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In this article, we present a model that simulates the ef-
fects of prior experience on episodic free recall, including 
the effects of previously learned semantic relations and prior 
episodic learning. The model presented here, which we term 
eSAM, is an extension of the search of associative memory 
(SAM) model (Gillund & Shiffrin, 1984; Raaijmakers & 
Shiffrin, 1981; Shiffrin & Raaijmakers, 1992). SAM is an 
associative model of memory in which it is posited that, 
during study, list items become associated with each other 
and with the study context in proportion to the amount of 
time the items spend in a limited-capacity rehearsal buffer. 
SAM further assumes that retrieval is cue dependent, with 
the list context and previously recalled items serving as 
retrieval cues for other items, and the probability of re-
trieving an item being determined by strength-dependent 
competition among all items associated to a given set of 
cues. SAM has been applied to a broad range of free recall 
phenomena, including the effects of presentation rate and 
list length (Raaijmakers & Shiffrin, 1980), part-set cuing 
(Raaijmakers & Shiffrin, 1981), word frequency (Gillund 
& Shiffrin, 1984), interference and forgetting (Mensink 
& Raaijmakers, 1988), list strength (Shiffrin, Ratcliff, & 
Clark, 1990), generation (Clark, 1995), and temporal con-
tiguity (Kahana, 1996).

Notwithstanding SAM’s far-ranging ability to simulate 
recall phenomena, instantiations of SAM to date have 
made certain simplifying assumptions that impair a test 
of whether the model can simulate the effects of prior ex-
perience on free recall. A vast body of empirical evidence 
suggests that episodic recall of a list learned during an 
experiment is affected both by preexperimental seman-
tic relations involving list items (see, e.g., Deese, 1959; 
Glanzer, Koppenaal, & Nelson, 1972; Howard & Kahana, 
2002; Kahana & Wingfield, 2000; Pollio, Richards, & 
Lucas, 1969; Roediger & McDermott, 1995; Romney, 
Brewer, & Batchelder, 1993; Tulving, 1968) and by the 
prior study of other lists during the experiment (e.g., 
Anderson & Bower, 1972; Kahana, Howard, Zaromb, & 
Wingfield, 2002; Postman & Underwood, 1973; Tulving, 
1966; Zaromb et al., 2005).

Although the general theory underlying SAM allows 
for the storage in memory of associations formed prior 
to the study of a list, previous applications of the model 
to recall have represented only the items appearing in, at 
most, two lists presented experimentally for recall, and 
they generally have assumed that the only relations involv-
ing such list items are those that arise during study and 
recall of the list.

The eSAM model implements the SAM theory more 
generally by avoiding many of the simplifying assump-
tions of earlier work. The eSAM model extends the SAM 
framework to address the effects of prior experience by 
incorporating four major features. First, eSAM explicitly 
represents preexperimental, pairwise semantic associa-
tions among words. Although eSAM is a priori neutral as 
to the best measure of semantic association strength for 
this purpose, we use two particular measures of seman-
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tic relatedness, because they have previously been ap-
plied to large corpora of words: latent semantic analysis 
(henceforth, LSA; Landauer & Dumais, 1997) and word 
association space (henceforth, WAS; Steyvers, Shiffrin, 
& Nelson, 2005). Second, eSAM searches memory at re-
trieval, using a combination of these preexperimental se-
mantic associations and the episodic associations formed 
during study. Third, eSAM incorporates a mechanism by 
which context changes from list to list, so that the context 
associated with any given list is a strong cue for retriev-
ing items from that list but is also a weaker retrieval cue 
for items appearing in earlier lists (cf. Mensink & Raaij-
makers, 1988). Fourth, eSAM uses a large lexicon that 
includes words beyond those on the lists presented during 
an experiment.

In the next section, we will discuss several experimen-
tal results showing the effects of semantic relations and 
prior episodic learning on free recall of the most recently 
presented (target) list. Subsequent sections will describe 
the architecture and operations of the SAM model, then 
the features modified or added by the eSAM model, and 
finally, results demonstrating eSAM’s ability to simulate 
the effects of prior experience, as well as certain standard 
free recall effects.

EFFECTS OF PRIOR EXPERIENCE ON 
EPISODIC MEMORY

The influence of preexisting semantic relations on 
episodic recall has been of interest to psychological re-
searchers at least since Bartlett (1932). One phenom-
enon in this vein is subjects’ tendency to use semantic 
relations to guide item-to-item transitions during recall. 
A key finding is that, when recalling categorized word 
lists, subjects tend to recall words from the same natu-
ral category together, even when presentation order is 
randomized (Bousfield, 1953; Glanzer, 1976; Jenkins & 
Russell, 1952; Kahana & Wingfield, 2000; Pollio et al., 
1969; Wingfield, Lindfield, & Kahana, 1998). Similarly, 
Romney et al. (1993) reported that when subjects recalled 
a list comprising items from a single category, category 
members that were more closely related to each other also 
tended to be recalled more closely together in the output 
sequence; that is, subjects chose a shorter path through 
multidimensionally scaled semantic space than would 
be expected at random. In addition, Howard and Kahana 
(2002), using study lists consisting of unrelated words, 
showed that the stronger the semantic relation between 
two list words, the more likely it was that they would be 
recalled in neighboring output positions. Howard and Ka-
hana (2002) also reported that the stronger the semantic 
association between two recalled words in neighboring 
output positions, the shorter the response latency was be-
tween the two words.

In addition to these effects of semantic relations, prior 
list learning also affects episodic free recall. In a multiple 
list learning paradigm, subjects sometimes (albeit infre-

quently) intrude words from lists that have been presented 
in the experiment previously (prior-list intrusions, PLIs), 
as well as words not presented on prior lists or the cur-
rent list (extra-list intrusions, XLIs). PLIs tend to come 
from the most recently presented prior list, and the prob-
ability of a PLI from a particular list falls off rapidly as 
the list recedes further into the past (Kahana et al., 2002; 
Murdock, 1974). Zaromb et al. (2005) found that when 
lists contained mixtures of novel items and items repeated 
from earlier lists, subjects recalled repeated items more 
often than novel items, but recalls of repeated items were 
also more likely to be followed by PLIs than were recalls 
of novel items.

THE SAM MODEL

In this section, we will describe the simplified simula-
tion recall model first reported in Raaijmakers and Shif-
frin (1980, 1981), which forms the foundation of SAM, 
as well as a number of subsequent modifications to that 
model, many of which are incorporated into eSAM.

Memory Stores
The SAM model assumes the existence of two memory 

stores: short-term memory (STM) and long-term memory 
(LTM). Within STM, rehearsal processes are idealized 
in the form of a limited-capacity buffer in which studied 
words become associated through a rehearsal process, 
as will be described below. LTM contains values for the 
strengths of the pairwise associations among words, as 
well as associations between each word and the list con-
text. List context is conceptualized as the temporal and 
situational setting for a particular list. S(i, j) denotes the 
strength of association between words i and j, and S(i, 
context) denotes the strength of association between word 
i and the list context. For the sake of simplicity, all as-
sociations in LTM are assumed to be episodically created 
in the course of rehearsal during study, so the strengths in 
LTM are set to zero prior to study (although these associa-
tive strengths are later reset to a residual value for pairs of 
words that are not rehearsed together during study). The 
general SAM theory allows for preexperimental semantic 
associations among words, but this feature of the theory 
has not been implemented in a simulation model to date, 
and therefore, there has been no test of the theory’s capac-
ity to model the effects of such associations on episodic 
free recall. The only semantic associations that have been 
modeled thus far have involved categorized lists (Gron-
lund & Shiffrin, 1986; Raaijmakers, 1979; Raaijmakers 
& Shiffrin, 1980). However, in these instances, although 
the associations between category names and category ex-
emplars were represented, there were no representations 
of the pairwise semantic associations between exemplars 
in the same or different categories or between a category 
name and an exemplar classified in a different category. 
Indeed, it was assumed that an item was either a member 
of a category or not and that an item could not be a mem-
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ber of more than one category. These simplifying assump-
tions run counter to evidence that category membership is 
graded (see, e.g., Z. Estes, 2003). As will be seen, eSAM 
handles categorized lists quite differently.

Storage
SAM assumes that, during study of a list, each list 

item enters the STM buffer as it is presented and that a 
subject rehearses the items occupying the buffer at any 
given time, thereby increasing the strengths of the items’ 
episodic associations in LTM. In particular, rehearsal in-
creases the strength of association between each item in 
the buffer and the list context; for each unit of time that an 
item spends in the buffer, the strength of its association to 
context is incremented in LTM by the value of parameter 
a. Rehearsal also increases the strength of the associa-
tion in LTM between any two items that simultaneously 
occupy the buffer; for each unit of time that two items 
spend together in the buffer, their interitem strength is in-
cremented by the value of parameter b.

Kahana (1996) substituted two parameters in lieu of 
b, one being used to increment interitem strengths in the 
forward direction—that is, from earlier-presented items 
to later-presented items (b1)—and the other being used 
to increment strengths in the backward direction, from 
later-presented items to earlier-presented items (b2). This 
enabled Kahana to simulate the bias in output order that 
favors item-to-item recall transitions in the forward direc-
tion (further discussed in connection with Simulation 1 
below). The eSAM model incorporates these forward- 
and backward-incrementing parameters.

SAM also represents the association of an item to itself—
that is, autoassociation—and includes parameters that in-
crement an item’s autoassociative strength when the item 
occupies the buffer in STM during study (parameter c) 
and when it is output during recall (parameter g). Autoas-
sociative strength and its incrementing have played a role 
in the modeling of recognition memory (see Gillund & 
Shiffrin, 1984), but not of free recall. Accordingly, all au-
toassociative strengths and parameters c and g are set to 
zero in our simulations.

The amount of time that each item spends in the STM 
buffer during study is determined by the presentation rate, 
the size of the buffer (the maximum number of items that 
can simultaneously occupy the buffer), and the rule for 
displacement of items from the buffer. In Raaijmakers and 
Shiffrin (1980) and other early implementations, the size 
of the STM rehearsal buffer, r, was set at a single fixed 
value for all subjects, with r � 4 typically providing the 
best fit to free recall data. Kahana (1996) found it useful 
to allow the size of the buffer to vary for each subject, 
with r being randomly selected from a distribution having 
a mean of μr and a standard deviation of σr. The eSAM 
model incorporates this mechanism for varying r.

