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Much of our knowledge concerning human memory 
comes from asking participants to recall a list of studied 
items either freely or in some prescribed order (e.g., for-
ward or backward). In most of these studies, researchers 
ask participants to write their responses on paper for sub-
sequent scoring and analysis. Using modern computers, 
which have come to dominate psychological experimenta-
tion over the last 25 years, one can also easily record par-
ticipants’ typed responses and use the computer to assist 
in scoring the recall protocols for both accuracy and order. 
Although collecting responses using a computer keyboard 
has advantages over using hand-written responses, spoken 
recall provides even further benefits.

With spoken recall, participants can respond more natu-
rally and quickly, leading to a purer assay of memory func-
tion. Having participants type their responses forces them 
to actively engage with both the keyboard and the computer 
screen as they attempt to minimize their spelling mistakes. 
This interaction can result in marked interference. Further-
more, spoken recall lends itself more easily to measuring 
interresponse latency data, which has proven valuable in 
testing various theories of memory function (Kahana, 1996; 
Murdock & Okada, 1970; Patterson, Meltzer, & Mandler, 
1971; Pollio, Richards, & Lucas, 1969; Polyn, Norman, & 
Kahana, 2009; Rohrer & Wixted, 1994; Wingfield, Lind-
field, & Kahana, 1998). With keyboard responses, retrieval 
is often assumed to coincide with the first keystroke, but this 

is not always true. For instance, a participant may remember 
that a word on the list begins with the letter “S” (and press 
“S” on the keyboard), but not recall the rest of the word for 
some time thereafter. This adds noise to the latency data and 
makes subsequent analysis more difficult.

In view of these advantages, it may seem surprising that 
most modern researchers still rely on written or typed re-
sponses rather than on spoken recall. We believe that this is 
largely a consequence of the technical difficulties of scor-
ing spoken recall using existing software. For example, 
consider the free recall task. After studying a list of items 
(typically words), participants are asked to recall the items 
in any order. Figure 1 illustrates a digitized recording of a 
sequence of spoken words. The approximate onset of each 
word is shown along with its identity. When presented with 
a large data set, locating the onset of each word with a high 
degree of accuracy and consistency is a formidable task. 
There is also no standard way of storing this information 
so that it is later easily accessible for analysis.

When faced with the challenge of scoring interresponse 
times in a spoken recall study in 1992, one of the authors 
of the present article (M.J.K.) began developing a set of 
software libraries to help run experiments involving spoken 
responses and to score the resulting data. After several gen-
erations of programming languages and numerous collabo-
rators, this effort resulted in the development of the Python 
Experimental Programming Library (PyEPL), described in 
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UsAge

The PyParse software, along with installation instruc-
tions and documentation, may be obtained from the Com-
putational Memory Lab’s Web site (http://memory.psych 
.upenn.edu).

PyParse must be called from the command line and ac-
cepts values for two arguments: the sound file to be scored 
(parsed) and a text file listing candidate words to be identi-
fied (the word pool). Although one could pass a very large 
word pool containing virtually any possible response, it 
is often satisfactory to define the word pool as the list of 
words used in the experiment. For many of the studies in 
our own laboratory, we use the nouns found in the Toronto 
Word Pool (Friendly, Franklin, Hoffman, & Rubin, 1982). 
PyParse accepts a number of options via the command line 
to identify properties of the sound file, including the sam-
pling rate, the number of channels (1 5 mono or 2 5 ste-
reo), the background noise profile, and the file format (for 
a full list, see Table 1). In most cases (when using standard 
.wav files), PyParse automatically detects the values of 
these properties. PyParse can also be given multiple sound 

Geller, Schleifer, Sederberg, Jacobs, and Kahana (2007), and 
the Python-based Recall Parser (PyParse), described in this 
article. We illustrate how the PyParse software can be used 
to rapidly score recall data for the sequence of responses 
and interresponse times while simultaneously maintaining 
a high level of accuracy and consistency. PyParse takes as 
input the audio files recorded during the course of an exper-
iment, along with the list of presented words. It can thus be 
used with any experiment-authoring software that provides 
function calls for recording and storing digitized speech, 
including E-Prime, Psychtoolbox, PsyScript, and PyEPL.

