockMicro-

systems (Salt Lake City, UT) recording system or at 32 kHz on a Neuralynx (Tucson, AZ) recording system.
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Spike sorting
Automated spike detection and sorting were performed using the WaveClus3 software package in Matlab.60 We then manually re-

viewed each unit for inclusion by evaluating waveform shape, amplitude, and consistency, along with spike time auto-correlation,

inter-spike intervals, and firing consistency across the session, and we rejected units that were likely contaminated by artifacts or

had excessively low amplitude waveforms relative to the noise floor, in keeping with field-standard spike evaluation criteria.61,62

For electrodes with multiple units that passed this inclusion check, we merged units whose waveform features could not be well-

separated in principal components space, retaining for analysis a combination of single- and multi-units. We refer to these units

as neurons throughout the text, but due to a limited ability to resolve truly single-unit from multi-unit activity using currently available

recording technology in human subjects, we do not attempt to distinguish single-frommulti-units in the present study and analyze all

units identically. Spike sorting was performed by D.R.S., blinded to electrode recording region, and independently reviewed by I.F.

Task description
Subjects played a first-person, virtual navigation game called Goldmine, in which they explored an underground mine while alter-

nating between searching for visible gold and then digging for this gold, now hidden from view, at remembered gold locations.

Testing sessions lasted for approximately 1 h, and they consisted of a short tutorial sequence followed by 36 experimental trials.

Every trial consisted of four timed and two untimed events in the following sequence.

1. Delay1 (10s): Subject waits in the mine base. Game controls are turned off, and the subject sees a static image of the center

base door. This image is identical across delays, and the subject is in exactly the same location, facing the same direction, on

every delay.

2. Gold Search (30s): A 1s beep denotes the start of the Gold Search event, during which the subject may freely search the mine

for one or more golds that appear on the ground in randomized locations on every trial. Concurrent with the beep that signals

the start of Gold Search, a 1s instructionmessage, centered onscreen, tells the subject howmany golds there are to find. Game

controls are also reactivated, and one of three doors (to the left, right, or center) opens to allow the subject to exit the base. If the

left or right door opens, an arrow appears onscreen for 1s (overlapping with the instruction message) to indicate which way the

subject should turn.

3. Return-to-base1 (variable time): All gold vanishes, and a message onscreen instructs the subject to navigate back to the mine

base. As soon as the subject re-enters the base, or if they were already in the base at the end of Gold Search, the screen goes

black for 2s except for a message that instructs the subject to envision the route they will take during the upcoming Gold Dig

event. Across all trials, the median duration for this event was 2s (the minimum duration), and the 75th percentile was 8.9s.

4. Delay2 (10s): Subject waits in the mine base. As during Delay1, game controls are deactivated, and the subject sees a static

image of the center base door. Delay1 and Delay2 are overtly identical events, differing only by their order within the trial

sequence.

5. Gold Dig (30s): A 1s beep denotes the start of the Gold Dig event, during which the subject attempts to return to gold locations

from the precedingGold Search event and dig for gold, now hidden from view. Concurrent with the beep that signals the start of

Gold Dig, a 1s instruction message, centered onscreen, tells the subject howmany golds there are to dig (equal to the number

of golds to find during Gold Search). Game controls are reactivated, and the same door that opened during Gold Search is

reopened, allowing the subject to exit the base.

6. Return-to-base2 (variable time): Digging is disabled, and a message onscreen instructs the subject to navigate back to the

mine base. As soon as the subject reenters the base, or if they were already in the base at the end of Gold Dig, the screen

goes black for 2s except for a message that instructs the subject to prepare for the upcoming Gold Search event. Across

all trials, the median duration for this event was 2s (the minimum duration), and the 75th percentile was 7.4s.

After 36 trials, a ‘‘game over’’ screen appeared and showed subjects their final score, the number of golds successfully dug, and

their digging accuracy. Subjects were aware of the 30s time limits during Gold Search and Gold Dig and of a ‘‘short waiting time’’

between each navigation event, but they were never explicitly instructed to attend to time during the experiment. Instead, they

were told that their goal was to maximize their score by digging up as many golds as possible, as accurately as possible. They

were also asked to remain focused, still, and silent throughout testing – including during delays – unless they needed to ask the exper-

imenter a clarifying question. Voluntary breakswere programmed after 12 and 24 completed trials. Subjects were also taught to press

a ‘manual pause’ button if they needed to pause the game for any reason during testing. We did not analyze trials with manual pauses

(1.9% of all trials; min = 0, max = 3 per session).

The gamewas played froma first-person perspective, with the (invisible) avatar being 2m tall andmoving forward at a constant 4m/

s. Subjects rotated their view by moving the mouse, moved forward by clicking and holding the left mouse button, and dug (during

Gold Dig only) by pressing the spacebar. Releasing the left mouse button causedmovement to immediately stop, although head rota-

tion was still possible.