Once the buffer is full, each new item displaces one of 
the items then occupying the buffer. The general SAM 

theory is silent concerning the particular rule governing 
displacement. The simulation model of Raaijmakers and 
Shiffrin (1980) assumed that each item in STM had an 
equal probability of being displaced by the new item. Ka-
hana (1996) found that an alternative displacement rule 
proposed by Phillips, Shiffrin, and Atkinson (1967) pro-
vided a better fit to data on free recall. The Phillips et al. 
rule assumes a bias in favor of displacing items that have 
been in the buffer longer than others. Under this rule, the 
probability that the ith buffer item is to be displaced is 
given by
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where q is a fixed parameter of the model that determines 
the degree of bias favoring displacement of older items. 
Later-presented items occupy lower ordinal positions in 
the buffer than do earlier-presented items, thus ensuring 
a bias under the displacement rule favoring displacement 
of earlier-presented items. The eSAM model incorporates 
the Phillips et al. displacement rule.

For a pair of list items that are never rehearsed together 
in the STM buffer during study, SAM assigns the pair a re-
sidual interitem strength of association in LTM, equal to the 
value of parameter d. As will be discussed later, eSAM in-
corporates the general concept of residual episodic strength 
but implements the concept somewhat differently.

Retrieval From STM and Search of LTM
SAM posits a two-stage retrieval process for immediate 

free recall, the first stage reflecting the output of items in 
the STM buffer at the beginning of recall, and the second 
stage reflecting retrieval of items from LTM. According 
to SAM, items in the STM buffer are always available for 
immediate recall, so the items in the buffer at the end of 
list presentation are output first during immediate free re-
call. In delayed free recall, STM is assumed to have been 
emptied during the retention interval, and recall therefore 
begins with retrieval from LTM. The simulation model of 
Raaijmakers and Shiffrin (1981) assumed that, follow-
ing the end of the study period, the buffer emptied at the 
same rate as that for items displaced during study. This 
mechanism enables SAM to account for data showing that 
delaying free recall eliminates positive recency but does 
not generate negative recency (Postman & Phillips, 1965). 
The eSAM model uses a similar poststudy displacement 
rule.

Retrieval of items from LTM results from a strength-
dependent competition among all items associated to a 
given set of cues. Each cycle of the search process in-
cludes at least two phases: First, an item is sampled, and 
then it may or may not be recovered—that is, identified as 
a particular word. An additional output decision step has 
sometimes been inserted following recovery. For example, 
Mensink and Raaijmakers (1988) added a postrecovery 
decision step to determine whether a recovered item had 



790    SIROTIN, KIMBALL, AND KAHANA

occurred in the present list or not (see also Raaijmakers, 
2003). In eSAM, a similar step is added when items are 
repeated across lists (see Simulation 4 below).

SAM begins the search of LTM by using context as a 
retrieval cue. The probability of sampling an item i when 
using context alone as a retrieval cue is
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where N is the total number of items stored in LTM. This 
equation ensures that items with greater strengths of as-
sociation to the list context are more likely to be sampled. 
Once sampled, the probability that item i is recovered is
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( , )( | ) .i e S icontext context= − −1

Thus, recovery also depends on the strength of association 
between the item and the list context.

If an item is recalled, it is then used in combination 
with context to cue recall of another list item. In this case, 
the probability of sampling item i, given that both context 
and the just-recalled item j serve as retrieval cues, is
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and the probability of recovering the item is
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However, regardless of an item’s strength of association to 
the context, to other retrieved items, or to both, the item 
cannot be recovered if the same retrieval cues failed to 
recover the item previously or if the item has previously 
been recovered.

When retrieval cues are successful in recovering an 
item, the strengths of the item’s associations to the re-
trieval cues are incremented in LTM. The strength of asso-
ciation between the recovered item and the list context is 
incremented by the value of parameter e, and the strength 
of association between the recovered item and any other 
item then being used as a retrieval cue is incremented 
by the value of parameter f. Thus, different parameters 
are used at test than at encoding to increment associative 
strengths in LTM. As with the incrementing of interitem 
strengths at study, eSAM adopts Kahana’s (1996) bifurca-
tion of parameter f into f1 for forward associations and f2 
for backward associations.

Stopping Rules
There are two rules determining when a subject stops 

searching, one governing when a subject abandons search 
with a particular set of retrieval cues, and a second gov-
erning when the subject abandons search altogether. When 
there have been Lmax consecutive failures at recovery, 
using a particular item together with context as retrieval 
cues, SAM assumes that the subject reverts to using the 
context alone as a retrieval cue. Search stops altogether 

when Kmax recovery failures have accumulated over all 
sets of retrieval cues.

Contextual Drift
Mensink and Raaijmakers (1988) added a mechanism 

to SAM that allowed for the change of context across mul-
tiple study and recall episodes. In accord with the classic 
stimulus sampling theory of W. K. Estes (1955a, 1955b), 
Mensink and Raaijmakers represented context as a set of 
elements, with each element in either an active or an in-
active state at any given time. The identity of the active 
contextual elements changed over time—that is, context 
drifted—with some active elements becoming inactive 
and some inactive elements becoming active at each time 
step. At a given time step, associations between active 
contextual elements and items then in STM were strength-
ened. Memory was probed using the contextual elements 
active at the time of test. Therefore, the probability that an 
item would be sampled and recovered was proportional 
to the number of contextual elements that were active at 
both the time of encoding the item and the time of test. By 
incorporating contextual drift, Mensink and Raaijmakers 
were able to use SAM to simulate various interference 
and forgetting effects observed in paired-associate experi-
ments. The eSAM model uses a related mechanism for 
contextual drift, discussed below.

THE eSAM MODEL:
SAM With Preexisting Memory

Semantic and Episodic Associations in LTM
Semantic matrix. The eSAM model incorporates a 

separate semantic matrix (SM) that stores preexperimen-
tal semantic associations between each pair of words in 
the lexicon. The strength of the associations in the SM 
remains fixed during the course of the experiment, re-
flecting an assumption that semantic associations are not 
significantly affected by episodic experience on the scale 
of a single experiment (see also Nelson, McKinney, Gee, 
& Janczura, 1998).

The eSAM model is a priori neutral as to the best mea-
sure of semantic relatedness. In each of the simulations 
that follow, we used two metrics for this purpose: LSA 
(Landauer & Dumais, 1997) and WAS (Steyvers et al., 
2005). Each of these two metrics provides a pairwise mea-
sure of semantic relatedness for a large number of words, 
which is a useful property in a model such as eSAM. 
However, the two metrics use somewhat different proce-
dures to measure semantic relatedness.

LSA assumes that words that are related in meaning 
tend to occur close together in texts. The method begins 
by taking a large corpus of text and counting the num-
ber of times that a given word i occurred in a given para-
graph j. The resulting matrix, L(i, j), has as many rows 
as there are words in the corpus and as many columns as 
there are paragraphs. A mathematical technique called 
singular value decomposition (SVD) is then used to trans-
form the matrix in such a way as to reduce the number of 
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columns while preserving the similarity structure among 
the rows. Semantic relatedness is measured by the cosine 
of the angle between vectors consisting of the entries in 
a particular pair of rows (cosθ). In our simulations, we 
used the LSA values computed from texts that a typical 
person would be likely to have encountered between the 
third grade and the first year in college. (For a more thor-
ough treatment and discussion, see Landauer & Dumais, 
1997; Landauer, Foltz, & Laham, 1998.)

WAS uses SVD to transform the free association word 
norms collected by Nelson, McEvoy, and Schreiber (2004) 
into a multidimensional semantic space. The asymmetric 
associative strengths given by the norms are made sym-
metric by summing the forward and backward associative 
strengths (the tendency of dog to evoke cat and the ten-
dency of cat to evoke dog). Each word is then represented 
as a vector of its strengths of associations to other words. 
SVD is then applied to reduce the dimensionality of the 
resultant matrix. The relatedness of two words can be cal-
culated as the cosine of the angle between their vectors 
in semantic space. With this method, words that are di-
rectly associated or that share associates have large cosine 
values. Words that do not directly share associations may 
still have high relatedness values because of their indirect 
associations. This method is discussed in greater detail in 
Steyvers et al. (2005).

Episodic matrix and contextual drift. The other 
component of LTM is an episodic matrix (EM), which 
stores the interitem and item-to-context associations 
formed during study—that is, the associations that made 
up the whole of LTM in previous versions of SAM. The 
values for the episodic associative strengths in EM are 
initialized to random values drawn from a normal distri-
bution with a mean of µ and a standard deviation of σ, 
which are fixed parameters of the model. The episodic 
associative strengths in EM are incremented during study 
and recall in the same way as in previous SAM versions. 
For items that are not jointly rehearsed in the STM buffer 
during study, the initialized EM values serve the same 
function as the residual LTM values in SAM.

In eSAM, contextual drift occurs through probabilistic 
exponential decay of the item-to-context strengths after a 
subject finishes with each list, such that

 
S i S il l( , ) ( , ) ,context context= +−ρ ε1  

(1)

where l is a counter that represents the index of the cur-
rent list, S(i, context)l�1 and S(i, context)l are the levels of 
item-to-context strength for lists l�1 and l, respectively, 
ρ represents the proportion of the item-to-context strength 
that is conserved between lists, and ε is a noise term taken 
from a normal distribution with a mean of μ and a stan-
dard deviation of σ.

This contextual drift mechanism, which takes on a sim-
ple autoregressive form, is simpler than that implemented 
by Mensink and Raaijmakers (1988), inasmuch as a more 
complex drift mechanism did not appear necessary to 
simulate the phenomena considered here. In the General 
Discussion section, we will consider the relative merits of 
these two mechanisms.

Use of Semantic, Episodic, and Contextual 
Associations During Retrieval

When context and the previously recalled item are used 
as retrieval cues, the sampling and recovery processes in 
eSAM involve the use of both the semantic associations 
in SM and the episodic and contextual associations in EM. 
Inspired by the general retrieval formulae offered by Raaij-
makers and Shiffrin (1980), we adopted a sampling rule 
that multiplicatively combines the strengths of semantic, 
episodic, and contextual associations to determine prob-
abilities of sampling when LTM is searched using the 
context and a recalled item as retrieval cues. Accordingly, 
the probability of sampling item i following the recovery 
of item j is
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and the probability of recovering the item is
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where Ss(i, j) is the strength of the semantic association 
between items i and j in SM, Se(i, j) is the strength of 
the episodic association between items i and j in EM, 
S(i,  context) is the strength of the episodic association 
between item i and context in EM, N is the number of 
words in LTM, and Ws, We, and Wc are the parameters for 
the weighting of retrieval cues consisting of semantic in-
teritem associations, episodic interitem associations, and 
item-to-context associations, respectively. The recovery 
probability for an item retrieved using context alone is 
calculated using the item’s mean semantic and episodic 
relatedness to other items in memory.