Note that, in general, PyParse does not perform speech 
recognition on the recorded files. Although one could con-
ceivably develop a speaker-independent voice recognition 
system for use in large verbal recall studies, our prelimi-
nary investigation of such technology suggests that much 
work is needed before such systems achieve the stringent 
accuracy requirements of memory studies. However, Py-
Parse can automatically label the data from experiments 
involving a relatively small set of valid responses (e.g., 
recognition and confidence judgment experiments) with 
greater than 99% accuracy.

Figure 1. A typical PyParse session. The top half of the screen displays the waveform of a previously recorded study. The bottom half 
contains, from left to right, the response box and word pool, a list of the vocalizations marked so far along with their corresponding 
onsets, a volume slider, a playback speed display, and command buttons for closing the application in one of two ways (both of which 
are explained in the text).
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accurately timed intervals. The study–test procedure is 
repeated for several lists, and the recall period for each is 
stored in a file whose name corresponds to the list index 
(0.wav, 1.wav, etc.). For convenience (though optional), 
the words that make up each list are stored in a parallel set 
of files (0.lst, 1.lst, etc.), again with one word per line.

In order to begin parsing the first file, we issue the fol-
lowing command: pyparse –w wordpool.txt 0.
wav. This tells PyParse that we want to score the file 0.wav 
and that valid responses were drawn from the list of words 
found in wordpool.txt. PyParse filters the given sound file 
with a band-pass range of 1000–16000 Hz (although the 
range can be changed using a command-line option, we 
have found this default value to work well for isolating 
human speech) and shows the resulting waveform on a 
screen similar to the one in Figure 1. The user can modify 

files at once (e.g., one can easily reference all of the sound 
files stored in a particular directory), in which case it then 
conveniently presents them for scoring one at a time.

sample Run
We describe the basic parsing procedure by way of ex-

ample. All of the keystrokes corresponding to the com-
mands referenced in this example are listed in Table 2. 
Consider again a basic free recall experiment. A par-
ticipant is presented with a short list of words and is in-
structed to recall the list in any order following the last 
word presentation. Words are randomly drawn from the 
Toronto Word Pool (Friendly et al., 1982), which is stored 
(with one word per line) in a file named wordpool.txt. The 
experiment is controlled using a software package that 
supports digital voice recording and can present text at 

Table 1 
Command-Line Options Recognized by PyParse

-a, –raw 5 Read in raw sound data.
-c, –channels 5 Number of channels in recording (mono or stereo).
-b, –bandpass 5 Band-pass filter range (e.g., -b1000,16000).
-e, –bigendian 5 Set sound data endianness to big.
-d, –diffmode 5 Display difference between channels in stereo sound file(s).
-f, –format 5 Sample width in bits. Possible values: 8, 16, 24, 32.
-h, –help 5 Show usage info.
-o, –onsets 5 Automatically guess sound onsets.
-n, –noise 5 Path to a .wav file with a recording of typical background 

noise. Useful for more accurate onset detection.
-r, –rate 5 Sampling rate of sound files.
-w, –wordpool 5 Wordpool file.
-z, –zerobased 5  Start wordpool indexing from zero.

Table 2 
Commands That PyParse Accepts and Their Default Keyboard Mappings

Playback Space bar Starts and stops playback.
Ctrl 1 Z Replays the last 200 msec prior to the cursor’s current position.
Ctrl 1 X Decreases playback speed.
Ctrl 1 C Increases playback speed.
Ctrl 1 V Resets playback speed to normal.

Cursor left arrow Moves cursor to the left.
right arrow Moves cursor to the right.
When the above two commands are used in conjunction with the Ctrl key, the step size is larger. When used in conjunction 
with both the Ctrl and Shift keys simultaneously, the step size is larger still (1,000 msec).
Ctrl 1 / Centers the screen on the cursor’s current position.

