
Alec Solway & Jonathan F. Miller &

Michael J. Kahana

Published online: 3 April 2013
Psychonomic Society, Inc. 2013

Abstract Recent advances in neuroimaging and neural record-
ing techniques have enabled researchers to make significant
progress in understanding the neural mechanisms underlying
human spatial navigation. Because these techniques generally
require participants to remain stationary, computer-generated
virtual environments are used. We introduce PandaEPL, a
programming library for the Python language designed to sim-
plify the creation of computer-controlled spatial-navigation
experiments. PandaEPL is built on top of Panda3D, a modern
open-source game engine. It allows users to construct three-
dimensional environments that participants can navigate from a
first-person perspective. Sound playback and recording and
also joystick support are provided through the use of additional
optional libraries. PandaEPL also handles many tasks common
to all cognitive experiments, including managing configuration
files, logging all internal and participant-generated events, and
keeping track of the experiment state. We describe how
PandaEPL compares with other software for building spatial-
navigation experiments and walk the reader through the process
of creating a fully functional experiment.

Keywords Experiment creation . Programming library .

Spatial navigation . Virtual reality . Stimulus presentation

Since the discovery of place cells in the 1970s (O’Keefe &
Dostrovsky, 1971; O’Keefe & Nadel, 1978), researchers

have engaged in a large and sustained effort to understand
the neural mechanisms underlying spatial navigation. The
widespread availability of noninvasive recording techniques
such as scalp electroencephalography (EEG) and functional
magnetic resonance imaging, combined with the rise in
cognitive research involving neurosurgical patients with
implanted electrodes, have made it possible to study these
mechanisms in humans (e.g., Alvarez, Biggs, Chen, Pine, &
Grillon, 2008; Astur, Taylor, Mamelak, Philpott, & Sutherland,
2002; Cornwell, Johnson, Holroyd, Carver, & Grillon, 2008;
Doeller, Barry, & Burgess, 2010; Doeller, King, & Burgess,
2008; Ekstrom, Copara, Isham, Wang, & Yonelinas, 2011;
Ekstrom et al., 2003; Gron, Wunderlich, Spitzer, Tomczak, &
Riepe, 2000; Hassabis et al., 2009; Iaria, Chen, Guariglia,
Ptito, & Petrides, 2007; Jacobs, Kahana, Ekstrom, Mollison,
& Fried, 2010; Jacobs, Korolev, et al., 2010; Maguire et al.,
1998; Shipman & Astur, 2008; Suthana et al., 2012; van der
Ham et al., 2010; Watrous, Fried, & Ekstrom, 2011;
Weidemann, Mollison, & Kahana, 2009). Because these tech-
niques require participants to remain stationary throughout the
recording period, researchers often use computer-controlled
virtual reality (VR) environments.

Many VR experiments, including those listed above,
have the same basic structure and requirements.
Participants navigate the environment from a first-person
perspective, triggering events when they arrive at partic-
ular locations. Instructions between runs are presented
using 2-D text and images superimposed on the 3-D
environment. Input is processed using a computer key-
board or joystick, and every event, either experiment- or
participant-generated, is recorded in a text-based log. In
some cases, multiple computers are used: for example,
one to run the experiment, and another to record neural
data. Such setups require that the computers be synchro-
nized through the use of additional hardware.

We have designed a programming library that automates
these tasks and at the same time leaves users the flexibility

A. Solway
Princeton University, Princeton, NJ, USA

J. F. Miller
Drexel University, Philadelphia, PA, USA

M. J. Kahana (*)
University of Pennsylvania, 3401 Walnut St. Suite 303C,
Philadelphia, PA 19104, USA
e-mail: kahana@psych.upenn.edu

Behav Res (2013) 45:1293–1312
DOI 10.3758/s13428-013-0322-5

PandaEPL: A library for programming spatial
navigation experiments

necessary to implement novel experimental paradigms. Our
library, called PandaEPL, is built on top of the open-source
Panda3D game engine. Panda3D is a fully fledged modern
game engine with support for 3-D graphics; efficient ren-
dering; basic physics; fog, lighting, and particle effects;
shaders; flexible camera control; and mouse and keyboard
input. Panda3D was developed by the Disney corporation
and subsequently released as open-source software.

With PandaEPL, researchers can design rich and complex
environments using the 3-D modeling software of their
choice, and participants can then navigate these environ-
ments from a first-person perspective. User-defined events
can be triggered automatically when participants collide
with objects in the environment, or more complex contin-
gencies can be created by executing user-defined code be-
fore each frame is rendered. Helper functions display text
and images in 2-D, allowing users to display instructions
and construct custom heads-up displays (e.g., to display a
compass, the score, or the time). A number of other features
simplify tasks that are common to all cognitive experiments,
including configuration and log-file management and com-
puter synchronization. The basic use of the software does
not require knowledge of Panda3D or of any other library.
However, a rudimentary knowledge of Python is required.

Our presentation here proceeds as follows. First, we
describe how PandaEPL compares with existing software
for creating spatial-navigation experiments. Next, we dis-
cuss how PandaEPL handles precise timing, an important
issue for all psychology experiments. We then demonstrate
how PandaEPL can be used to build an experiment by
leading the reader through a fully functional example. The
example is a reduced version of Experiment 2 of Miller,
Lazarus, Polyn, and Kahana (in press). Finally, additional
details about the library are provided in the Appendix.