A multiplicative sampling rule is not the only formula-
tion possible. For example, in an earlier version of eSAM, 
we attempted to incorporate semantic influences on recall 
by summing EM and SM. In this implementation, seman-
tic effects could be observed after a single trial, but with 
multiple study–test trials, the strengths in EM increased 
while the strengths in SM remained fixed. As a result, the 
model counterfactually predicted that the effect of seman-
tic relatedness on episodic recall would become negligible 
at late stages of learning.

Moreover, we believe that it is in the spirit of SAM 
to allow all of an item’s associations to the retrieval cues 
to influence retrieval interactively. Use of a multiplica-
tive retrieval rule means that each type of association—
semantic, episodic, and contextual—modulates the influ-
ence of the other types of associations on sampling prob-
abilities. Thus, given two items that have relatively high 
contextual strengths and high episodic strengths of as-
sociation to a third item but one of which has a higher se-
mantic strength of association to the third item than does 
the other, the model predicts that the item with the higher 
semantic strength will be more likely to be sampled when 
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the third item is used as a retrieval cue. However, both 
of the items may have a higher probability of sampling 
than do other items, because of their high contextual and 
episodic strengths, and this advantage may increase if epi-
sodic and contextual associations are given more weight 
during retrieval via higher values for the retrieval weight 
parameters, We and Wc. 

To eliminate the potential problem that the multiplica-
tive rule would result in a zero probability of sampling 
a particular item altogether, we ensured that all of the 
semantic association strengths were greater than zero. 
Because the measure of relatedness derived from LSA 
ranged from �0.0925 to 1 and from �0.1428 to 1 for 
WAS for the sample of words used in our experiments, 
we transformed these values by adding an offset to ensure 
that all strengths were greater than zero. This step seemed 
reasonable inasmuch as any two words can be related se-
mantically in some way when the pair is considered in 
isolation. We will further discuss the multiplicative rule 
in the General Discussion section.

Large-Scale Lexicon
The eSAM model incorporates a lexicon that includes 

many more words than are presented on a single list, or 
even during an entire experiment. This large-scale lexicon 

enables eSAM to represent associations in SM between 
list words and nonlist words, thus enabling the model to 
simulate semantically induced XLIs. The larger lexicon 
also enables eSAM to simulate episodically induced PLIs 
by including words presented on prior lists that can be re-
trieved via semantic associations, as well as via contextual 
associations, subject to the effects of contextual drift.

PARAMETERS

Eleven parameters were varied in fitting eSAM to data. 
Table 1 lists these parameters and gives the best fitting 
values obtained in Simulations 1–4, as described below. 
The first five parameters listed in Table 1 were inherited 
from SAM. The other six free parameters implemented the 
features added by eSAM. Three of the new free parame-
ters were used in all four simulations: the three parameters 
used to weight item-to-context associations (Wc), episodic 
interitem associations (We), and semantic interitem asso-
ciations (Ws) when LTM is searched during retrieval. An-
other new free parameter was used in all the simulations 
except Simulation 1: ρ, the proportion of item-to-context 
strength conserved following a list presentation and recall 
episode. The other two new free parameters were added 
to simulate interlist repetition effects in Simulation 4: R, 

Table 1
Best-Fitting Parameter Values for Simulations 1–4

WAS Simulations LSA Simulations

Parameter  1  2  3  4  1  2  3  4

a 0.22 0.13 0.43 0.20 0.18 0.11 0.29 0.13
b1 0.07 0.26 0.22 0.12 0.06 0.13 0.54 0.05
e 0.11 0.59 0.09 0.04 0.13 0.21 0.20 0.04
f1 0.10 0.04 0.09 0.09 0.08 0.11 0.10 0.04
Kmax 25 246 43 29 22 115 54 25
ρ – 0.99 0.04 0.37 – 0.85 0.05 0.42
Wc 0.59 1.25 1.20 0.59 0.58 1.11 1.35 0.61
We 3.22 0.30 1.17 1.77 3.16 1.04 1.00 1.60
Ws 0.82 2.00 3.53 2.12 0.82 4.82 1.06 4.00
R – – – 0.53 – – – 0.27
m – – – 0.31 – – – 0.25

 RMSD   .07    .05    .07    .09    .08    .13    .07    .08

Note—In each simulation, eSAM was fit using either the WAS or the LSA se-
mantic relatedness norms. a is the item–context increment during encoding; b1 is 
the forward interitem episodic increment during encoding; e is the item–context 
increment during recall; and f1 is the forward interitem episodic increment during 
recall. Kmax is the maximum cumulative number of recovery failures during recall. 
ρ is the proportion of item–context strength conserved across lists (Equation 1). 
Wc, We, and Ws are the retrieval weights for item–context, interitem episodic, and 
interitem semantic strengths, respectively (see Equations 2 and 3). R and m were 
used only in Simulation 4: R is the boost in item-to-context strength for repeated 
items recognized during encoding; m is the item–context strength threshold used 
for list discrimination (see Equation 5). The following parameters were fixed: the 
ratio of forward to backward strength increments (b1/b2 � f1/f2 � 2), the distri-
bution of rehearsal buffer size across lists (µr � 4, σr � 1.4), the factor biasing 
displacement of older items from the buffer (q � 0.266), the mean and standard 
deviation of the default value for episodic and contextual strength (µ � 0.001, 
σ � 0.0005), the maximum number of retrieval failures using a particular set of 
cues (Lmax � 0.1 � Kmax), and the item–context strength threshold for recognition 
of repeated items during study (k � 0.0015) (see Equation 4). RMSD indicates 
the root-mean squared deviation between observed and predicted values.
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the boost in strength increments for repeated items rec-
ognized during study, and m, the threshold of item-to-
context strength required for recovery of an item during 
recall. The Table 1 caption also lists the fixed parameters, 
along with the values at which they were fixed.

SIMULATIONS

The following simulations fit eSAM to data demon-
strating several types of free recall phenomena. In Simu-
lation 1, we verified that eSAM retains the ability to fit 
certain free recall effects that SAM has previously fit: the 
effects of list length and presentation rate on the serial 
position curve (Murdock, 1962) and the effects of inter-
item temporal contiguity at study on interitem transitions 
during recall (Kahana, 1996), respectively. Simulations 
2 and 4 fit eSAM to two phenomena showing the effects 
of preexperimental semantic associations on episodic 
recall—specifically, the effects of category membership 
(Bousfield, 1953) and semantic relatedness (Howard & 
Kahana, 2002) on interitem recall transitions, respectively. 
Simulations 3 and 4 fit eSAM to two sets of phenomena 
showing the effects of prior episodic learning on free re-
call of new lists: the pattern of intrusions of items from 
previously studied lists (Howard & Kahana, 1999) and the 
effects of repeating items across multiple lists (Zaromb 
et al., 2005), respectively. We will begin with a descrip-
tion of our general methodology.

General Method
For each fit of the model to a set of data, we used a ge-

netic algorithm (M. Mitchell, 1996) to minimize the root 
mean squared deviation (RMSD) between observed and 
predicted values. RMSD has the advantage of being mea-
sured in the same units as the dependent measures that are 
being fit and is interpretable as a global measure of the dif-
ference between the model’s predictions and the observed 
data, averaged across all the dependent measures. We first 
calculated RMSD for each of the curves that were fit in a 
particular simulation and then took the average of those 
curve-specific RMSD values, so as not to accord undue 
weight to curves with more data points than others.

At the start of each fit, a population of parameter sets 
was generated, with the value of each parameter in a set 
being randomly selected from a predetermined range of 
values. This starting population was the first generation 
of parameter sets created by the genetic algorithm. Each 
parameter set was used to run eSAM for 500–1,000 simu-
lated subjects, to generate statistically stable predictions.

Those parameter sets from the first generation that had 
the lowest RMSD values were then used to create the next 
generation of parameter sets through the processes of mu-
tation and recombination. Mutation creates a particular 
second-generation parameter set by randomly selecting a 
particular parameter set from among the best-fitting pa-
rameter sets in the first generation; then the value for each 
parameter in the set is randomly either copied or varied 
within a specified range. Recombination creates a second-
generation parameter set by randomly selecting two first-

generation parameter sets as parents and, for each param-
eter, randomly selecting either of the parent’s values for 
that parameter as the child’s value. In addition, the best-
fitting members of the population were retained from one 
generation to the next. In each of our fits, these processes 
iterated through successive generations until the average 
RMSD value for the population reached an asymptote. 
The best-fitting parameter set was chosen from among 
the final generation.

Simulation 1: Effects of List Length, 
Presentation Rate, and Temporal Contiguity

We simultaneously fit several aspects of the data in 
Murdock (1962), which reported the effects of list length 
and presentation rate on the serial position curve in im-
mediate free recall. This curve is characterized by a large 
recency effect, a small primacy effect, and lower recall of 
items from middle serial positions. Murdock (1962) var-
ied list length and presentation rate by visually presenting 
lists of 10, 15, and 20 words at a 2-sec rate and lists of 20, 
30, and 40 words at a 1-sec rate, with each list followed by 
90 sec of oral free recall. The results showed that increas-
ing the list length or the presentation rate impaired recall 
of prerecency items but did not affect recall of recency 
items (Figure 1, left). Raaijmakers and Shiffrin (1980) 
showed that SAM could fit all six conditions with a single 
set of parameter values.

We used eSAM to simulate these six serial position 
curves (as well as the lag-conditional response probabil-
ity [CRP] curve described below) in a single fit, using 
a lexicon containing 400 words drawn from the Toronto 
Word Pool (Friendly, Franklin, Hoffman, & Rubin, 1982) 
and varying the number of rehearsal cycles between items 
during study to simulate the 1- and 2-sec presentation 
rates. Our simulations showed that eSAM fit this pattern 
equally well with either LSA or WAS as the semantic 
relatedness metric (Table 1). The results with WAS are 
presented in the right panel of Figure 1. Fitting all six con-
ditions (and the lag-CRP curve described below) with a 
single set of parameters, eSAM captured the constancy of 
the recency effect across conditions and also captured the 
reductions in recall of prerecency items as list length and 
presentation rate increased.