Subjects could retrieve one gold on each of the first two trials. Thereafter, the number of golds, ngold, varied such that if a subject

had successfully retrieved all golds on both of the last two trials, the next trial would have ngold + 1 golds. However, if the subject failed

to retrieve all golds on both of the last two trials, respectively, the next trial would havemax(ngold - 1, 1) golds. Otherwise, the number
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of golds stayed the same. Subjects received 10 points for each gold retrieved, with a correct dig occurring anywhere within 4m of the

nearest gold. A crosshairs on the ground in front of the subject indicated where their digging was targeted. Each gold could be

retrieved only once, and only golds from the most recent Gold Search event could be retrieved. Subjects were not required to

move, or dig, if they did not elect to do so. There was no limit on how many digs could be attempted, but every incorrect dig sub-

tracted 2 points from the overall score. The current score was always visible in the top-right corner of the screen, and current

task instructions (how many golds to find or dig) were always visible in the top-left corner of the screen.

Before beginning the main experiment, subjects completed a�10min tutorial with 3 practice trials that taught them the game rules

and controls and allowed them to practice moving through the virtual space. The tutorial occurred in a different environment than the

one used during the main experiment, although trial events used the same timing (10s delay and 30s navigation events).

The virtual environment was designed to bemoderately challenging for patients to learn, capable of being fully explored within 30s,

and visually sparse so as to minimize behavioral confounds with time and place. The environment was 27m long 3 27m wide and

featured 531m2 of traversable space, including 477m2 in themine and 54m2 in the base. The environment was vertically, horizontally,

and diagonally symmetrical except for the base, which served as the sole orienting landmark. Tall rock walls surrounded the mine on

all four sides, and inner rock walls were of uniform height (4m) and appearance. The floor of the mine was flat and evenly patterned.

Each gold occupied 1m2 of space, and all golds were visually identical. Gold locations were selected by the computer at random at

the start of every trial, with the only condition being that gold could not overlap with the base, any walls, or any already created golds.

Goldmine was programmed in Unity, with scripts written in C#. The paradigm ran on a Macbook Pro at 60 frames-per-second.

A cord connected the laptop to a digital-analogue converter that sent patterned pulses to the recording system, for the purpose

of later synchronizing electrophysiological and behavioral data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-neuron responses to task variables
Delay events

For each neuron, we used ordinary least-squares regression to fit the number spikes (unsmoothed) in 1s increments across the 36

Delay1 and 36 Delay2 events, as a function of time (10 discrete bins, each 1s in duration), delay-event (Delay1 or Delay2), and their

interaction. We then calculated the likelihood ratio, LR, between this model and 3 reduced models that dropped the parameters

for each main effect and interaction, respectively. For example, in the case of time, we compared the original model to a reduced

model in which all time-bin parameters were removed while delay-event and time-bin 3 delay-event parameters were retained.

LR is calculated as:

LR = 2 ln
Lðm1Þ
Lðm2Þ

Where L(m1) is the likelihood of the reducedmodel, given the data, and L(m2) is the likelihood of the original model, given the data. A

higher LR indicates that the reduced model fit the data increasingly worse than the fit obtained from the original model, and LR can

therefore be interpreted as a measure of the extent to which a set of parameters (e.g., time bins) improves dependent variable pre-

diction (firing rate) over and above the variance explained by the remaining parameters (delay-event and time-bin 3 delay-event).

Next, we generated a null distribution for each neuron by shuffling event labels (i.e., permuting Delay1 and Delay2 labels, without

replacement) and circularly-shifting spike counts by a uniform, random integer between 0 and 9, independently across delays. This

manipulation served to decouple cross-trial associations between the behavioral parameters and a neuron’s firing rate while preser-

ving both the number of spikes in each time bin and the autocorrelation in firing rates over time.We repeated this process 1,000 times

per neuron, recalculating LRs between full model and reduced model fits with each iteration. We then compared these null distribu-

tion LRs to those obtained from the real data, calculating an empirical p-value as P = r+1
n+1, where r is the number of null replicates with

an LR greater than or equal to the real LR, and n is the total number of replicates.63 We considered a neuron significant for a given

main effect or interaction if p < 0.05. Finally, we used binomial tests to determine if the number of significant neurons exceeded the

5%Type 1 error rate, Bonferroni-Holm corrected formultiple comparisons across the 2main effects and 1 interaction term of interest.

The results from these models are described in the text and shown in Figure 3 and Table 2.

Navigation events

The same procedure was used to analyze firing rate correlations with behavior during navigation as during delays, but with a different

combination of independent variables. Specifically, ordinary least-squares regression was used to model the number of spikes (un-

smoothed) in 500ms increments across the 36 Gold Search and 36 Gold Dig events, as a function of time (10 discrete bins, each 3s in

duration), place (i.e., subjects’ current location within the 12 mine regions in Figure S1), navigation-event (Gold Search or Gold Dig),

and their first-order interactions (time 3 delay-event, place 3 delay-event, and time 3 place). For each neuron, we calculated LRs

between this model and 6 reduced models that dropped the parameters for each main effect and interaction term, in turn. Empirical

p-values were obtained relative to null distributions that shuffled navigation event labels and circularly-shifted spike count vectors at

randomwithin each navigation event, and neuronswere considered significant for a givenmain effect or interaction if p < 0.05. Finally,

we used binomial tests to determine if the number of significant neurons exceeded the 5% Type 1 error rate, Bonferroni-Holm
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corrected for multiple comparisons across the 3 main effects and 3 interaction terms of interest. The results from these models are

described in the text and shown in Figure 4, Table 2, and Figures S7–S9.