Anchoring Ctrl 1 A (first time) Sets the first anchor point.
Ctrl 1 A (second time) Sets the second anchor point and enters anchor mode.
Ctrl 1 A (third time) Exits anchor mode.
left arrow In anchor mode, moves the second anchor point left.
right arrow In anchor mode, moves the second anchor point right.
Ctrl 1 left arrow In anchor mode, moves the first anchor point left.
Ctrl 1 right arrow In anchor mode, moves the first anchor point right.

Scoring (A–Z) Types in the response box to narrow the list of candidate words from the word pool.
Tab Autocompletes the response box with the first word in the list matching what’s been typed so far.
Enter Enters the selected word at the cursor’s current position.
Ctrl 1 Shift 1 I Enters an intrusion at the cursor’s current position.
Ctrl 1 Delete Deletes the current word marker.
Ctrl 1 M Moves the word marker that was last selected to the cursor’s current position.

Magnification Ctrl 1 up arrow Zooms in on the y-axis (amplitude).
Ctrl 1 down arrow Zooms out on the y-axis (amplitude).
Ctrl 1 . Zooms in on the x-axis (time).
Ctrl 1 , Zooms out on the x-axis (time).
If the above four zoom commands are used in conjunction with the Shift key, the step size is larger.

Note—The key mapping for each command can be changed in a configuration file.
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also mark them at each 1-sec interval. These time stamps 
can then be used to identify the corresponding neural data 
(if measured during the experiment) so that they can be 
treated with caution or discarded altogether.

Output file. After labeling a vocalization, PyParse writes 
a line entry to a temporary file (this file has the same base 
name as the sound file being scored and the extension .tpa) 
with the following three columns of information: the onset 
of the vocalization in milliseconds, the index of the word in 
the word pool file (21 for intrusions), and the word itself.

Finishing the session. After labeling the first vocaliza-
tion, we proceed to scoring the remainder of the file in a 
similar fashion. One can quit PyParse in one of two ways, 
depending on whether the entire file has been scored. If the 
entire file has not been scored, clicking the “Quit” com-
mand button will close PyParse while leaving the tempo-
rary .tpa file in place. Relaunching PyParse with the same 
sound file will automatically load the information stored in 
the .tpa file and allow the user to pick up where he or she 
left off. Once the entire file is traversed at least once, the 
“Done” button becomes available. Clicking it changes the 
extension of the .tpa file to .par, signifying that this sound 
file has been scored. The resulting .par file can then be 
processed with the programming language of choice.

Automatic Onset Detection
We have put considerable effort into optimizing the ac-

curacy, consistency, and speed with which recordings can 
be manually scored (cf. the Usage Statistics section). In 
general, scoring audio recordings consists of two steps: 
finding the onset of the vocalization and labeling the vo-
calization. Recordings made in a laboratory setting are 
usually of very high quality, and one can label a vocaliza-
tion rather quickly. However, locating accurate and con-
sistent onsets is difficult even in a recording with a high 
signal-to-noise ratio. Automating this task thus has the 
potential to save a great deal of time.

While recent advances in automatic endpoint detection 
have focused on algorithms that improve accuracy in high-
noise environments, an algorithm that remains popular 
for use in low-noise environments is that of Rabiner and 
Sambur (1975). We have implemented their algorithm in a 
PyParse add-on called PyWR (Python word recognition).

The onset detection feature can be invoked in two ways: 
via the -o command line option given to PyParse (for a list 
of all command-line options, see Table 1), and via a stand-
alone program capable of processing multiple files at once. 
When the -o option is chosen, PyParse first checks whether 
a previous session is saved in a corresponding .tpa file. If 
so, the -o option is ignored, and the previous session is re-
stored. If a previous session is not found, PyParse runs the 
onset recognition algorithm on the given file. Each onset 
is labeled with a question mark, signifying that it has yet 
to be labeled. If the recordings were not made in a noise-
free environment, the -n or -bgFile options are used to 
point PyWR to an audio file containing a 1-sec recording 
of typical background noise. PyWR uses this file to tweak 
its parameters. Note, however, that the algorithm still as-
sumes that the overall signal-to-noise ratio is high and that 
whatever little background noise exists is stationary.

the level of magnification on both the y-axis (affecting the 
amplitude of the display) and the x-axis (affecting how 
much of the waveform is shown on the screen at any one 
time) with a single keystroke. The bottom half of the screen 
contains, from left to right, the response box and word pool, 
a list of the vocalizations marked so far, along with their 
corresponding onsets, a volume slider, a playback speed 
display, and command buttons for closing the application 
in one of two ways (both of which are explained later).