We also used the Murdock (1962) data to examine 
transition probabilities in recall as a means of evaluating 
the model’s use of retrieval cues. One can calculate the 
probability of recalling an item from serial position i � 
lag immediately following recall of an item from serial 
position i—that is, the CRP as a function of lag, termed 
lag-CRP by Kahana (1996). Positive values of lag cor-
respond to forward recalls (i.e., transitions to items from 
serial positions later than that of i); negative values of lag 
correspond to backward recalls (i.e., transitions to items 
from serial positions earlier than that of i). Large absolute 
values of lag correspond to words spaced widely in the 
list; small absolute values correspond to words spaced 
closely together in the list.

To illustrate with an example, if the list had contained 
the subsequence absence hollow pupil and a subject re-
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called hollow and then pupil, the recall of pupil would 
have a lag of �1. If, instead, the subject recalled hollow 
and then absence, the recall of absence would be associ-
ated with a lag of �1. In this case, the subject moved 
backward in the list. Absence followed by pupil would 
yield a lag of �2.

The conditional response probability for a transition of 
a certain lag is calculated by first tallying the number of 
times a transition of that lag was made and dividing that 
tally by the number of times a transition of that lag could 
have been made. Possible transitions do not include those 
in which (1) the lag is outside of the bounds of the list or 
(2) the item has already been recalled. Of course, strictly 
speaking, these transitions are not impossible, since sub-
jects occasionally make intrusions from outside of the list 
and sometimes repeat items. However, such transitions 
are extremely rare in comparison with within-list lags to 
items not previously recalled. After calculating the lag-
CRP function for each subject, these functions are aver-
aged across subjects, and the confidence intervals around 
the estimated means are calculated.

Kahana (1996) calculated lag-CRP functions for a 
wide range of experimental conditions. He found that 
the lag-CRP function has two invariant characteristics. 
(1) The function decreases monotonically as absolute lag 
increases, approaching an asymptotic value at large lags; 
the asymptotic value depends largely on list length, with 
lower asymptotes for longer lists. (2) For small absolute 
lags, the function is consistently asymmetric, with an ap-
proximately 2:1 ratio of forward to backward recall transi-
tions. The basic pattern has been confirmed in a number 
of subsequent studies (e.g., Howard & Kahana, 1999; Ka-
hana & Howard, 2005; Kahana et al., 2002; Ward, Wood-
ward, Stevens, & Stinson, 2003; Zaromb et al., 2005). 
As one example of this pattern, the left panel of Figure 2 
shows the lag-CRP function for the 40-item list in Mur-
dock (1962).

In the same simulation in which we fit the serial posi-
tion curves for the Murdock (1962) data (see Figure 1), 

we used eSAM to fit the lag-CRP curve for the 40-item 
list, averaging the separate RMSDs for the lag-CRP and 
the serial position curves. This simultaneous fitting of 
the lag-CRP and serial position curves provided a more 
rigorous test of the model’s mechanisms for producing 
interitem associations than would fitting the curves sepa-
rately. As in Kahana (1996), we computed the lag-CRP 
by excluding the first three output positions for both the 
data and the model. This was done because, in immediate 
free recall, adjacency and asymmetry are enhanced for the 
first two to three output positions. This reflects “bleed in” 
from the recency effect, where the last few list items tend 
to be recalled as a cluster prior to recall of other items. 
The lag-CRP is invariant across later output positions, 
thus reflecting the general tendency to make associative 
transitions in retrieval from LTM.

By analogy to the recency effect, which illustrates how 
items near in time to the end of a list are better remem-
bered, Howard and Kahana (1999) referred to associative 
effects in free recall as illustrating a lag-recency effect, 
since they reveal a preference for recalling items pre-
sented near in time to the just recalled item. Very similar 
lag-recency effects are observed in serial recall (Kahana 
& Caplan, 2002; Klein, Addis, & Kahana, 2005; Raskin 
& Cook, 1937).

The eSAM model produced a lag-recency effect that 
was quite similar to the experimental data, as shown in 
the right panel of Figure 2. As in Kahana (1996), the 
asymmetry in the lag-recency effect results from the use 
of separate parameters for incrementing forward versus 
backward associations during both encoding and retrieval, 
as was noted previously. The nonlinear decline in the lag-
CRP with increasing absolute lag occurred because the 
retrieval weighting parameters were allowed to take on 
values other than 1 (see Equations 2 and 3).

Thus, the modifications to SAM that are incorporated 
into eSAM do not affect the model’s ability to fit the serial 
position and lag-CRP curves for the Murdock (1962) data, 
regardless of whether we used WAS (RMSD � .07) or LSA 

Figure 1. List length and presentation rate effects in immediate free recall. Left panel: data from the six con-
ditions in Murdock (1962). Right panel: simulated results in eSAM using word association space (WAS) as the 
semantic relatedness metric. For each curve, the first number indicates the list length and the second number 
indicates the presentation rate (in seconds).
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(RMSD � .08) as the semantic relatedness metric. We next 
will evaluate the model’s ability to simulate the effects of 
prior semantic and episodic experience on free recall.

Simulation 2: Category Clustering
To simulate category clustering, we fit eSAM to data 

from Kahana & Wingfield (2000), in which each subject 
studied two lists of 20 words, each consisting of four ex-
emplars drawn from each of five natural categories. The 
subjects studied and recalled a list multiple times until 
achieving perfect recall, with presentation order random-
ized anew for each trial. Each subject learned one list con-
sisting of exemplars that were highly prototypical of their 
categories (high-prototypicality condition) and one list 
consisting of exemplars that were weakly to moderately 
prototypical of their categories (low-prototypicality con-
dition). The order of the two lists and the categories from 
which exemplars were selected were counterbalanced 
across subjects. Although Kahana and Wingfield tested 
both young and older subject groups, we fit eSAM only 
to the younger adults’ data, and we used a lexicon of 80 
words drawn from those used in Kahana and Wingfield.

As a measure of category clustering, we used the ratio 
of repetition (Bousfield, 1953), calculated in the following 
manner: For each recall trial, we calculated the observed 
ratio of repetition, RRobserved � r/(n � 1), where r is the 
observed number of intracategory recall transitions (i.e., 
repetitions) and n is the number of items recalled; we ig-
nored any recalls of an item after its first recall on a given 
trial. This ratio thus compares the number of intracategory 
recall transitions to the total number of recall transitions 
on that trial. However, to obtain a truer measure of the use 
of category membership to guide recall transitions, we 
subtracted from the observed ratio an amount equal to the 
baseline ratio of intracategory transitions that could be 
expected by chance: RRexpected � (e � 1)/(ce � 1), where 
c is the number of categories and e is the number of exem-

plars in each category. Frender and Doubilet (1974) noted 
that a key advantage of the net ratio, RR � RRobserved � 
RRexpected, as compared with other measures of clustering, 
is its independence from the number of items recalled on 
a given trial, thus permitting comparisons across subjects 
and trials without regard to differences in recall rates that 
could be affected by subject variables and learning.

Figure 3 (left panel) plots the data for the first three study–
recall trials in Kahana and Wingfield (2000), with sepa-
rate curves for high- and low-prototypicality items. Recall 
is plotted on the horizontal axis, and ratio of repetition is 
plotted on the vertical axis. Ellipses represent the 95% 
confidence region based on a bivariate normal distribution. 
The figure shows that both recall and semantic clustering, 
as measured by the ratio of repetition, increased across Tri-
als 1, 2, and 3 for both high- and low-prototypicality word 
lists, and on each trial, high-prototypicality lists yielded 
both higher levels of recall and higher levels of clustering 
than did low-prototypicality lists.

The center and right panels in Figure 3 depict the recall 
and clustering results from separate eSAM simulations of 
the Kahana and Wingfield (2000) data, using WAS and 
LSA as the semantic relatedness metric, respectively. Al-
though both variants of eSAM captured the overall cor-
relation between recall and clustering, WAS provided a 
much better quantitative fit (RMSD � .05) than did LSA 
(RMSD � .13). To explain this difference in the fits using 
WAS and LSA, we examined the treatment of categories 
in these metrics more closely.

For eSAM to model category clustering on the basis of 
simple pairwise interitem associations, with no explicit 
representation of category membership, the semantic 
metric used must assign higher values for intracategory 
associations than for intercategory associations. Figure 4 
(left panel) shows that, for LSA, the distributions of se-
mantic relatedness values for both intracategory and inter-
category pairs are widely dispersed and that they overlap 

Figure 2. The lag-recency effect in free recall. Left panel: conditional 
response probability as a function of lag for data from Murdock’s (1962) 
40-item list condition. Right panel: simulated results in eSAM using 
word association space (WAS) as the semantic relatedness metric. Error 
bars denote 95% confidence bands.
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considerably. By contrast, for WAS, the distributions are 
more highly skewed in opposite directions, with the inter-
category pairs bunching close to zero and the intracate-
gory pairs bunching close to 1. As a consequence, and not 
surprisingly, the receiver-operating characteristic func-
tions for WAS and LSA (Figure 4, right panel) reveal that 
the discriminability (d ′) between the intercategory and 
the intracategory distributions is greater for WAS than for 
LSA. Thus, the superiority of the WAS fit of the category 
clustering data seems to be attributable to its superior dis-
crimination between the strengths of intracategory and 
intercategory associations.

Two mechanisms are likely responsible for the ability 
of eSAM to cluster responses categorically. First, pairs 
would be recalled together, due to semantic relatedness. 
Second, following the initial recall, pairs would become 
increasingly likely to be recalled together on subsequent 
trials, due to a strengthening of episodic associations 
through output encoding.

One final aspect of the simulation to note is the high 
value for Kmax, indicating that the model needs many more 
sampling/recall attempts to fit these data. There is some 
indication in the literature that, when recalling catego-
rized lists, subjects continue to produce correct responses 

Figure 3. Increases in category clustering with list learning for low-prototypicality lists 
(gray lines) and high-prototypicality lists (black lines). Ratio of repetition is plotted as a func-
tion of recall probability for the first three trials of a multitrial free recall experiment. Left 
panel: data from Kahana and Wingfield (2000; young subjects). Ellipses represent the 95% 
confidence region based on a bivariate normal distribution. Middle and right panels: eSAM 
exhibits similar patterns, although word association space (WAS; middle) better predicts the 
level of clustering associated with a given level of recall than does latent semantic analysis 
(LSA; right).
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Figure 4. Distribution of within-category and between-category interword relatedness derived 
from latent semantic analysis (LSA) versus word association space (WAS). The left panels show 
distributions of within-category (white) and between-category (black) semantic relatedness values 
for LSA and WAS. The right panel shows receiver-operating characteristic (ROC) functions for the 
discrimination of within-category and between-category word pairs based on relatedness measures 
derived using WAS (solid curve) or LSA (dashed curve). These ROC functions show the relation 
between the hit rate and false alarm rate for classifying word i as coming from the same category as 
word j on the basis of the semantic relatedness of words i and j. If the semantic relatedness (as mea-
sured by LSA or WAS) exceeds a threshold, the words are deemed to come from the same category. 
The associated d ′ values are reported in the figures.



eSAM: PRIOR EXPERIENCE AND FREE RECALL    797

late into the recall period, especially when the category 
cue is potent (Roediger, Payne, Gillespie, & Lean, 1982; 
Wingfield & Kahana, 2002).