Comparison with existing approaches

We know of only two existing general-purpose software
packages aimed at the creation of spatial navigation exper-
iments (Ayaz, Allen, Platek, & Onaral, 2008; Geller,
Schleifer, Sederberg, Jacobs, & Kahana, 2007).

Geller et al. (2007) reported on a general-purpose
Python-based Experiment Programming Library, or
PyEPL. PyEPL streamlines many of the common develop-
ment tasks shared by cognitive experiments by making
available a set of Python-based classes and functions. This
allows researchers to quickly and easily create new experi-
ments, while at the same time leaving them the flexibility
necessary to program novel features. As a whole, PyEPL is
aimed at general experiment development. Its “virtual real-
ity module” simplifies the construction of spatial-navigation
experiments in particular. We continue to advocate the use

of PyEPL for experiments using 2-D stimuli (here we will
not reenumerate PyEPL’s particular benefits; see Geller et
al., 2007); however, PyEPL’s VR module is now outdated.
Users can build only simple 3-D environments by placing
different cubes on a grid and applying textures to them.
Irregularly shaped objects can only be presented as 2-D
sprites that appear the same from every angle. Missing from
PyEPL is the ability to load and render true 3-D models
created with modern graphic design packages. This makes
the constructed environments both less attractive and more
cumbersome to create. Moreover, because rendering is con-
trolled by a basic graphics engine built in-house, even
rudimentary environments can be slow to render. PyEPL is
officially supported on Mac OS X and Linux.

Ayaz et al. (2008) reported on Maze Suite, a set of
standalone tools aimed at the construction of spatial-
navigation experiments. It consists of three programs:
MazeMaker, a point-and-click interface for constructing
new environments; MazeWalker, the graphics and game
engine; and MazeViewer, a tool that aids with data analysis.
Maze Suite allows users to create and analyze basic exper-
iments without having to learn a programming language,
and for simple environments, without having to learn how to
use graphic design software. However, the range of exper-
iments that can be constructed and the analyses that can be
performed are limited by the built-in capabilities of the
point-and-click interface. Because Maze Suite is a set of
standalone programs rather than a programming library, its
features cannot be extended or used in novel ways by being
invoked from a programming language. Maze Suite runs
only on Microsoft Windows systems.

The approach that we take is similar to that of PyEPL.
PandaEPL makes available a set of Python-based classes
and functions that encapsulate many common development
tasks, but it is up to the experiment writer to decide how to
best deploy these features to construct a particular experi-
ment. There is not a single “pipeline” through which all new
experiments are created. The advantages and disadvantages
of such an approach are obvious: It provides for a large
amount of flexibility in creating new experiments, but it has
a steeper learning curve than a specialized point-and-click
interface such as the one provided by Maze Suite.

However, unlike PyEPL, which forces users to design all
aspects of their experiment programmatically, PandaEPL
allows users to construct the most cumbersome part, the
3-D environment itself, using the point-and-click interface
in the graphics package of their choice. The 3-D environ-
ment can then easily be loaded in, either as a single model or
by piecing together several separately constructed models.
Moreover, whereas the only 3-D objects supported by
PyEPL are cubes to which users apply different textures,
PandaEPL supports arbitrarily complex 3-D models created
by packages such as 3ds Max (Autodesk, Inc., San Rafael,

1294 Behav Res (2013) 45:1293–1312

CA), AutoCAD (Autodesk, Inc.), Blender (Blender
Foundation, Amsterdam, The Netherlands), LightWave 3-
D (NewTek, Inc., San Antonio, TX), Maya (Autodesk, Inc.),
and others. This allows users to create significantly more
realistic and engaging experiments than are allowed by
PyEPL. This ability is made possible by using Panda3D
under the hood, and herein lies the main difference between
PandaEPL and PyEPL’s VR module. PandaEPL uses
Panda3D to handle all aspects of the 3-D environment, a
task that Panda3D was specifically designed for. In addition
to supporting a wide range of 3-D graphics formats,
Panda3D has an efficient rendering engine and collision
detection system, and includes support for fog and lighting
effects, custom shaders, and more. Panda3D is open source
and continues to be developed by the open-source commu-
nity. As new features are developed, they are automatically
available for use in new experiments. PandaEPL is thus not
simply an incremental update to PyEPL’s VR module, but
instead represents a completely different approach to exper-
iment development. On top of the features made available
by Panda3D, PandaEPL provides the necessities common to
all cognitive experiments: precise millisecond timing, log-
ging of behavioral data, configuration file management, and
synchronization of multiple computers. PandaEPL runs on
Microsoft Windows, Mac OS X, and Linux.

A different approach to building spatial navigation ex-
periments involves the use of custom-built software. Often
this has involved modifying game engines that have been
made open source (e.g., Doeller et al., 2010; Doeller et al.,
2008; Hassabis et al., 2009; Iaria et al., 2007; Maguire et al.,
1998), although some researchers have opted to create soft-
ware from scratch (e.g., Gron et al., 2000; van der Ham et
al., 2010). There are at least three disadvantages to this
approach. First, whether co-opting an existing game engine
or writing the software from scratch, this approach requires
programming the features that we previously identified as
being shared by all or most experiments. Second, once the
software is built, it may be more difficult to reuse beyond a
single experiment or set of experiments, as compared with a
general-purpose programming library. Finally, because the
software is used in few experiments, it is not tested as
extensively as software used by a broader community of
researchers.