We also testedmodels with additional covariates for virtual head direction (8 angles corresponding to North [the starting direction],

Northeast, East, Southeast, South, Southwest, West, and Northwest), player movement (whether the in-game avatar was moving or

rotating), base visibility (whether the base was currently visible from the player’s vantage), gold visibility (whether gold was currently

visible from the player’s vantage; applied to Gold Search only), gold digging (whether the player had just performed a dig action;

applied to Gold Dig only), head-direction 3 navigation-event, player-movement 3 navigation-event, and base-visibility 3 naviga-

tion-event. Gold visibility (i.e., object-in-view) and base visibility (landmark-in-view) were dummy-coded variables whose values

were determined using a raycasting procedure centered on themain player camera and sampled several times per second. Figure S3

shows the mean correlations, across subjects, between all pairs of behavioral parameters.

Neural response differences by brain region
As electrode coverage and the number of recorded neurons per region varied between subjects, we used a permutation-based

method that accounted for between-subject differences to analyze regional differences in the proportion of significantly-responding

neurons to each behavioral variable of interest (see Table 2). For each behavioral variable, we first performed a chi-square indepen-

dence test on the contingency table that listed the number of significantly-responding neurons by region, across all subjects.We then

shuffled the neuron-to-region assignment at random within each subject and recalculated the chi-square statistic 1,000 times to

obtain a null distribution. Lastly, an empirical p-value was obtained that described the extent to which the proportion of signifi-

cantly-responding neurons by region differed to a greater extent than was observed in the shuffled data.63 As no p-value passed

the significance threshold after adjusting for multiple comparisons, no post-hoc tests were performed. We performed this analysis

using 3 regions-of-interest: the hippocampus, surrounding medial temporal lobe (combining amygdala, entorhinal cortex, and para-

hippocampal gyrus/medial bank of the fusiform gyrus), and medial prefrontal cortex (combining orbitofrontal cortex, anterior cingu-

late, and supplementary motor area). We excluded from these analyses 46 neurons that were located in more sparsely-sampled

neocortical regions due to insufficient sample size.

Classifying time from population neural activity
We used the scikit-learn library to train multi-class, nonlinear (radial basis function) support vector machines to identify discrete, 2s

time bins based on population neuron firing rates.57 We trained separate classifiers on Delay1, Delay2, Gold Search, and Gold Dig

events, respectively (Figures 3E–3H and S8), as well as training classifiers across all four of these events combined (Figure 5).

For each of these conditions, we used the following procedure: First, missing firing rates from the 1.9%of discarded trials (see Task

description) were replaced using median imputation. Next, we z-scored firing rates across all time bins and trials in a given analysis,

separately for each neuron. Lastly, we trained support vector machines using a nested cross-validation (CV) procedure that split data

into train/test/validate folds at the trial level (5 inner folds, 36 outer folds). The inner CV served to identify optimal values for two hyper-

parameters of the radial basis function kernel: C, which determines the strength of parameter regularization; and g, which determines

the radius of influence for each support vector. For each inner fold, we tested 100 pairs of hyperparameter values, each chosen at

random from a continuous, log-uniform distribution between 1e�9 and 1e9. The best-performing hyperparameter values were then

used to retrain a classifier across the 35 train/validate trials and generate predictions on the held-out test trial. This procedure was

repeated over each fold of the outer CV, yielding predictions for each time bin, for all 36 trials.

To evaluate classifier performance, we trained null classifiers that replicated the above procedure, but with time bins being circu-

larly-shifted by a uniform, random integer between 0 and 1minus the number of time bins, independently on every trial. Paired t-tests

were used to compare mean prediction errors (absolute value of the difference between actual and classifier-predicted times) across

trials for classifiers trained on actual versus circularly-shifted time bins.

Cross-event decoders used the same decoders that were trained separately on each trial event, as described above, but then pre-

dicted times from neural firing rates during a different event than the one that was used for training. The following cross-decoders

were evaluated (train / test).

1. Delay: Delay1 / Delay2, Delay2 / Delay1
2. Navigation: Gold Search / Gold Dig, Gold Dig / Gold Search

3. Delay to navigation: Delay1 / Gold Search, Delay1 / Gold Dig, Delay2 / Gold Search, Delay2 / Gold Dig. As the event

durations differed, we tested three mappings for each of these combinations: First 10s of navigation, last 10s of navigation,

and relative time as a percentage of event duration.

Code dependencies
Neural firing and behavioral data were analyzed using Python version 3.9.7 and JupyterLab version 3.1.745,51 along with the

following, open source Python packages: Matplotlib (version 3.0.3),52 NumPy (version 1.19.1),53 pandas (version 1.1.5),54 SciPy

(1.5.2),55 seaborn (version 0.11.1),56 Scikit-learn (version 0.23.2),57 and Statsmodels (version 0.12.1)58.
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