Simulation 3: Prior-List and Extra-List 
Intrusions

In a discussion of some unpublished observations re-
garding free recall, Murdock (1974) noted that PLIs tend 
to come from the most recent list and that there is a mono-
tonically decreasing intrusion gradient across earlier lists. 
In a secondary analysis of data from several free recall 
studies, Zaromb et al. (2005) showed that the proportional 
frequency of PLIs decreases sharply with the number of 
intervening lists since the list on which the intruded item 
had appeared.

The present simulation fit eSAM to data from Experi-
ment 2 in Howard and Kahana (1999). In that experiment, 
each subject experienced study-delayed recall trials for 
15 different 12-item lists in each of 10 sessions. For some 
lists, the subjects performed a distractor task for varying 
periods between item presentations; we did not simulate 
those lists but only lists with no such interitem distrac-
tors. For our analyses of both the behavioral data and the 
simulation, we excluded recalls of the first 5 lists, so that 
for each list included in the analysis, the subjects could 
have intruded items from 5 lists back. We were also in-
terested in the model’s ability to simulate XLIs. Because 
prior instantiations of SAM had not simulated free recall 
with a lexicon that included words that had not been pre-
sented during the experiment, eSAM is the first SAM-
type model potentially capable of explicitly modeling the 
occurrence of XLIs. Accordingly, we simultaneously fit 
the PLI-recency curve, the average number of PLIs, and 
the average number of XLIs, as well as the serial position 
and the lag-CRP curves, as in Simulation 1. The lexicon 
contained 482 words drawn from the Toronto Word Pool.

As Figure 5 (left panel) shows, PLIs in the experiment 
tended to come from more recently presented lists than 
from more remote lists—a PLI-recency effect, consistent 

with Murdock’s (1974) observation. As Figure 5 (right 
panel) shows, eSAM simulates this pattern reasonably 
well. Furthermore, Table 2 shows that with the same pa-
rameter values, eSAM can reproduce correct means not 
just for PLIs, but also for correct recalls and XLIs. Using 
the same parameter values, eSAM also provided a good 
fit to the serial position and lag-CRP curves (not shown, 
but reflected in the RMSD value for the fit).

The ability of eSAM both to simulate PLIs and to cap-
ture the PLI-recency effect arises primarily due to the op-
eration of the contextual drift mechanism and a relatively 
greater role accorded to item-to-context associations dur-
ing encoding and retrieval. The fit generated relatively 
large values for the a parameter (the study phase boost in 
an item’s strength of association to context) and for the 
Wc parameter (the weight accorded to item-to-context as-
sociations in the retrieval process). The fit also generated 
a relatively small, but nonzero, value for ρ, the parameter 
signifying the proportion of item-to-context strength that 
is conserved between lists. The greater role for contextual 
associations during encoding and retrieval and the non-
zero value for ρ enabled the model to simulate PLIs in the 
first place, and the small value of ρ also ensured that the 
number of PLIs would be small and that the bulk of the 
PLIs would come from the most recent list.

The XLIs are made possible by the expanded lexicon 
and the use of semantic associations to search LTM dur-
ing retrieval, in combination with residual contextual and 
episodic associations. These features of the model afford 
an unpresented item some probability of sampling and re-
covery, to the extent that it is semantically related to a just-
recovered item that is then being used as a retrieval cue.

The low RMSD values obtained in these fits (.07 for 
both WAS- and LSA-based simulations) attest to eSAM’s 
ability to simultaneously account for many diverse as-
pects of the experimental data. Here, we are fitting not 
only serial position curves with great accuracy, but also 
the within-list associative effects described by the lag-
CRP functions, the relative probabilities of correct re-

Figure 5. The effect of recency on prior-list intrusions (PLIs). Data 
from Experiment 2 in Howard and Kahana (1999; left) show that PLIs 
tend to come from more recent lists. The eSAM model fit to the data 
(right) captures the quality of this trend, using word association space 
(WAS). Error bars denote 95% confidence intervals.
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calls, PLIs, XLIs, and finally, the temporal gradient of 
PLIs from previous lists.

Simulation 4: Effects of Semantic Relations and 
Interlist Repetitions on Recall Transitions

In this simulation, we evaluated eSAM’s ability to si-
multaneously fit several novel features of retrieval in free 
recall. Focusing on the transitions made during recall, we 
considered whether eSAM can account for two primary 
effects of prior experience: (1) the tendency for subjects 
to make transitions to semantically related items, even in 
random word lists and (2) the increased tendency to pro-
duce PLIs following recall of an item that had appeared 
both on the current list and on an earlier list.

We fit eSAM to data from Experiment 1 in Zaromb 
et al. (2005), in which subjects performed 16 study–
recall trials on 20-item lists consisting of a combination of 
new and repeated items. Our primary goals were to fit two 
aspects of the data: (1) the curve specifying the relative 

probability of successively recalling items having a par-
ticular degree of semantic relatedness (the semantic-CRP 
curve, described below) and (2) the probability of recall-
ing an item having a particular status—new, repeated, 
or PLI—as a function of the status of the just-recalled 
item. In addition, we simultaneously fit the serial position 
curve, the lag-CRP curve, and the curve specifying the 
probability of recalling an item first for a particular list as 
a function of its serial position. The lexicon contained 271 
words drawn from the Toronto Word Pool.

Semantic-CRP. Just as the lag-CRP measures the 
conditional probability of a recall transition as a func-
tion of an item’s episodic contiguity to the just-recalled 
item during study, it is possible to measure the conditional 
probability of a recall transition as a function of an item’s 
semantic similarity to the just-recalled item, as measured 
using LSA or WAS. Using only the LSA semantic met-
ric, Howard and Kahana (2002) termed this the LSA-CRP 
function. We term it the semantic-CRP to reflect the gen-
erality of this effect across semantic spaces. This posi-
tive relationship is evident in Figure 6 (left panels), which 
shows the semantic-CRP functions using LSA and WAS 
for the combined data drawn from the delayed free recall 
conditions in Howard and Kahana (1999), as well as Ka-
hana et al. (2002) and Zaromb et al. (2005), all three of 
which experiments exhibited a similar pattern.

Because the slopes of the semantic-CRP functions were 
nearly identical across the three studies, we simulated the 
data from Zaromb et al. (2005) alone. eSAM provided a 
good fit to the semantic-CRP slopes from Zaromb et al., 
using the same set of parameter values that also simulta-

Table 2
Average Number of Prior List Intrusions (PLIs), Extra-List 

Intrusions (XLIs), and Correct Recalls Made for 
Howard and Kahana (1999) Data and the eSAM Fit 

Using Word Association Space (WAS)

  Correct  PLI  XLI

Howard and Kahana (1999) 5.0 (0.50) 0.50 (0.2) 0.20 (0.1)
eSAM–WAS  4.7  0.53  0.18

Note—Numbers in parentheses are 95% confidence intervals. Similar 
results were obtained using latent semantic analysis instead of WAS as 
the semantic relatedness metric.

Figure 6. Latent semantic analysis (LSA) and word association space (WAS) semantic relatedness 
values predict output order in free recall. The distribution of pairwise semantic relatedness was 
divided into bins containing an equal number of pairs (200 bins for LSA, 1,000 bins for WAS). For 
each bin, we calculated the probability of a recall transition between two words having a similarity 
value that fell in the bin, as well as the mean similarity value for such transitions. The bins were 
further collapsed into five relatedness ranges (less than 0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–1), with 
the mean conditional probability and similarity value represented for each range. The conditional 
response probability is plotted as a function of mean semantic relatedness for LSA (top) and WAS 
(bottom). The line in each figure represents the fit of a regression applied to the average subject data. 
The experimental data, taken from Howard and Kahana (1999), Kahana, Howard, Zaromb, and 
Wingfield (2002), and Zaromb et al. (2005), are from delayed free recall. The regression line slope 
for the data is .23 (95% CI � 0.02) for LSA and 0.2462 (95% CI � 0.0007) for WAS. For the model, 
the regression slope is .20 (95% CI � 0.01) for LSA and .218 (95% CI � .009) for WAS.



eSAM: PRIOR EXPERIENCE AND FREE RECALL    799

neously fit the other aspects of the data. This result clearly 
depends on the use of pairwise semantic associations to 
guide LTM search during recall. Accordingly, previous 
instantiations of SAM, which did not include a semantic 
search mechanism, would not have been able to fit the 
semantic-CRP.

Interlist repetition effects. The effects of prior epi-
sodic learning may also be seen when items are presented 
on multiple lists within an experimental session. Zaromb 
et al. (2005) reported both positive and negative effects 
of such interlist repetitions on recall. Recall of repeated 
items was enhanced relative to recall of new items. In ad-
dition, the enhancement was greater for items that had 
previously appeared on more recent lists than for those on 
more remote lists—a list recency effect (see Figure 7, left 
panel). However, subjects were also more likely to make 
PLIs following recall of a repeated item than following 
recall of a new item (see Table 3). Nevertheless, repeated 
and new items had similar lag-CRP functions, showing 
similar probabilities of recall transitions to other items 
from the current list that have particular lags relative to 
the just-recalled item (see Figure 8, left panel).

To simulate these three interlist repetition effects, we 
added two features to eSAM: a mechanism that boosts the 
incrementing of episodic associative strengths for a re-
peated item while it is in the STM rehearsal buffer during 
study and a retrieval threshold for item-to-context strength 
to determine whether an item had appeared in the current 
target list rather than elsewhere. We next will describe 
these two mechanisms in more detail, and we then will 
describe eSAM’s fit to data from Zaromb et al. (2005).