Timing

Obtaining precise timing information about both experi-
ment- and participant-generated events is important for all
psychology experiments. PandaEPL’s approach to timing is
similar to that of PyEPL (Geller et al., 2007). Most common
consumer operating systems do not have real-time capabili-
ties and cannot provide guarantees about the exact timing of

events. However, it is still possible to obtain a reasonable
bound on the occurrence of an event by querying the time
before and the time after a block of code has executed.
Because the operating system may preempt the control of
program flow, these values are approximate. However, we
can be sure that the estimated start time is less than or equal
to the actual start time and that the estimated duration is
greater than or equal to the actual duration. Each event is
thus guaranteed to occur sometime within the recorded
range. On modern computers, this range is often very
small for short functions (1–2 ms on the computers that
we use in our lab) and provides excellent bounds on the
exact timing of an event.1 Moreover, it is possible to set
a threshold on event duration and to discard the few
events with larger-than-normal execution latencies.
Additional information on timing is provided in the
Appendix.

Building an experiment

In order to demonstrate how PandaEPL can be used to create a
new experiment, we now lead the reader through the construc-
tion of a fully functional example. This example is a reduced
version of Experiment 2 of Miller et al. (in press). The com-
plete source code, together with all of the 3-D models and
other helper files necessary to run the example, can be
downloaded from http://memory.psych.upenn.edu/
PandaEPL.

Knowledge of Python is necessary in order to use
PandaEPL effectively. In what follows, we assume that the
reader has a rudimentary familiarity with the language.
However, before we proceed with the example, we will
briefly review some of the advanced Python features that
PandaEPL makes extensive use of. Python experts can skip
the next few paragraphs and proceed directly to the
Overview of the Experiment section. First, we review
Python’s class system. A class is a user-defined collection
of methods (standard functions declared using Python’s

def mechanism) and variables. An object is a particular

instance of a class. When we create a new object, we are
said to instantiate a copy of the class. Each object has a
separate copy of the class variables; when a class variable is
changed in one object, other copies are unaffected. Objects
are instantiated using a class constructor, a method that has
the same name as the class and, like other methods, takes
zero or more arguments.2 After a copy of the class is

1 The precision of events that change the display is actually lower and
depends on the screen refresh rate and other factors. See the Appendix
for more information.
2 In reality, the constructor has at least one argument: the class that is to
be instantiated. However, this detail is unimportant for the present
discussion.

Behav Res (2013) 45:1293–1312 1295

http://memory.psych.upenn.edu/PandaEPL
http://memory.psych.upenn.edu/PandaEPL

constructed, the class’s __init__ method is automatically
invoked if it is defined. It receives a copy of the new object
in its first argument, followed by the values passed to the
class constructor. We previously said that class methods are
standard functions declared using Python’s def mecha-

nism. This is almost true. In addition to having the prop-
erties of standard functions, class methods have the
special property that their first argument is always the
object calling the method. The name of this argument is
always self. For example:

1. class foo:

2. def __init__(self, a):

3. print “Object initialized with value: ”, a

4. def start(self):

5. print “We are going to start the experiment...”

Methods are dispatched using dot notation. To dem-
onstrate, the following code snippet creates an instance
of class foo, defined above, and calls the start
method:

1. f = foo(42)

2. f.start()

It is also possible to have static class members, or
variables and methods that belong to the whole class
rather than to a specific object. Static members are
also accessed using dot notation, by using the class
name before the dot. Static members play a particularly
important role in PandaEPL. While most classes are
defined with the goal of instantiating multiple object
copies, some classes are meant to be instantiated only
once. Such classes are called singletons. For example,
the PandaEPL Experiment class is a singleton that
maintains information about the experiment state.
I t wou l d no t make s en s e t o have mu l t i p l e

Experiment objects, because each participant can
only run in one experiment at a time. Singleton objects
in PandaEPL are accessed by invoking the static

getInstance() method of the corresponding the
class. This will be demonstrated and used throughout
the example below.

Finally, PandaEPL also makes extensive use of call-
backs. These are simply references to standard functions
or class methods. Just as it is possible to assign a
primitive value, such as the number 5, to a variable, it
is also possible to assign it a function or class method.
This variable can then be used to call the corresponding
function or class method, and just like other variables, it
can be passed as an argument to other functions and

class methods. Functions can also be created “on the
fly.” Such functions are called anonymous, because they
are not associated with any one particular name. They are
defined using the keyword lambda. For example:

1. lambda a, b: a+b
defines a function that accepts two arguments and returns
their sum. We can assign a function declared in this way to a
variable: for example,

1. foo = lambda a, b: a+b

We can also pass such a function directly as an argument
to another function or method.

Overview of the experiment

The experiment consists of a cover task in which the
participant plays the role of a delivery person, navigating
and delivering packages from one location to another in a
small town. A screenshot of one location in the town, as
seen by participants, is shown in Fig. 1a. Figure 1b shows
a bird’s-eye view of the entire town. The town consists of
a number of distinct buildings and various props, including
trees, bushes, benches, and so on. A subset of the build-
ings are stores, and participants deliver packages between
the stores. A delivery is made by walking up to the
appropriate store.

