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ABSTRACT—Can intuition be taught? The way in which

faces are recognized, the structure of natural classes, and

the architecture of intuition may all be instances of the

same process. The conjecture that intuition is a species

of recognition memory implies that human intuitive deci-

sion making can be enormously enhanced by virtual

simulation.

It has long been realized that many important decisions are not

arrived at by linear reasoning, but by intuition (e.g., Djiks-

terhuis, Bos, Nordgren, & van Baaren, 2006; Gladwell, 2005;

Hogarth, 2001; Lieberman, 2000). Intuitive decision making is

a) rapid, b) not conscious, c) used for decisions involving mul-

tiple dimensions, d) based on vast stores of prior experiences, e)

characteristic of experts, f) not easily or accurately articulated

afterwards, and g) often made with high confidence (see Hogarth,

2001, for a review). As ubiquitous as intuitive decision making

is, its cognitive architecture is essentially a mystery. We con-

jecture that the processes of facial recognition, of categorization,

and of intuitive decision making are one and the same. If this is

so, we believe that better intuition is eminently teachable by

virtual simulation.

Wittgenstein (1953) wrestled with the issue of defining a

concept in ordinary language, an issue we take to be identical

with recognizing a member of a natural category. How does one

recognize a chair or a game? Traditional epistemology, from

Aristotle on, held that natural classes such as tables are similar

to the class of mathematical objects (such as circles) in that they

have necessary and sufficient conditions that define member-

ship in the class. One recognizes a circle or a table by perceiving

the necessary and sufficient conditions. Wittgenstein (1953)

demolished this tired but venerable tradition once and for all:

I am saying that these phenomena have no one thing in common

which makes us use the same word for all,-but that they are related

to one another in many different ways. And it is because of this

relationship, or these relationships, that we call them all ‘‘lan-

guage.’’ I will try to explain this

66. Consider for example the proceedings that we call ‘‘games.’’

I mean board-games, card-games, ball-games, Olympic games,

and so on. What is common to them all? – Don’t say: ‘‘There must

be something common, or they would not be called ‘games’ ‘‘-but

look and see whether there is anything common to all. – For if you

look at them you will not see something that is common to all, but

similarities, relationships, and a whole series of them at that. To

repeat: don’t think, but look! –

Look for example at board-games, with their multifarious rela-

tionships. Board games, what are some? Consider chess, of course,

but think also of monopoly. Now pass to card-games; here you find

many correspondences with the first group, but many common

features drop out, and others appear.

When we pass next to ball-games, much that is common is re-

tained, but much is lost.– Are they all ‘amusing’? Compare chess

with noughts and crosses. Or is there always winning and losing, or

competition between players? Think of patience. In ball games

there is winning and losing; but when a child throws his ball at the

wall and catches it again, this feature has disappeared. Look at the

parts played by skill and luck; and at the difference between skill

in chess and skill in tennis.

Think now of games like ring-a-ring-a-roses; here is the element of

amusement, but how many other characteristic features have

disappeared!

If, unlike circles, there is no one property that all games have in

common (no necessary condition) and no properties that dis-

tinguish a table from all other objects (no sufficient conditions),

how then can one recognize that an activity is a game or an object

a table? Wittgenstein’s answer to this is ‘‘family resemblances.’’

One recognizes a table as a table in the same way that one can

recognize a new face as a Churchill after having seen the faces of

dozens of other members of the Churchill family. Wittgenstein’s

family resemblance is a characteristically seductive metaphor,

but it is not an explanation; it explains one mystery merely by

substituting another. The question simply transmutes into ‘‘By
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what process does one recognize a new face as a member of a

family?’’

Significant progress has been made in the analysis of both

natural and artificial category learning since Wittgenstein, and

there have been several fruitful attempts to illuminate the pro-

cess (e.g., Ashby & Maddox, 2005; Keil, 1989; Kruschke, 1992;

Lamberts, 2000; Logan, 2002; Love, Medin, & Gureckis, 2004;

Medin & Smith, 1984; Murphy & Medin, 1985; Nosofsky, 1992;

Rehder, 2003; Rips, 1989). Modern accounts of human classi-

fication assign a major role to the concept of similarity (e.g.,

Verguts, Ameel, & Storms, 2004). These models conceive of the

mental representation of an item (e.g., a particular face or a

word) as consisting of a set of attribute values where the number

of attributes may be very large. Such a conceptualization has a

natural geometric interpretation, in which items are represented

as points in a multidimensional space, with each dimension

corresponding to an attribute. The representations are likely to

be noisy (e.g., Ennis, 1988; Kahana & Sekuler, 2002), with

the resulting representation being a multivariate probability

distribution (or a ‘‘cloud’’) rather than a fixed vector (a point).