Increased episodic strengthening of repeated items 
during study. The greater overall probability of recalling 
a repeated item and the list recency effect (see Figure 7, 
left panel) suggested to Zaromb et al. that subjects may 
be recognizing the item during study as having appeared 
in a prior list and according it more attention. An alterna-
tive explanation, however, is that the improved recall of 

items repeated in recent lists is simply a manifestation of 
recency operating across lists: Just as PLIs exhibit a re-
cency effect (see Figure 5), so too, retrieval of these items 
will increase the likelihood of recalling a repeated item 
that was presented on a recent prior list. Zaromb et al. 
evaluated this account by estimating the increase in recall 
for repeated items that would be predicted on the basis 
of the PLI data and found that recency could account for 
no more than 5% of the increase in performance for re-
peated items. They therefore concluded that subjects al-
locate additional attention or encoding resources to items 
recognized as repetitions. We implement this notion in 
eSAM by assuming that there is greater strengthening of 
the repeated item’s associations to the study context and 
episodic associations to other items jointly occupying the 
STM rehearsal buffer during study.

Accordingly, eSAM assumes that subjects recognize 
the item as a repeated item if its item-to-context strength 
exceeds a threshold, such that

 1 − >−e kS i( , ) ,context
 (4)

where k is a fixed parameter of the model. If Equation 4 
holds true for an item, it is recognized as a repeated item 
during study, and the normal increments in episodic as-
sociative strength are increased by an amount equal to R 
times the normal increment, where R is a free parameter of 
the model (see Table 1). Thus, a repeated item’s item-to-
context strength is incremented by (1 � R)a, rather than 
by a, and its forward and backward interitem strengths 
are incremented by (1 � R)b1 and (1 � R)b2, rather than 
by b1 and b2, respectively. This recognition mechanism is 
similar to that proposed by Raaijmakers (2003), who, in 
simulating spacing effects, also used contextual associa-
tions to discriminate previously presented items and also 
provided for the possibility that the strength of an item 
would be boosted if it were recognized as having been 
presented earlier (although no such boost was actually 
used in the simulations reported by Raaijmakers, 2003).

Figure 7. Recall gains resulting from interlist repetition. Left panel: recall probabil-
ity of repeated items as a function of list recency for data from Zaromb et al. (2005). 
Right panel: simulated results in eSAM using word association space (WAS) as the 
semantic relatedness metric. Dashed lines indicate the probability of recalling new 
items. Error bars denote 95% confidence intervals.
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List discrimination during retrieval of lists with 
repeated items. When items are repeated across lists, 
subjects may adopt a criterion during recall that permits 
better discrimination between items that had appeared on 
previous lists and those that had appeared on the current 
list. We implemented this notion in eSAM by assuming 
that subjects adopt an additional criterion for recovery, 
such that, notwithstanding satisfaction of other recovery 
criteria, an item is recovered only if its contextual strength 
exceeds a criterion indicating its presence on the current 
list—specifically,

 1 − >−e mS i( , ) ,context
 (5)

where m is a free parameter of the model (see Table 1).
List recency effects. As is shown in Figure 7 (left 

panel), Zaromb et al. (2005) reported that the boost in 
recall probability for a repeated item declined exponen-
tially as more lists intervened between the list on which it 
originally appeared and the list on which it was repeated, 
until, after eight intervening lists, the recall probability 

approximated that of a new item. This pattern is consistent 
with research on spacing effects in that, although spaced 
repetition helps recall more than does massed repetition 
when there is a long retention interval following the second 
presentation, the reverse is true when the retention inter-
val following the second presentation is short (Glenberg, 
1977; Melton, 1963; Peterson, 1966; Peterson, Wampler, 
Kirkpatrick, & Saltzman, 1963). In Zaromb et al, recall 
always shortly followed the second presentation, and ac-
cordingly, there was better recall of more recently repeated 
items. Figure 7 (right panel) shows that eSAM is able to 
fit this pattern, due to its incorporation of a mechanism 
by which the strength of an item’s association to context 
decays exponentially across succeeding lists.

Recall transitions. Table 3 (top) shows the probabili-
ties of recall transitions to a new item, repeated item, or 
PLI, conditionalized on the just-recalled item having been 
a new item, a repeated item, or a PLI. These conditional 
probabilities were first determined separately for each 
subject and then averaged across subjects. In calculating 
each subject’s transition probabilities, we collapsed across 
output position (i.e., first to second response, second to 
third response, etc.), including only those output positions 
for which a subject recalled at least two items of a given 
type. Table 3 (bottom) shows that the model captures this 
pattern of recall transitions well.

Of particular interest for the eSAM model, both the 
behavioral and the simulation data in Table 3 indicate that 
the probability of a PLI is greater following recall of a re-
peated item than following recall of a new item and greater 
still following another PLI. Within the eSAM framework, 
the explanation for this pattern of transitions to PLIs rests 
in the differing degrees of episodic association strength 
between these different types of items and PLIs. When the 
just-recalled item serving as a retrieval cue had been pre-
sented both in the current list and in a prior list, episodic 
associations between that cue item and current list items 
must compete with the cue item’s episodic associations to 
prior list items. Sometimes the current list items will win 

Table 3
Conditional Transition Probabilities Showing the Probability 

of the Type of Item to Be Recalled Next Given the Type of Item 
That Has Just Been Recalled

To:

From:  New  Repeated  PLI  Stop

Zaromb et al. (2005)

New .59 (.02) .18 (.01) .09 (.01) .15 (.01)
Repeated .61 (.03) .16 (.02) .12 (.02) .12 (.02)
PLI .33 (.07) .22 (.08) .18 (.05) .28 (.08)

eSAM–WAS

New .60 .19 .05 .15
Repeated .62 .17 .12 .13
PLI  .31  .33  .22  .37

Note—Upper part gives data from Zaromb et al. (2005). Numbers in 
parentheses are 95% confidence intervals. Lower part presents simulated 
results in eSAM, using word association space (WAS) as the semantic 
relatedness metric.

Figure 8. Lag-recency effects for transitions from new and repeated items. 
Left panel: conditional response probability as a function of lag for new items 
(filled circles) and repeated items (open circles) in Zaromb et al. (2005). Error 
bars denote 95% confidence intervals. Right panel: simulated results in eSAM 
using word association space (WAS) as the semantic relatedness metric.



eSAM: PRIOR EXPERIENCE AND FREE RECALL    801

this competition, and sometimes the PLIs will win, result-
ing in a moderate level of transitions to PLIs. However, 
when the just-recalled item is itself a PLI, the retrieval 
competition is especially likely to be won by a prior-list 
item, because such an item has substantial episodic asso-
ciations only to other prior-list items. By contrast, a new 
item serving as a cue has substantial episodic associations 
to current list items, but not to unrepeated items from pre-
vious lists, and the rate of PLIs will be low in that case, al-
though it will still be nonzero because of transitions based 
on semantic and residual contextual associations.

Notwithstanding differences in the capacities of new 
and repeated items to serve as retrieval cues for PLIs and 
differences in the unconditional probability of recalling 
a repeated item versus a new item, Figure 8 (left panel) 
shows that Zaromb et al. (2005) found no distinction be-
tween the lag-CRP curves for new and repeated items. 
The similarity of these patterns suggests that the recall 
of a repeated item does not significantly affect subjects’ 
tendency to recall nearby list items in succession (the lag-
recency effect). Figure 8 (right panel) shows that eSAM 
captures the similarity in the new and the repeated items’ 
lag-CRP functions.

Comparison of Parameter Values Across 
Simulations

We did not systematically examine the contributions 
of the free parameters to each fit, either alone or in com-
bination. However, we can offer some general observa-
tions regarding the variation of parameter values across 
the simulations. For this purpose, Simulation 1, in which 
we modeled the serial position and lag-CRP curves for the 
data in Murdock (1962), provides a baseline condition, in 
that the effects did not depend on semantic relations or on 
recall of multiple lists. Consistent with the nonsemantic 
nature of the effects, the free parameter values for Simu-
lation 1, using the WAS and LSA semantic metrics, were 
quite similar.

Of the remaining three simulations that involved se-
mantic effects and/or recall of multiple lists, Simulation 4 
yielded parameter values closest to those of Simulation 1. 
That simulation involved the presentation of multiple 
lists, with some items repeated across lists, and several 
effects were fit simultaneously, including the semantic-
CRP curve and several measures that were more episodic 
in nature (serial position, lag-CRP, probability of first re-
call curves, and transitions among new items, repeated 
items, and PLIs). The most notable exception to the simi-
larity between parameter values for Simulations 1 and 4 
is the reversal of the values for the episodic and semantic 
retrieval weight parameters, We and Ws, respectively. This 
reversal makes sense in light of the addition of semantic 
effects in Simulation 4. As with Simulation 1, the patterns 
of parameter values for Simulation 4 were quite similar 
for the WAS and the LSA metrics.

Relative to the parameter values in Simulations 1 and 
4, the parameter values to fit the category clustering data 
in Simulation 2 changed in similar directions for the WAS 

and the LSA metrics. However, the changes were more 
dramatic and the quantitative fit was substantially better 
for the WAS metric than for the LSA metric. The changes 
reflected the need to achieve the twin goals of ensuring 
more semantically than episodically based recall transi-
tions and of generating extremely high levels of recall. It 
seems plausible that, to generate a greater proportion of 
intracategory than intercategory transitions during recall, 
the semantic retrieval weight parameter (Ws) remained 
relatively high, as for Simulation 4, but the episodic re-
trieval weight parameter (We) declined. It also seems 
plausible that, to achieve an extremely high level of re-
call, the model compensated for the reduction in the epi-
sodic retrieval weight parameter by increasing the values 
of three contextual association parameters (e, ρ , and We) 
and by prolonging the search of LTM (Kmax increased).

Finally, Simulation 3 involved modeling multiple list 
recall and, specifically, the PLI recency effect, the number 
of PLIs, XLIs, and correct items recalled, and the serial 
position and lag-CRP curves. Once again, the WAS and 
the LSA metrics yielded similar patterns of parameter 
values (with one notable exception, discussed below). As 
in Simulation 2, the simulated effects appear to have gen-
erated competing influences on parameter values. Three 
of the contextual association parameters were relatively 
high—a, We, and (for the LSA simulation) e—but the 
fourth, ρ, was very low, albeit nonzero. A plausible inter-
pretation of this pattern is that the first three parameters 
needed to be high in order to filter out and avoid an exces-
sive number of XLIs, whereas the low value of ρ served 
to preserve just enough of the high level of contextual 
association strength across lists to enable eSAM to simu-
late the proper number and recency of the PLIs. Filtering 
out XLIs is also likely to be behind the relatively high 
level of episodic associative strength parameters, b1 and 
f1. The most significant difference in parameter values 
for the WAS and the LSA simulations was the value of 
the semantic retrieval weight parameter, which was rela-
tively high for the WAS simulation but relatively low for 
the LSA simulation. This difference might arise from the 
difference in the distribution of associations across the 
two semantic spaces, as discussed earlier, with WAS hav-
ing a more polarized distribution of association values 
and LSA having a more uniform distribution. LSA could 
be more sensitive to semantically induced XLIs due to 
this distributional property—on average, items tend to be 
more semantically related to other items—thus requiring 
a lower semantic retrieval weight to avoid an excessive 
number of XLIs.