Initializing a new session

All of the commonly used PandaEPL features can be made
accessible by loading the pandaepl.common module:

1. from pandaepl.common import *

1296 Behav Res (2013) 45:1293–1312

After loading PandaEPL, the first order of business
is usually to set the session number. This is done
using the singleton Experiment object, which con-
trols the general settings relevant to the session as a
whole. The Experiment class follows the singleton
design pattern and is accessed by the static class
method getInstance(). Our sample experiment
will consist of a single session, which we label as session
zero:

1. class dboyLite:

2. def __init__(self):

3. exp = Experiment.getInstance()

4. exp.setSessionNum(0)

When a session number is set, PandaEPL looks to see
whether the session has previously been started by checking
for the existence of a session-specific data directory.

This directory is expected to reside relative to the current
path in data/[subject_id]/session_[X], where

subject_id is specified on the command line (see the
section on Command-Line Options in the Appendix and
Table 2), and X is the session number given to

setSessionNum. If this directory exists, PandaEPL
will look for previously saved configuration, log, and
experiment state files. If it does not exist, the directory
is created, and the current global configuration files are
copied into it.

We have opted to place the session initialization code into
the __init__ method of a new class that we call

dboyLite. This class encapsulates the functionality of our
new experiment. Until we note otherwise, the next several
blocks of code also belong to the __init__ method of the

dboyLite class.
Two other singleton classes are of present interest: the

Conf class, which manages configuration files, and the Vr
class, which manages aspects of the 3-D environment. We
use the Conf class to retrieve the configuration dictionary

for this session, and we retrieve a reference to the Vr class
so we can later use it to help set things up:

1. config = Conf.getInstance().getConfig()

2. vr = Vr.getInstance()

The configuration dictionary is a standard Python dictio-
nary (a set of key–value pairs) that maps configuration
variable names to their values. For example, one can refer-
ence the configuration variable linearAcceleration
b y w r i t i n g config[‘linearAcceleration’].
PandaEPL reads configuration values from one of two lo-
cations. Additional details about the configuration system
are provided in the Appendix.

Next, we initialize the experiment state. The experi-
ment state is a user-defined dictionary that contains
information specific to each participant. It identifies
the parts of the experiment that have already been
completed, the parts that have yet to be completed,
and the general settings that differ between participants
(e.g., perhaps in a counterbalanced way). PandaEPL
does not use this dictionary directly, but it provides a
set of mechanisms to easily save (the setState meth-

od o f the Experiment c l a s s) and load (t he

getState method of the Experiment class) this
information for each session. It is up to the experiment
designer to make use of the information in a meaningful
way. In Listing 1, we initialize the state of the delivery
experiment.

The experiment state consists of a combination of
static and dynamic values. Line 3 attempts to retrieve

Fig. 1 (a) Screenshot of one location in the town, as seen by participants.
(b) Bird’s eye view of the entire town

Behav Res (2013) 45:1293–1312 1297

the experiment’s current state. If it evaluates to False,
the experiment state has not yet been set for the current
participant and must be initialized anew. Lines 7–11
look in a configuration-specified directory for 3-D
models (.egg files) of the stores, and lines 15–16
select a random subset of the stores to use for the
current participant. Lines 19–28 repeat this process for
the other buildings in the town. Lines 31–37 create a
random sequence of deliveries, with each delivery
linked to a particular store through the store’s numerical
index in the list built on lines 7–16. The stores, build-
ings, and deliveries make up the set of static experiment
state variables. The experiment also has two dynamic
state variables: one for the participant’s current delivery
assignment, and another for the participant’s score.
Participants begin the experiment with a predefined
score, and the score is then decremented at a regular
interval. Points are awarded for each delivery. The five
state variables are saved on lines 39–44. Calling
setState writes the state variables to disk in the
appropriate subject- and session-specific directory.

Logging custom events

Every event handled by PandaEPL, such as loading the
configuration file(s), loading and placing 3-D models,
displaying instructions, moving the participant inside the
environment, and so on, is automatically written to a text-
based log file. However, almost every new experiment re-
quires for a custom set of events to be logged in addition to
those automatically handled by PandaEPL. Two steps are
required to achieve this. First, the event type must be regis-
tered with PandaEPL’s log system by calling the addType
method of the singleton Log class . This must occur once
for each event type, and is usually done at the beginning of a
session. The event type consists of three pieces of informa-
tion: a name, a list of name–class pairs describing the
event’s data fields, and a boolean value indicating whether
duplicate events should be logged. Our sample experiment
makes use of three custom event types: one for arriving at a
store, one for receiving a new delivery assignment, and one
for updating the score. They are registered with PandaEPL
as follows:

1. Log.getInstance().addType(“ARRIVED”, [(“STORE”, basestring)], False)

2. Log.getInstance().addType(“ASSIGNED”, [(“STORE”, basestring)], False)

3. Log.getInstance().addType(“SCORE”, [(“VALUE”, int)], True)

Each event type has a single field. When the partic-
ipant arrives at a store, we will save the store’s name in
the STORE field, which we set to be of the built-in
Python type basestring (line 1). Likewise, when the
participant receives a new delivery assignment, we will
save the name of the destination in a similar manner
(line 2). As these two lines demonstrate, field names
may be the same across different event types. In fact,
field names are not used by PandaEPL directly and
exist solely for the programmer’s benefit, to make ex-
plicit what is stored in each field.