We begin scoring the file by listening to the first vocal-
ization shown on the screen (see, e.g., Figure 1), using the 
space bar to start and stop playback. The left arrow key 
is then used (possibly in conjunction with one or more 
modifiers to traverse a larger distance; see Table 2) to re-
position the cursor prior to the start of the vocalization, 
allowing for ample slack room.

Locating the vocalization’s onset. The best estimate 
of the vocalization’s onset can be found in one of two ways. 
The first method involves incrementally moving the cur-
sor using the right arrow key (without any modifiers, this 
is the smallest step size and corresponds to a 5-msec de-
fault). After each step, Ctrl1Z is used to play back the last 
200 msec of the file and gauge whether the vocalization has 
started. Although this method works well for most vocaliza-
tions, a more flexible method is sometimes required, espe-
cially when marking words that start with soft fricatives. 
This second method involves dropping two anchor points to 
restrict playback to a precise area of the waveform. The first 
anchor point is dropped (Ctrl1A by default) prior to the 
hypothesized onset of the vocalization, and a second anchor 
point is dropped to the right of the first by pressing Ctrl1A 
again after repositioning the cursor. In anchor mode, the left 
and right arrow keys are used to move the right anchor point 
and, in conjunction with the Ctrl key, the left anchor point. 
Pressing the space bar plays only the part of the file that 
falls between the two anchor points. This allows the user to 
define an arbitrary window and shift it in small increments 
until a precise estimate of the onset is found.

Labeling vocalizations. Once we obtain the best esti-
mate of the onset using one of the two methods described 
above, we type the word that was previously played back. As 
more and more of the word’s prefix is typed into the response 
box, the word list is filtered to display only the matching 
words. If a corresponding (optional) .lst file is found as de-
scribed above, the words contained in the file appear at the 
top of the word list in bold. This allows the user to more eas-
ily identify a mumbled word if it resembles a word that was 
on the list being scored. Once enough characters of a word 
are typed to uniquely identify it, the Tab key can be used 
to auto-complete the word in the response box. Finally, the 
Enter key is used to place the word at the onset’s location.

Marking intrusions. If the vocal response corre-
sponds to a word that does not appear in the word list, it is 
marked as an intrusion by pressing Ctrl1Shift1I, instead 
of the Enter key. If the response was nonsensical or con-
sists of the participant talking to him- or herself or to the 
person running the experiment, it is marked in a special 
way by first typing “VV” in the response box and then 
pressing Ctrl1Shift1I, as if marking an intrusion. In our 
laboratory, if such vocalizations last more than 1 sec, we 
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ing of the word being repeated multiple times, with a 
short pause between repetitions. The stand-alone program 
pywr_train.py is used to train the classifier and takes 
as its single argument the directory containing the audio 
files to use: pywr_train.py [train_dir]. PyWR 
looks at each .wav file in the directory and creates a cor-
responding .hmm file with the model parameters to use 
for classification.

The stand-alone program  pywr_classify.py 
is used to classify a set of unlabeled audio files: pywr_
classify.py wordpool_file model_dir 
file1.wav [ file2.wav file3.wav ..]. Here, 
 wordpool_file is the path to the word pool file used 
during the experiment (i.e., the file that would be passed to 
PyParse if the data were classified manually), model_dir 
is the directory containing the .hmm files generated dur-
ing the training phase, and the rest of the arguments are the 
audio files to classify. A .tpa file is generated for each .wav 
file, which can then be loaded into PyParse to quickly check 
the accuracy of the labels.

In our laboratory, we collect training data for each 
participant and use it to train a unique classifier for their 
voice. Although this may be excessive for classifying 
words from a very small word pool, it allows us to adapt 
the classifier to individual differences and achieve very 
high recognition accuracy.