GENERAL DISCUSSION

We have shown that eSAM, an extension of SAM, is 
able to simulate several key effects of prior semantic and 
episodic learning on episodic free recall. By including 
representations of interitem semantic associations in LTM, 
and by using those associations along with contextual and 
episodic associations to guide memory search during re-
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trieval, eSAM was able to simulate category clustering, as 
well as semantically based recall transitions and extra-list 
intrusions. By also including representations of prior-list 
items in LTM and adding a decay-based contextual drift 
mechanism, eSAM was able to simulate correct numbers 
of PLIs, as well as the PLI-recency effect. Finally, by add-
ing a mechanism to boost the episodic strengthening of 
prior-list items when they are re-presented on a later list, 
as well as a mechanism to distinguish between prior-list 
items and current-list items during recall, eSAM was able 
to simulate the pattern of effects of such interlist item rep-
etitions on free recall.

Semantic Memory
In eSAM, semantic associations are not affected by 

events that occur during the experiment, and such as-
sociations play a role only during retrieval, acting as an 
additional source of information that constrains, and is 
constrained by, contextual and episodic associations in 
guiding LTM search. There are several reasons for our 
handling of semantic associations in this way. Perhaps 
most important, we wanted to maintain the spirit of SAM 
by extending the sampling rule offered by Raaijmakers 
and Shiffrin (1980), multiplying semantic association 
strengths with the contextual and episodic association 
strengths that are combined multiplicatively in their sam-
pling rule.

In addition, such a multiplicative sampling rule seems 
useful because it provides a mechanism by which episodic/
contextual factors constrain semantic search, thereby 
avoiding an explosion of semantically induced intrusions, 
and semantic factors also constrain episodic search, so 
as to account for effects based on semantic properties of 
stimuli and/or semantic strategies.

Although the multiplicative rule requires that each type 
of association always play some modulating role in the 
sampling process, the relative importance of these dif-
ferent types of associations is adjusted in eSAM through 
variation of the retrieval weight parameters, which are ex-
ponents of the associative strengths in the sampling rule. 
For example, in Simulation 1, the value of the episodic 
retrieval weight parameter We was much greater than that 
of the semantic retrieval weight parameter Ws, befitting 
an episodically oriented task using stimuli that had rela-
tively low interitem semantic associations. By contrast, in 
the other three simulations, which involved the modeling 
of categorical clustering and semantically induced intru-
sions and recall transitions, Ws was greater than We. In 
this way, eSAM is able to emphasize semantic or episodic 
factors in its search of LTM.

Another aspect of the treatment of semantic associa-
tions in eSAM is the use of separate episodic and semantic 
matrices. This feature allows episodic and semantic traces 
to be affected differently by events during the experiment. 
In the current version of eSAM, we have assumed that 
the episodic trace strengths are affected by experimental 
events and that the semantic trace strengths are not. This 
assumption seemed the most conservative and parsimoni-

ous to us. We do not rule out the possibility that semantic 
associations might be affected by events during the ex-
periment, but any such mechanism would seem to add 
undue complexity to the model at this point.

Finally, the current version of eSAM assumes that se-
mantic associations play a role only in retrieval. The model 
could have been structured to permit such associations to 
affect episodic processing during study. However, we took 
a more conservative and parsimonious approach, avoiding 
the addition of another mechanism absent a demonstrated 
need for it. Such an additional mechanism does not appear 
necessary to simulate these data. Nevertheless, we do not 
rule out the addition of such a mechanism as and when it 
proves necessary to model other behavioral data.

Measurement of Semantic Association Strength
Although LSA and WAS are both consistent with the 

SAM framework, we found that WAS provided a better 
fit to the category clustering data (see Simulation 2). This 
difference in fit seems attributable to the fact that, rela-
tive to LSA, WAS has both stronger associative coupling 
within natural categories and weaker associative coupling 
across different categories. In addition, whereas LSA 
strengths are based on co-occurrences in written text, 
WAS strengths are based on actual subjects’ association 
protocols, thus more naturally assessing the tendency of 
one word to bring another to mind, in accord with the as-
sociative mechanism in eSAM.

The difference in fit using different semantic asso-
ciation metrics also suggests that some portion of the 
deviations from behavioral data may be attributable to 
measurement issues, rather than to features of the model 
itself. It seems likely that an even better fit of semantic 
data could be obtained using a semantic matrix consist-
ing only of direct pairwise associations, as measured by 
word association norms, particularly to the extent that 
such norms reflect the actual asymmetric nature of word 
associations, in contrast to the symmetry imposed by both 
LSA and WAS. However, as of yet, direct associations 
have not been measured for a sufficiently large number 
of words as to permit exclusive use of such associations 
in a model such as eSAM, which requires a pairwise as-
sociation strength value for each pair of words in a large 
lexicon.

Contextual Drift
As was noted previously, eSAM uses a simplified con-

textual drift mechanism that does not represent context as 
a vector of features and that does not change context after 
each time increment or item presentation (as in Howard & 
Kahana, 2002; Mensink & Raaijmakers, 1988; Murdock, 
1997) but, rather, assumes that context changes after each 
list. However, our simplified implementation of context 
will likely require modification to permit eSAM to simu-
late other data. For one thing, the current implementation 
does not allow eSAM to retrieve items on a particular list 
from among several lists (e.g., Shiffrin, 1970), because 
there is no specific context marker for a particular list. In 
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addition, it may prove important to distinguish between 
contexts associated with particular items and those as-
sociated with particular lists, as in the large literature on 
source memory judgments (see K. Mitchell & Johnson, 
2000, for a review). To simulate these sorts of effects, 
eSAM could be modified to include a richer representation 
of context and, specifically, a mechanism for using items 
as retrieval cues for context, in addition to the reverse.

Scale Invariance of Recency and
Temporal Contiguity

One shortcoming of dual-store models is their reliance 
on STM rehearsal to explain the recency effect and the 
lag-recency effect. As was noted previously, STM re-
hearsal can explain the recency effect in immediate free 
recall; it can also explain the elimination of the recency 
effect in delayed free recall by assuming that STM is emp-
tied of studied items when a demanding distractor task 
is interposed between study and test (Postman & Phil-
lips, 1965). However, the recency effect also occurs when 
a demanding distractor task is interposed between item 
presentations during study, as well as between study and 
test—a condition referred to as continuous distractor free 
recall (Bjork & Whitten, 1974). In this continuous distrac-
tor condition, overall recall is diminished, but the rela-
tive advantage accorded to end-of-list items is essentially 
the same as in immediate free recall. This long-term re-
cency effect has been replicated many times, and it holds 
over a wide range of interpresentation intervals (Glen-
berg, Bradley, Kraus, & Renzaglia, 1983; Glenberg et al., 
1980; Howard & Kahana, 1999). Dual-store models, such 
as SAM and eSAM, have difficulty explaining the long-
term recency effect and its invariance across time scales, 
because the distractor task that displaces the contents of 
STM in delayed free recall should also displace the con-
tents of STM in continuous distractor free recall.

Dual-store models also have difficulty explaining the 
finding that lag-recency is not disrupted in continuous dis-
tractor free recall (Howard & Kahana, 1999). As with the 
recency effect, STM rehearsal can explain the occurrence 
of the lag-recency effect in immediate free recall and in 
delayed free recall: Temporally contiguous items—those 
presented in nearby serial positions—would spend more 
time being jointly rehearsed together in STM than would 
items from more remote serial positions. Temporally con-
tiguous items would, therefore, be more strongly associ-
ated episodically and more likely to be recalled in nearby 
output positions, due to cuing with interitem episodic as-
sociations. However, STM rehearsal cannot account for 
the occurrence of the lag-recency effect in continuous dis-
tractor free recall, because an interitem distractor should 
disrupt the formation of interitem episodic associations 
in STM. The scale invariance of the lag-recency effect 
therefore requires an alternative explanation.

One way to account for the long-term associative ef-
fects observed by Howard and Kahana (1999) involves 
a contextual drift mechanism that is somewhat different 
from that posited in eSAM, in Mensink and Raaijmak-

ers (1988), and in Murdock (1997). Howard and Kahana 
(1999) proposed that recall of an item results in a partial 
reinstatement of the context that obtained when that item 
was studied. This retrieved context serves as a retrieval 
cue for other items with a similar context at study, which 
are most likely to be items from nearby serial positions, 
thus yielding the lag-recency effect. Howard and Kahana 
(1999) also posited that retrieval transitions are driven by 
the relative similarity between the temporal contexts of 
different list items, resulting in the scale invariance of the 
recency and lag-recency effects. These notions led to the 
development of the temporal context model (TCM; How-
ard & Kahana, 2002), a mathematical model that incorpo-
rates mechanisms for contextual drift and the formation of 
item-to-context associations and is able to capture these 
long-term recency and lag-recency effects. However, be-
cause that model lacks much of the machinery in SAM 
and eSAM, it cannot account for the detailed aspects of 
free recall data that we fit in our simulations. Future work 
aimed at integrating the key ideas in eSAM and TCM may 
result in a model that can account for many of the known 
features of episodic free recall, including, in particular, 
the effects of prior semantic and episodic learning.

CONCLUDING COMMENT

We have demonstrated that the venerable SAM model 
can be implemented in a way that includes a lexicon ex-
tending beyond the words on a single list and representa-
tions of semantic associations that are used to guide re-
trieval from LTM. Implementing these features allowed 
eSAM to simulate several effects of semantic associations 
on free recall. At the same time, we demonstrated that in-
cluding a contextual drift mechanism, as well as special-
ized mechanisms involving items repeated on multiple 
study lists, permitted eSAM to simulate several effects 
of episodic experience on free recall. These features thus 
allow eSAM to go beyond recall of a single list to model 
phenomena that reflect the effects of prior episodic expe-
rience and semantic knowledge on free recall.

REFERENCES

Anderson, J. R., & Bower, G. H. (1972). Recognition and retrieval 
processes in free recall. Psychological Review, 79, 97-123.