Both event types have the value False associated
with the third argument to addType . This tells
PandaEPL to log duplicate events for these event types
(having the value False specify this action may seem
counterintuitive, but the reader should note that the
third argument specifies whether or not to write only
new events rather than whether or not to write only
duplicate events). This means that, if on two consecu-
tive occasions of each event the STORE field has the
same value (this may happen, for instance, if the

participant bumps into the same store multiple times
without first visiting another store), both events will
be logged. Of course, each duplicate event will have a
unique timestamp. By contrast, line 3 specifies that
duplicate SCORE events should not be logged. If the
score does not change between two or more consecutive
SCORE events, only the first event will be logged. The
second step to logging a custom event is to specify
when the event occurs. We will demonstrate how this
is done later.

Constructing the heads-up display

The heads-up display consists of objects drawn in
“front of” the 3-D environment during navigation. In
our example, the heads-up display consists of two text
fields. The first, displayed on the right side of the
screen, displays the current score. The second,
displayed on the left side of the screen, displays the
current delivery assignment. The two text fields are
created as follows:

1298 Behav Res (2013) 45:1293–1312

1. self.score = Text(“score”, str(config[‘startingScore’]),

2. config[‘scorePos’], config[‘scoreSize’],

3. config[‘scoreColor’], config[‘instructFont’])

4. self.assignment = Text(“assignmentHUD”, “”, config[‘assignmentPos’],

5. config[‘assignmentSize’], config[‘assignmentColor’],

6. config[‘instructFont’])

Each field is associated with a corresponding PandaEPL

Text object, whose constructor accepts a number of argu-
ments describing the text and its appearance. We store and
retrieve this information from the configuration file. In addi-
tion to parameters controlling the text and its appearance, the
constructor requires a unique identifier for each text object.
This identifier is used to identify the object in the log.

Although not demonstrated here, PandaEPL has a similar
class, Image, for managing 2-D images. Furthermore, any
3-D object can also be made part of the heads-up display
b y p a s s i n g t h e v a l u e True to t h e o b j e c t ’ s

setSticksToScreen method.

Registering tasks to run between frames

After starting the main portion of the experiment, PandaEPL
relinquishes control of program flow to Panda3D’s main con-
trol loop. The loop is responsible for handling certain types of
input, rendering each frame, and managing other basic aspects
of the environment. In order to run other code, Panda3D allows
users to register a set of callbacks to be executed on each loop
iteration. PandaEPL registers callbacks to dispatch input events,
manage movement, handle collisions, flip the frame buffer, and
perform other maintenance tasks. In addition, PandaEPL can
manage experiment-specific tasks. Using PandaEPL’s task
management system rather than interfacing directly with
Panda3D ensures that PandaEPL’s callbacks are executed in
the proper order (both in relation to each other and in relation to
experiment-specific code) and simplifies task scheduling.

The PandaEPL Task class encapsulates client tasks. Its
constructor expects a unique identifier for the task, the
callback to be executed, and an optional execution interval
given in milliseconds. If the latter is given, the task will
execute approximately at the requested interval. Before each
frame is rendered, PandaEPL will check whether enough
time has elapsed since the task was last run. If the amount of
time elapsed equals or exceeds the task’s execution interval,
the corresponding callback is executed. On modern com-
puters using simple 3-D environments, this check is made
very frequently. However, because Panda3D or PandaEPL
may be busy doing other things when it comes time to
execute the task (or a background process may preempt
the entire experiment), there is always some error associated
with the timing of tasks. If the experiment is run on a very
old computer, or if it is made up of complex 3-D models, the
magnitude of the error will be larger because more time is
spent rendering each frame. In practice, by being mindful of
this issue, we have prevented it from becoming a problem in
our experiments. Moreover, because the actual time of each
task execution is logged with high precision, it is possible to
assess large latencies post-hoc and discard data from prob-
lematic intervals.

In order to encourage the participants in our delivery
experiment to take the shortest paths possible, we register
a task that decrements the score at a regular interval. The
task is registered with PandaEPL by passing the Task
object to the addTask method of the singleton Vr
class:

1. vr.addTask(Task(“decrementScore”,

2. lambda taskInfo:

3. self.updateScore(-config[‘scoreDecrement’]),

4. config[‘scoreDecrementInterval’]))

The task consists of an anonymous function that in turn
calls the updateScore method, passing it the amount by
which to decrement the score. This amount is defined in the

configuration file. The updateScore method (shown in
Listing 2): reads the current score from the experiment state,
updates the score on the basis of the given value, updates the

Behav Res (2013) 45:1293–1312 1299

heads-up display to show the new score, adds a SCORE event
to the video log queue (described below), and saves the new
score to the experiment state.

Up until now, we have been incrementally building the

__init__ method of the dboyLite class. Our defini-

tion of updateScore represents our first departure from

this. We will make two more additions to __init__ later
below.