Similarity is then a decreasing function of the distance between

the representation of the items in the attribute space (e.g.,

Nosofsky, 1986; Shepard, 1987). Modern ‘‘machine-learning’’

techniques developed by computer scientists and statisticians

have used very similar principles to solve large-scale classifi-

cation problems (Hastie, Tibshirani, & Friedman, 2001).

Classification learning can be modeled as learning about which

items cluster together, where the clustering can be defined based

on their similarity relations or based on a set of rules that carve

the space up into regions. Although conceptually distinguish-

able, these two ideas (rule-based and similarity-based cluster-

ing) often give rise to similar quantitative predictions about

classification performance (Kahana & Bennett, 1994; Maddox

& Ashby, 1993). Some theorists argue that the above concep-

tualizations are not sufficiently rich to capture the subtleties

of natural categories (Rehder & Murphy, 2003). They argue

that there may be a causal structure underlying the individual

features that cannot be accounted for by simple similarity

relations.

To make the ideas concerning exemplar models more con-

crete, consider the universe of objects that all people agree are

tables. Using prior knowledge of the world, one will note a great

many features of tables that are potentially relevant (but neither

necessary nor sufficient singly or jointly) to being a table (e.g.,

flatness of the surface, number of legs, capacity for supporting

other objects, function, compatibility with chairs). Each of these

features can be assigned a binary (present vs. absent) or con-

tinuous value. The lack of a necessary condition means that

different instances of tables will have different values along

several of the dimensions (e.g., some tables, like dining room

tables are flat, whereas others, like pool tables, have pockets).

This means that the process of categorization is stochastic in

nature. Upon observing a new object, one can decide whether it

is a table by comparing its features with the features of stored

tables in memory. If the sum of its similarity to all of the tables in

memory is higher than the sum of its similarity to other objects

(e.g., chairs, animals) then one will predict that it, too, is a table.

If the summed similarities of the table exemplars exceed the

summed similarity for the nontable exemplars, the decision

process will be fast and certain. When the summed similarities

do not strongly favor one category, the decision will be slow and

uncertain. Under this condition, nonintuitive reasoning pro-

cesses, such as logical analysis, may come into play. Thus, the

recognition of an object as an instance of a category reflects a

computational process involving a comparison of the features of

a given item with the features of all items stored in memory.

It is an important feature of this theory that such a process for

categories (or concepts) also explains family resemblances in

just the same way: Consider the faces of several dozen Chur-

chills and a large number of people who are clearly not Chur-

chills. Lacroix, Murre, Postma, and van den Herik (2006) have

shown how models based on the dimensional analysis of human

faces can account for the detailed data on face recognition.

These models assume that each face is characterized by a

relatively small number of dimensions, each of which has an

assigned value (e.g., Winston Churchill has large, prominent

jowls and a smallish pug nose).

Now consider two instances of what is generally considered

intuitive decision making: a lieutenant recognizing a likely

ambush or a surgeon coping with an unexpected ruptured artery.

In both of these cases, professional legend has it that there are

some expert ‘‘eagles’’ who intuitively just know what to do and

many more ‘‘turkeys,’’ who try to go by the book and flounder

lethally. Each of these cases, we believe, is amenable to the

computational modeling of recognition analysis above.

The lieutenant who intuitively and correctly decides that this

patch of forest is a likely ambush site is an easy case. Here, in

theory, is what this eagle has stored in her memory. She has a list

of the dimensions detailing what constitutes an ambush site

versus a nonambush site. She has values along each of these

dimensions for each of the ambush and nonambush sites that

she has experienced or learned about. She has a mental model

that assigns weights to each of these basic dimensions or fea-

tures (and to higher order features, such as the interaction be-

tween two dimensions). On the basis of past experiences with

similar sets of features, she determines whether the present

features more closely resemble those associated with ambushes

or nonambushes.

The same logic applies to ‘‘moral intuition’’ (Haidt, 2001).