As a final note, the current implementation assumes 
that participants are not trying to trick the system with 
invalid responses. This assumption is reasonable, since the 
data in most such cases should probably be discarded.

IMPLeMenTATIOn

The front-end interface and most of the higher level fea-
tures were written in Python, making use of wxPython 
for the GUI, and SciPy and NumPy for postprocessing 
the audio data. At a lower level, audio data are processed 
by a thin wrapper around RtAudio, libsndfile, 
libsamprate, and SoundTouch, written in C11 
and made available to Python using SWIG.

We forgo a detailed discussion of many implementation 
details, since they are not in themselves novel. The source 
code is available on the Computational Memory Lab’s 
Web site (http://memory.psych.upenn.edu) and is acces-
sible to anyone with Python programming experience. 
We do, however, discuss the details surrounding the cur-
rent endpoint detection and word recognition algorithms. 
Not only is their application to scoring psychological data 
novel, but they represent the features of PyParse that we 
believe can use the most improvement.

The Automatic endpoint Detection Algorithm
We describe a slightly modified version of the endpoint 

detection algorithm of Rabiner and Sambur (1975). For 
further details, we refer the reader to the original article.

Both automatic and manual (human) endpoint detec-
tion is an especially challenging problem in the presence 
of background noise. In the case of automatic detection, 
successfully separating speech from background noise 
requires a sophisticated filtering scheme and a detailed 

The second way to invoke the onset detection feature 
is via the stand-alone program pywr_onsets.py: 
pywr_onsets.py file1.wav [file2.wav 
file3.wav . . .]. A .tpa file with the detected onsets 
is generated for each .wav file given to the program. These 
files can later be loaded into PyParse so that the onsets can 
be double-checked and labeled. If the recordings were not 
made in a noise-free environment, the -bgFile option 
can be used to specify a background noise profile as was 
described above. This batch mode feature, which allows 
multiple files to be marked without user interaction, can 
save a lot of time when scoring a large number of files.

Although conceptually simple, the algorithm of Rabiner 
and Sambur (1975) accurately identifies onsets for a large 
percentage of vocalizations. It does, however, have two 
limitations and represents only a first step in automating 
onset detection in PyParse. First, as it was described in its 
original form, the algorithm expects only one vocalization 
within the recording. Although this restriction has been 
lifted in our implementation, the modified algorithm does 
a poor job of separating words that are spoken in rapid 
succession. In such cases, the algorithm treats the entire 
segment as one vocalization and only marks the onset of 
the very first word.

The second limitation of the algorithm is that it often 
overshoots the onsets of words that begin with weak frica-
tives (e.g., /f/), because their energies ramp up slowly. Al-
though Rabiner and Sambur (1975) addressed this short-
coming with a secondary refinement phase, it does not 
work as well as would be expected when vocalizations 
are made in relatively rapid succession and stored within 
a single file (see the Implementation section below). The 
user must be mindful of both of these shortcomings and 
manually mark the onsets that the algorithm misses.

In recognition experiments run in our laboratory, where 
responses are limited to two words (e.g., “yes” and “no”), 
we modify the responses so that they start with the same 
sound. For instance, instead of saying “yes” or “no,” par-
ticipants say “pes” or “po.” Since the energy of the /p/ 
sound ramps up quickly, the algorithm is very good at ac-
curately locating the onsets of these words. Also, since 
both start with the same sound, onset estimates are consis-
tent across words. Such a feature is important when look-
ing at response time data.1

Word Recognition
Automatic word recognition is available for use with 

experiments in which the pool of possible responses is 
relatively small. For example, we have successfully au-
tomated scoring data from a recognition experiment in 
which the pool of responses consists of the words “pes” 
and “po” (for “yes” and “no”). This feature is part of the 
PyWR add-on and is accessible via a command-line inter-
face to facilitate the ability to score data in batch mode. 
Using this feature involves two steps: training a classifier 
on labeled data collected during a pre-experimental train-
ing phase and pointing the classifier to unlabeled data col-
lected during the experiment.