Line 9 of Listing 2 demonstrates one way of logging a
custom event. This may be done either by directly interfac-
ing with the Log class or by using the specialty video log
queue (VLQ) class, as is demonstrated here. The video log
queue expects the name of an event type and a list of event-
specific values, one for each field registered in the call to

addType. Adding an event to the video log queue does not
append the event to the log right away. Instead, as is implied
by the name of the class, the event is added to a queue. The
events in the queue are flushed to the log when the next
screen frame is displayed. All events are assigned the same
timestamp: the one associated with the display of the new
frame. Logging events in this way is sensible in many
circumstances. For example, although the code responsible
for decrementing the score is executed between frames, the

earliest that a participant can begin processing the new score
is after the next frame is displayed.

One can assign a specific timestamp to a custom event by
using the singleton Log object. Like the writeLine
method of the VLQ class, the writeLine method of the

Log class expects the name of an event type and a list of
event-specific field values. In addition, it takes a 2-tuple (a
list of two numbers) indicating the event’s estimated start
time and duration.

Responding to input events

Panda3D and PandaEPL manage input through the use
of event handlers. In addition to logging all input
events, PandaEPL provides a single interface to access
multiple input devices. Currently, it provides keyboard
support through Panda3D and joystick support through
PyGame (see the Joystick Support section in the
Appendix). The interface makes it easy to add other
input devices in the future.

For increased flexibility, input events are handled using a
two-step process. First, each valid input is associated with
an event name:

1. keyboard = Keyboard.getInstance()
2. keyboard.bind(“exit”, [“escape”, “q”])
3. keyboard.bind(“toggleDebug”, [“escape”, “d”])
4.
5. joystick = Joystick.getInstance()
6. joystick.bind(“toggleDebug”, “joy_button0”)

Because configuration files are standard Python code
files, this is usually done in a configuration file. We retrieve
the singleton Keyboard object on line 1, and create two

keyboard events on lines 2–3 by calling the bind method.

The first argument to bind is a unique name for the input
event, and the second argument is a list of key names. The
event will be triggered when all of the listed keys are
pressed simultaneously. The mappings of keys to key names
are the same as those used by Panda3D. For details, see the
Panda3D manual (www.panda3d.org).

Line 5 retrieves the singleton Joystick object, and line
6 binds the toggleDebug event to the primary joystick
trigger. This does not override the association of the

toggleDebug event with the keyboard established on line

3. Instead, the event remains bound to both devices and can
be triggered by either one. This design pattern allows users
to manage key mappings, which may change between plat-
forms and usually appear in the configuration file, separate-
ly from event handlers, which are more stable and appear as
part of the main experiment code.

After the input events are defined, each event must
be associated with an event handler. The following
block of code associates the toggleDebug event with
an anonymous function that flips the environment in
and out of debug mode. In this mode, normal naviga-
tion is disengaged and users may move in all three
dimensions using the mouse. This feature is useful
when building a new experiment.

1300 Behav Res (2013) 45:1293–1312

http://www.panda3d.org

We place the call to inputListen inside the

__init__ method of our dboyLite class.
The exit event is handled internally by PandaEPL and

ends the experiment. PandaEPL also automatically handles
the events moveForward, moveBackward, turnLeft,

and turnRight. By default, they are bound to the keyboard
arrow keys and the primary joystick axis (if a joystick is
attached).

Loading and managing 3-D models

The 3-D models used in the experiment are loaded by the

loadEnvironment method, shown in Listing 3. We call

loadEnvironment from __init__ :

1. self.loadEnvironment()

Models are divided into four types: the overall terrain,
including scenery and props; the sky; the buildings; and the
stores. The buildings and stores appear at a set of
prearranged coordinates, with the identity of the building
or store at each location chosen pseudorandomly. Lines 9–
10 load the terrain model by creating a corresponding
PandaEPL Model object . The constructor for the

Model class expects at minimum a unique identifier for

the model, the path to the .egg or .bam file containing the
model specification (see the File Formats section in the
Appendix), and themodel’s position in a three-dimensional grid.

Line 13 sets the terrain’s collision callback to the
s t a t i c handleSlideCollision method of the

MovingObject class. The callback is executed when-
ever a suitable object collides with the terrain. In this example
(and in most cases), the only object that can trigger collision
events is the participant, who is represented in the
environment by an invisible sphere that travels along
with the camera. More complicated scenarios are
supported as well; see the Collision Handling section in the
Appendix. The handleSlideCollision method pre-
vents a colliding object from intersecting with a target by
sliding the source object along the target’s surface. Similarly,
handleRepelCollision, also a static method of the

MovingObject class, prevents collisions without inducing
additional movement.When a source object reaches a target, it
is prevented from moving any farther.

The model of the sky is loaded on lines 16–17. Because it
appears beyond participants’ reach, no collision callback is
set. Lines 20–28 load the building models, again making use
of handleSlideCollision. Finally, lines 31–40 load
the store models. Here we use a custom collision callback,
the collideStore method. The collideStore meth-

od makes use of three helper methods: nextDelivery,
showDeliveryInfo, and storeName. These methods

are defined in Listing 4. The collideStore method
compares the name of the store the participant collided with
to the name of the current target. If they match, it updates
the participant’s score with a call to updateScore (line
19), informs the participant of a successful delivery (lines
22–24), and calls the nextDelivery method (defined on
lines 29–44) to assign the next delivery. Whether or not the
store was the intended target, an ARRIVED event is logged

(line 12), and handleRepelCollision is called to
keep the participant from moving inside the store (line 27).