How do we know that a given action we contemplate is ‘‘right’’ or

‘‘wrong?’’ The action (‘‘do it’’ or ‘‘refrain’’ for simplicity) can

be dimensionalized (e.g., the act is forbidden by the Ten

Commandments, the nation will be better off, selfish gain, en-

hancement of reputation, likelihood of being caught, and vic-

timlessness). For each dimension, the individual has a value in

memory for similarity to past ‘‘right’’ and past ‘‘wrong’’ exem-
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plars. The individual has a mental model in which each di-

mension and each higher order interaction has a weight. If the

summed similarity of the action to past ‘‘right’’ actions exceeds the

summed similarity to past ‘‘wrong’’ actions, the course is recog-

nized as right (right vs. wrong, rather than right vs. not wrong,

again for simplicity). To the degree that the summed similarities

for right exceed the summed similarity for wrong, the moral de-

cision will be fast and confident. When the summed similarities

are close, the decision will be uncertain and ‘‘higher’’ processes,

such as moral reasoning, will come into play.

The eagle surgeon goes through a similar computation, but

there is an important additional factor: In the case of the ambush

and in the case of the moral decision, the issue was to recognize

an ambush or to recognize a ‘‘right’’ course. For the surgeon there

is an explicit action term. We conjecture that this is also a

recognition problem. Here, in theory, is what the eagle surgeon

has stored in his memory. He has a list of the dimensions rele-

vant to two (the number could be greater, but we use only two for

simplicity) actions he might take given the artery rupture. He

has a value for each of the dimensions and each of their inter-

actions for Action A and for Action B. He has a model that

assigns weights to each of these values, and the decision crite-

rion for these weights is the possibility of saving a life. He now

plugs the present values into the predictive model and deter-

mines that Action A is more likely to save a life than will Action

B, so he prefers Action A and does it.

Our conjecture strongly implies that intuition is teachable,

perhaps massively teachable. There are two old-fashioned ways

of teaching intuition: through brute force experience and

through verbal explanation. Simple repeated experience with

forced choice seems to build intuition, and the well-known

chicken-sexing endeavor is an example of such brute force.

Professional Japanese chicken-sexers can tell male from female

chicks at a glance, and they cannot articulate how they do it.

With many forced choice trials with feedback, however, ordinary

people can be trained to very high accuracy, and they too are

unable to report how they do it (Myers, 2002).

Our conjecture, which argues that the mind can weight main

effects and all relevant higher order interactions, implies that

intuition can also be taught the old-fashioned didactic way:

Consider explaining verbally a triple interaction for recognizing

an ambush to platoon leaders. The main effect is danger: a thick

line of trees at the top of a rise. In the double interaction, this tree

line is not dangerous if it was inspected in the last 24 hr. In the

triple interaction, however the area is dangerous once again if

there have been enemy soldiers spotted near the hill since the

last inspection 24 hr ago.

Our conjecture does more than account for brute force

experiential and verbal teaching of intuition. It argues that in-

tuition may be teachable virtually and on a massive scale. Most

battle commanders and surgeons must go through quite a bit of

bloody experience to develop a mental model that is robust

enough to accurately predict an ambush or to determine which of

two actions to take in a surgical emergency. Unfortunately, many

patients and soldiers will have to die for a commander or a sur-

geon to have sufficient relevant life experience. There is, however,

in our theory, a way around this: virtual simulation of ambush and

no-ambush situations in a war or of the results of Action A versus

Action B in surgery. A sufficient number of simulations with

enough variations to allow a buildup of the mental model will

result in a commander or a surgeon who has ‘‘seen it before’’

virtually and will take the life-saving action at zero prior cost in

blood when confronted with the situation in real life.

Just as it is a waste of training to simulate obvious decisions, it

is crucial to closely model and overtrain ‘‘close calls,’’ the

scalpel-edge cases that yield the slowest response times and are

most prone to error. The computational modeling derives a de-

cision contour, along which close calls occur. Using virtual

simulation, one can systematically morph material along the

decision contour and thereby overrepresent cases near the

boundary (e.g., Lacroix et al., 2006).

Finally we note that a simulator generating many trials of

virtual experience is also a selection device. One can select for

asymptotic performance or for speed of acquisition in order to

pick the commanders, moral agents, and surgeons needed for

especially difficult cases. These will be the future eagles.
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