For the training step, PyWR expects as input one audio 
file for each valid word. The file must contain a record-
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ever, we have found mixed results in practice when using 
this approach for recordings made in a laboratory setting 
and containing multiple vocalizations per file. Although 
it provides an accurate correction in some cases, in oth-
ers it positions the onset estimate prior to where a human 
operator would. This problem occurred often enough dur-
ing testing to warrant turning the refinement step off by 
default.

The Automatic Word Recognition Algorithm
The current implementation of the word recognition 

feature can automatically score data from experiments in 
which the pool of possible responses is relatively small. 
In particular, we have successfully used it to score data 
from a recognition experiment with a response pool of 
two words (“pes” and “po”). Here, we briefly describe 
the current implementation, based largely on the work of 
Rabiner, Juang, Levinson, and Sondhi (1985). The modu-
lar form of PyParse and PyWR allows one to easily drop 
in a more sophisticated algorithm capable of recognizing 
words from a larger lexicon at a later date.

Training data are obtained from each participant by hav-
ing them repeat each of the possible responses several times. 
In our recording environment, we can achieve an average 
classification rate (across participants) of over 99% using a 
training set consisting of 30 repetitions of each word.

The training data are band-pass filtered between 1000 
and 16000 Hz to remove noise, and a pre-emphasis filter 
is applied to boost the attenuated energy that is typical at 
higher frequencies of human speech. The endpoint detec-
tion algorithm outlined above is used to identify the voiced 
portions of the signal. Mel-frequency cepstral coefficients, 
which have been employed in speech recognition for some 
time (Davis & Mermelstein, 1980), are computed for a 
moving window of the voiced segment of the signal. They 
constitute the features used for classification.

A hidden Markov model in which the observations in 
each state are modeled as a mixture of Gaussians is fit 
separately to each word. Parameter estimates are obtained 
using the standard Baum–Welch algorithm, an iterative 
procedure that finds estimates that maximize the likeli-
hood of the training data (e.g., Rabiner, 1989).

Unlabeled data are preprocessed in exactly the same 
way as the training data. To label a vocalization, the Viterbi 
algorithm is first used to find the most likely sequence of 
state transitions under each model. From these, the most 
likely overall sequence is selected, and the label associ-
ated with the corresponding model is used.

UsAge sTATIsTICs

Onset Consistency
PyParse allows multiple people to score different por-

tions of the same data set without sacrificing the consis-
tency with which onsets are marked. Five research assis-
tants who use PyParse on a regular basis scored the same 
set of three recall periods from a random participant of a 
large free recall experiment. Together, the three recall peri-
ods contained 43 responses. The mean (across responses) 

statistical model of the signal. Since recording conditions 
in the laboratory are under the experimenter’s complete 
control, we assume that background noise is minimal and 
that the signal-to-noise ratio is very high.

A 10-msec window is first swept across the signal while 
the energy of each frame is noted. By energy here, we sim-
ply mean the sum of the magnitudes of all of the samples 
that fall within the boundaries of the window. An analo-
gous operation is performed on 100 msec of background 
noise, recorded in the testing room. Two statistics are com-
puted, based on the peak energy of the input signal (IMX) 
and the mean energy of the background signal (IMN):

 ITL 5 min(0.03  (IMX 2 IMN) 1 IMN, 4  IMN) (1)

 ITU 5 5  ITL  (2)

Respectively, these two values represent the lower and 
upper thresholds used to segment voiced parts of the re-
cording, as is described below.

A 10-msec window is then again swept across the sig-
nal. If a frame whose energy exceeds the lower thresh-
old (ITL) is found, the center of the frame is marked as 
a potential onset. The window is further swept across the 
signal until one of four things occurs. If a frame whose en-
ergy exceeds the upper threshold (ITU) is found or if the 
signal’s energy is maintained above the lower threshold for 
a predetermined amount of time (200 msec by default), 
the previously marked sample is confirmed to be an onset. 
If a frame whose energy falls below the lower threshold is 
found before meeting either of these two conditions, the 
hypothesized onset is discarded. This filters out artifacts 
that arise from false starts. A hypothesized onset is also 
discarded upon reaching the end of the signal.