Displaying instructions

The PandaEPL Instructions class is a wrapper around

the Text class used to display instructions. Instructions
displayed using this class span the full extent of the screen.
If the text extends beyond the range of the screen, the

Instructions class automatically allows partici-
p an t s t o s c r o l l t h r ough i t by ove r r i d i ng t h e

moveForward and moveBackward input events. A
configuration setting alows the user to force participants to
look through the entire set of instructions before proceeding.
This and other instruction properties, including the fore-
ground and background colors, the font and text size, and
the set of command key(s) used to dismiss the instruction
screen, are set globally in the configuration file. Table 1 lists
all of the properties that can be set.

Lines 22–24 of Listing 4 demonstrate how the

Instructions class can be used. In addition to a
unique identifier and the text to display, the constructor
takes an optional argument specifying the function to
execute when the instructions are dismissed. We pass in
a reference to the nextDelivery method, which up-
dates the experiment state to reflect the next delivery.

1. vr.inputListen(“toggleDebug”,

2. lambda inputEvent:

3. Vr.getInstance().setDebug(not Vr.getInstance().isDebug()))

Behav Res (2013) 45:1293–1312 1301

The display method is ca l led on the newly

constructed Instructions object to display the associ-
ated text (informing the participant of a successful delivery)
on the screen.

Starting the experiment

The start method, def ined below, s tar ts the
experiment.

1. def start(self):

2. self.intro()

3. Experiment.getInstance().start()

4.

5. def intro(self):

6. # Read intro text in from external text file.

7. fid = open(Conf.getInstance().getConfig()[‘instructionFile’], ‘r’)

8. introText = fid.read()

9. fid.close()

10.

11. # Display intro text followed by information about the first delivery.

12. Instructions(“intro”, introText, self.showDeliveryInfo).display()

It first calls the intro method to display the introductory
instructions and information about the first delivery, and then
relinquishes control of program flow to PandaEPL by calling
the start method of the singleton Experiment object.
After performing some initialization of its own, PandaEPL

relinquishes control to Panda3D. From that point on,
experiment-specific code is executed in one of three ways:
in response to collision events (e.g., with the call to
collideStore when a participant reaches a store), in
response to input events (e.g., with the call to the anonymous

Table 1 Configuration settings for instruction screens

Variable Name Description Example Value

instructSize Size of the text in Panda3D units 0.075

instructFont t.snaSeerF/resu/emoh/ esu ot elif tnof eht ot htaP tf

instructBgColor Background color, a Point4 object specifying RGB

and alpha (transparency) values

Point4(0, 0, 0, 1)

instructFgColor Foreground color, also a Point4 object Point4(1, 1, 1, 1)

instructMargin The amount of space to leave at each edge of the

screen, in Panda3D screen units

0.06

instructSeeAll Boolean (true/false) toggle that determines whether

all of the instructions must be seen before the

participant can proceed. This only affects instructions

False

longer than the height of the screen.

1302 Behav Res (2013) 45:1293–1312

function handling the toggleDebug event), and when
called by the task manager.

The experiment can be started by creating a new

dboyLite object and calling its start method:

1. dboyLite().start()

Conclusion

We have presented PandaEPL, a Python library for program-
ming spatial-navigation experiments. PandaEPL uses the
Panda3D engine to manage tasks related to loading,
displaying, and navigating a 3-D environment. Built on top
of this are features specific to the development of psychology
experiments, including managing configuration files, logging
experiment- and participant-generated events with precise
timing information, keeping track of the experimental state,
and synchronizing multiple computers. PandaEPL provides a
unified framework for developing new experiments, saving
researchers from having to customize standalone 3-D game
engines for this purpose. Unlike Maze Suite (Ayaz et al.,
2008), which provides a point-and-click interface for devel-
oping simple experiments, PandaEPL is a general-purpose
programming library that can be adopted to build complex
new paradigms. This parallels the approach taken by
PyEPL and its VR module (Geller et al., 2007).
However, by using Panda3D for managing aspects of
the 3-D environment, PandaEPL automatically gains
access to all of the features offered by a modern game
engine. This includes true 3-D model support, efficient
rendering and collision detection, fog and lighting ef-
fects, the use of shaders, and more. In contrast, PyEPL’s
VR module uses a nonoptimized custom-built rendering
engine that can display only textured cubes and 2-D
sprites. Future work on PandaEPL will need to make
the library more accessible to novice programmers who
wish to create simple experiments.

Author note The authors gratefully acknowledge support from
National Institutes of Health Grant No. MH61975.

Appendix: Implementation details

In this section, we provide more extensive technical details
on several key topics introduced in the example. A few
additional features, not discussed in the main text, are also
introduced.

Dependencies

The PandaEPL library and all of the files needed to run the
example in this paper can be found at http://memory.psych.

upenn.edu/PandaEPL. At minimum, PandaEPL requires
Python and Panda3D in order to run. The Panda3D website
(www.panda3d.org) is an invaluable source of information.
The website includes the Panda3D manual, reference docu-
mentation covering all available classes and functions, and
an active public forum.