Bartlett, F. C. (1932). Remembering: A study in experimental and 
social psychology. New York: Cambridge University Press.

Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval 
processes in long-term free recall. Cognitive Psychology, 6, 173-189.

Bousfield, W. A. (1953). The occurrence of clustering in the recall of 
randomly arranged associates. Journal of General Psychology, 49, 
229-240.

Clark, S. E. (1995). The generation effect and the modeling of associa-
tions in memory. Memory & Cognition, 23, 442-455.

Deese, J. (1959). On the prediction of occurrence of particular verbal 
intrusions in immediate recall. Journal of Experimental Psychology, 
58, 17-22.

Estes, W. K. (1955a). Statistical theory of distributional phenomena in 
learning. Psychological Review, 62, 369-377.

Estes, W. K. (1955b). Statistical theory of spontaneous recovery and 
regression. Psychological Review, 62, 145-154.

Estes, Z. (2003). Domain differences in the structure of artifactual and 
natural categories. Memory & Cognition, 31, 199-214.



804    SIROTIN, KIMBALL, AND KAHANA

Frender, R., & Doubilet, P. (1974). More on measures of category 
clustering in free recall—although probably not the last word. Psy-
chological Bulletin, 81, 64-66.

Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982). 
The Toronto Word Pool: Norms for imagery, concreteness, ortho-
graphic variables, and grammatical usage for 1,080 words. Behavior 
Research Methods & Instrumentation, 14, 375-399.

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both 
recognition and recall. Psychological Review, 91, 1-67.

Glanzer, M. (1976). Intonation grouping and related words in free 
recall. Journal of Verbal Learning & Verbal Behavior, 15, 85-92.

Glanzer, M., Koppenaal, L., & Nelson, R. (1972). Effects of rela-
tions between words on short-term storage and long-term storage. 
Journal of Verbal Learning & Verbal Behavior, 11, 403-416.

Glenberg, A. M. (1977). Influences of retrieval processes on the spac-
ing effect in free recall. Journal of Experimental Psychology: Human 
Learning & Memory, 3, 282-294.

Glenberg, A. M., Bradley, M. M., Kraus, T. A., & Renzaglia, G. J. 
(1983). Studies of the long-term recency effect: Support for a contex-
tually guided retrieval theory. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 9, 231-255.

Glenberg, A. M., Bradley, M. M., Stevenson, J. A., Kraus, T. A., 
Tkachuk, M. J., Gretz, A. L., et al. (1980). A two-process account 
of long-term serial position effects. Journal of Experimental Psychol-
ogy: Human Learning & Memory, 6, 355-369.

Gronlund, S. D., & Shiffrin, R. M. (1986). Retrieval strategies in 
recall of natural categories and categorized lists. Journal of Experi-
mental Psychology: Learning, Memory, & Cognition, 12, 550-561.

Howard, M. W., & Kahana, M. J. (1999). Contextual variability and 
serial position effects in free recall. Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 25, 923-941.

Howard, M. W., & Kahana, M. J. (2002). A distributed representa-
tion of temporal context. Journal of Mathematical Psychology, 46, 
269-299.

Jenkins, J. J., & Russell, W. (1952). Associative clustering during 
recall. Journal of Abnormal & Social Psychology, 47, 818-821.

Kahana, M. J. (1996). Associative retrieval processes in free recall. 
Memory & Cognition, 24, 103-109.

Kahana, M. J., & Caplan, J. B. (2002). Associative asymmetry in 
probed recall of serial lists. Memory & Cognition, 30, 841-849.

Kahana, M. J., & Howard, M. W. (2005). Spacing and lag effects in free 
recall of pure lists. Psychonomic Bulletin & Review, 12, 159-164.

Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). 
Age dissociates recency and lag-recency effects in free recall. Journal 
of Experimental Psychology: Learning, Memory, & Cognition, 28, 
530-540.

Kahana, M. J., & Wingfield, A. (2000). A functional relation between 
learning and organization in free recall. Psychonomic Bulletin & Re-
view, 7, 516-521.

Klein, K. A., Addis, K. M., & Kahana, M. J. (2005). A comparative 
analysis of serial and free recall. Memory & Cognition, 33, 833-839.

Landauer, T. K., & Dumais, S. T. (1997). Solution to Plato’s problem: 
The latent semantic analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological Review, 104, 211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to 
latent semantic analysis. Discourse Processes, 25, 259-284.

Melton, A. W. (1963). Implications of short-term memory for a general 
theory of memory. Journal of Verbal Learning & Verbal Behavior, 
2, 1-21.

Mensink, G.-J., & Raaijmakers, J. G. W. (1988). A model for interfer-
ence and forgetting. Psychological Review, 95, 434-455.

Mitchell, K., & Johnson, M. (2000). Source monitoring: Attributing 
memories to sources. In E. Tulving & F. I. M. Craik (Eds.), Oxford 
handbook of human memory (pp. 179-185). Oxford: Oxford Univer-
sity Press.

Mitchell, M. (1996). An introduction to genetic algorithms. Cam-
bridge, MA: MIT Press.

Murdock, B. B. (1962). The serial position effect of free recall. Journal 
of Experimental Psychology, 64, 482-488.

Murdock, B. B. (1974). Human memory: Theory and data. Potomac, 
MD: Erlbaum.

Murdock, B. B. (1997). Context and mediators in a theory of distrib-
uted associative memory (TODAM2). Psychological Review, 104, 
839-862.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The Uni-
versity of South Florida free association, rhyme, and word fragment 
norms. Behavior Research Methods, Instruments, & Computers, 36, 
402-407.

Nelson, D. L., McKinney, V. M., Gee, N. R., & Janczura, G. A. 
(1998). Interpreting the influence of implicitly activated memories on 
recall and recognition. Psychological Review, 105, 299-324.

Peterson, L. R. (1966). Short-term verbal memory and learning. Psy-
chological Review, 73, 193-207.

Peterson, L. R., Wampler, R., Kirkpatrick, M., & Saltzman, D. 
(1963). Effect of spacing presentations on retention of a paired as-
sociate over short intervals. Journal of Experimental Psychology, 66, 
206-209.

Phillips, J. L., Shiffrin, R. J., & Atkinson, R. C. (1967). The effects 
of list length on short-term memory. Journal of Verbal Learning & 
Verbal Behavior, 6, 303-311.

Pollio, H. R., Richards, S., & Lucas, R. (1969). Temporal properties 
of category recall. Journal of Verbal Learning & Verbal Behavior, 8, 
529-536.

Postman, L., & Phillips, L. W. (1965). Short-term temporal changes in 
free recall. Quarterly Journal of Experimental Psychology, 17, 132-
138.

Postman, L., & Underwood, B. J. (1973). Critical issues in interfer-
ence theory. Memory & Cognition, 1, 19-40.

Raaijmakers, J. G. W. (1979). Retrieval from long-term store: A gen-
eral theory and mathematical models. Unpublished doctoral disserta-
tion, University of Nijmegen.

Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human 
memory: Application of the SAM model. Cognitive Science, 27, 431-
452.

Raaijmakers, J. G. W., & Shiffrin, R. M. (1980). SAM: A theory of 
probabilistic search of associative memory. In G. H. Bower (Ed.), The 
psychology of learning and motivation: Advances in research and 
theory (Vol. 14, pp. 207-262). New York: Academic Press.

Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative 
memory. Psychological Review, 88, 93-134.

Raskin, E., & Cook, S. W. (1937). The strength and direction of as-
sociations formed in the learning of nonsense syllables. Journal of 
Experimental Psychology, 20, 381-395.

Roediger, H. L., III, & McDermott, K. B. (1995). Creating false 
memories: Remembering words not presented in lists. Journal of 
Experimental Psychology: Learning, Memory, & Cognition, 21, 803-
814.

Roediger, H. L., III, Payne, D. G., Gillespie, G. L., & Lean, D. S. 
(1982). Hypermnesia as determined by level of recall. Journal of Ver-
bal Learning & Verbal Behavior, 21, 635-655.

Romney, A. K., Brewer, D. D., & Batchelder, W. H. (1993). Pre-
dicting clustering from semantic structure. Psychological Science, 
4, 28-34.

Shiffrin, R. M. (1970). Forgetting: Trace erosion or retrieval failure? 
Science, 168, 1601-1603. 

Shiffrin, R. M., & Raaijmakers, J. (1992). The SAM retrieval model: 
A retrospective and prospective. In A. F. Healy, S. M. Kosslyn, & 
R. M. Shiffrin (Eds.), From learning processes to cognitive processes: 
Essays in honor of William K. Estes (Vol. 2, pp. 69-86). Potomac, 
MD: Erlbaum.

Shiffrin, R. M., Ratcliff, R., & Clark, S. E. (1990). List-strength 
effect: II. Theoretical mechanisms. Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 16, 179-195.

Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2005). Word as-
sociation spaces for predicting semantic similarity effects in episodic 
memory. In A. F. Healy (Ed.), Experimental cognitive psychology and 
its applications (pp. 237-249). Washington, DC: American Psycho-
logical  Association.

Tulving, E. (1966). Subjective organization and effects of repetition in 
multi-trial free-recall learning. Journal of Verbal Learning & Verbal 
Behavior, 5, 193-197.

Tulving, E. (1968). Theoretical issues in free recall. In T. R. Dixon & 



eSAM: PRIOR EXPERIENCE AND FREE RECALL    805

D. L. Horton (Eds.), Verbal behavior and general behavior theory 
(pp. 2-36). Englewood Cliffs, NJ: Prentice-Hall.

Ward, G., Woodward, G., Stevens, A., & Stinson, C. (2003). Using 
overt rehearsals to explain word frequency effects in free recall. Jour-
nal of Experimental Psychology: Learning, Memory, & Cognition, 
29, 186-210.

Wingfield, A., & Kahana, M. J. (2002). The dynamics of memory 
retrieval in older adults. Canadian Journal of Experimental Psychol-
ogy, 56, 187-199.

Wingfield, A., Lindfield, K. C., & Kahana, M. J. (1998). Adult age 
differences in the temporal characteristics of category free recall. Psy-
chology & Aging, 13, 256-266.

Zaromb, F., Howard, M. W., Dolan, E., Sirotin, Y. B., Wingfield, A., 
& Kahana, M. J. (2005). Temporal associations and prior-list intru-
sions in free recall. Manuscript submitted for publication.

(Manuscript received May 29, 2003;
revision accepted for publication April 5, 2005.)