After locating an onset, a window continues to be swept 
across the signal looking for the corresponding offset. Al-
though we are not explicitly interested in knowing where 
a vocalization ends, we locate the offset for two reasons. 
First, since the signal can contain multiple vocalizations, 
we know to start looking for the next vocalization in the 
frame following the offset. Second, if the length of a vo-
calization falls below a configurable threshold (100 msec 
by default), the vocalization is usually too short to be of 
value and the endpoints are discarded.

Rabiner and Sambur (1975) described a refinement 
phase meant to correct the onsets of words that begin with 
weak fricatives. A 10-msec window is swept across the 
250-msec segment of the recording preceding the first 
onset estimate (for offsets, they look at the next 250-msec 
segment) while the number of zero-crossings in each 
frame is calculated. A large number of zero-crossings 
is taken as evidence of a vocalization. If the number of 
zero-crossings in three or more frames is further than two 
standard deviations away from the mean number of zero-
crossings in a typical frame of silence, the onset (or offset) 
is adjusted to be at the center of the earliest (or latest) 
frame exceeding this threshold.

This approach is reported to work well in the domain 
addressed by Rabiner and Sambur (1975), where they ex-
pected recordings to contain a single vocalization. How-



PyParSe    147

of the sequence of recalled items could open a wide range 
of new areas of study in verbal recall. Finally, because re-
call tasks are playing an increasingly important role in de-
tecting memory impairments associated with neurological 
disease, automatic data collection and scoring can become 
an important part of remote (e.g., phone-based) monitoring 
systems. PyParse is only a first step toward these far more 
ambitious aims, but it highlights the richness of data that 
can be gleaned from recall experiments and will hopefully 
stimulate the development of more sophisticated tools for 
scoring verbal recall protocols.
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of the standard deviation between research assistants was 
12 msec (62 msec). The mean deviation between two of 
the most experienced users was 3 msec (60.5 msec).

efficiency
A typical parsing session was timed for each of five 

research assistants. On average, it took less than 30 sec to 
listen to a vocalization, to rewind the cursor and use one of 
the methods described in the Usage section to find the best 
estimate of the onset, and to label the vocalization.

Word Recognition Accuracy
A recognition experiment in which the pool of valid 

responses was limited to two words (“pes” and “po”) was 
scored both manually and using the automatic word recog-
nition feature. The data set contained 24 participants with 
an average of 1,475 responses each. The mean classifica-
tion accuracy across participants was over 99.4%, whereas 
the worst accuracy for any 1 participant was 97.1%.

FUTURe enhAnCeMenT

Although the current version of PyParse has enabled 
us to efficiently collect interresponse time and output 
order data in numerous studies, there are a number of 
major limitations that should be addressed in future work. 
The most significant limitation is the need to manually 
identify spoken words in data collected from most stud-
ies. With advances in computer technology and speech 
recognition algorithms, it should be possible to accurately 
identify a large portion of words, letting the user identify 
only those words that the speech recognition algorithm 
could not identify with high confidence.

Another limitation is the unreliable nature of the onset 
detection algorithm under the conditions previously de-
scribed. We have experimented with a number of primitive 
algorithms, none of which were completely satisfactory 
(especially in cases where words were slurred together). 
By using a more sophisticated word model, it should be 
possible to automatically detect voice onsets with a higher 
degree of accuracy. As with word recognition, one could 
envision an algorithm that gauges its own confidence, al-
lowing the user to manually identify onsets for trouble-
some words. A word model incorporating both acoustic 
and semantic information could potentially solve both of 
these problems simultaneously.

The possibility of automatic parsing raises the prospect 
of providing real-time performance feedback. Several sce-
narios come to mind. First, in neuropsychological assess-
ment procedures, one could have the computer automati-
cally adjust the difficulty of the lists on the basis of patient 
performance. Second, in studies of learning, the computer 
could repeat study–test trials until some performance level 
is achieved. Third, by dynamically monitoring interresponse 
times, one could adjust the recall period depending on the 
amount of time that has elapsed since the last response. The 
possibility of triggering experimental events as a function 