Additional libraries are necessary in order to play and
record sound (tkSnack and its dependencies), to use a
joystick (PyGame and its dependencies), and to syn-
chronize multiple computers (a suitable device driver
and Python interface for the requisite hardware). These
libraries are optional and are only necessary if the
corresponding features are used.

Sound playback and recording

Panda3D supports sound playback through the use of
various third-party audio libraries. However, at pres-
ent, these libraries do not provide cross-platform sup-
port for recording sound. Since this is a necessary
feature for some experiments, PandaEPL uses the
tkSnack library for both playback and recording.
More information on tkSnack can be found on its
website, www.speech.kth.se/snack/. The interface be-
tween PandaEPL and tkSnack is managed by the
SimpleSound class. The complete source code for
the delivery experiment, downloadable from our lab’s
website, contains a demonstration of how this class
may be used. Installing tkSnack is only necessary if
the SimpleSound class is used. Otherwise, PandaEPL
will not look for it.

Joystick support

Panda3D currently does not provide native joystick sup-
port, but PandaEPL can process joystick input by inter-
facing with the PyGame library. Unfortunately, PyGame
itself has a number of dependencies and requires several
other libraries to be installed. For more information, visit
the PyGame website (www.pygame.org). Installing
PyGame is only necessary if joystick support is required.
PandaEPL will silently check for PyGame, and enable
joystick support only if it is available.

The PyGame joystick interface is handled by the
Joystick class. In principle, it should be easy to modify
PandaEPL to use a more self-contained library should one
become available in the future.

Synchronizing multiple computers

In experiments where neural data is recorded, it is
common practice to display the experiment on one

Behav Res (2013) 45:1293–1312 1303

http://memory.psych.upenn.edu/PandaEPL
http://memory.psych.upenn.edu/PandaEPL
http://www.panda3d.org
http://www.speech.kth.se/snack/
http://www.pygame.org

computer and to record the neural data on another
computer. In such circumstances, an additional mecha-
nism is required to align experimental events with the
neural data. In our lab, we synchronize the two com-
puters using an ActiveWire USB card. The computer
running the experiment uses the ActiveWire card to
send a synchronization pulse. The timing of each pulse
is saved on both computers, and the two sets of
timestamps are used to align the data. The pulses are
managed by the EEG class in PandaEPL. Although

named EEG for historical reasons, the same mechanism
may be used to synchronize other recording equipment.
Synchronization is set to be “on” by default, but may
be disabled by supplying the --no-eeg command-line

option. The user can override the EEG class that comes
with PandaEPL in order to interface with other synchro-
nization hardware.

Model file formats

We used Autodesk Maya to create the 3-D models and
determine the overall layout of the town used in the
example. However, users are free to choose from a
wide range of other packages for their projects, including
t h e f r e e and open - s ou r c e B l ende r s o f twa r e
(www.blender.org). The range of supported graphics soft-
ware is set by the availability of suitable conversion
utilities, to convert from each package’s native file for-
mat to Panda3D’s .egg format. The Panda3D website
provides up-to-date details on supported graphics soft-
ware and conversion procedures.

The .egg format is Panda3D’s custom structured text
format for describing 3-D models. Texture graphics are
stored externally and are referenced by path and filename.
The format is cross-platform compatible. However, loading
a .egg file requires that the markup is parsed each time,
resulting in significant overhead. For efficiency, Panda3D
also supports a binary file format (.bam) whose implemen-
tation details may differ between different platforms and
different versions of Panda3D. In general, users work with

.egg files and convert to .bam when the experiment is
ready to be run. Panda3D provides two methods for
converting .egg files to .bam files: using the command-

line egg2bam utility, and via a series of Python-based calls.
In order to simplify the conversion process for the 3-D
models used in the example, we have provided a helper
utility to perform all of the necessary conversions in one
step. See the README file provided with the package on
our website for details.

Collisions

In most experiments, the participant is the only actively
moving object in the environment. PandaEPL represents
the participant by an invisible sphere whose radius is set
using the avatarRadius configuration variable.
Collisions between this sphere and other objects in the
environment trigger collision callbacks set on target objects.
Collision callbacks are required to accept a single argument
corresponding to a CollisionInfo object describing the
collision.

PandaEPL also supports more complicated scenarios in
which other moving objects may trigger collision events.
Such objects must be of the MovingObject class or one

of its derivatives, and must have their fromCollision
flag turned on. The singleton Avatar object, which
represents the participant, is simply a special type of

MovingObject.

Configuration files

The configuration files used by PandaEPL are regular
Python files with Python source code. Usually, they consist
of a series of key = value assignments, but arbitrarily
complex preprocessing may also be included. Whatever
variable assignments remain after the configuration file is
executed with the Python interpreter are transferred to
PandaEPL’s configuration dictionary.

PandaEPL requires at least one configuration file.
However, it can also process an optional secondary “sub-
ject” configuration file. New variables introduced in the
subject configuration file are appended to the same config-
uration dictionary. Duplicate variables that also exist in the
primary configuration file are replaced with the values in the
subject configuration file. This allows users to create one
configuration file for values that are the same across partic-
ipants, and a set of secondary configuration files for values
that vary between participants (or groups of participants).

Configuration files are loaded when the setSessionNum
method of the singleton Experiment object is called. Once
PandaEPL has the session number, it will look for both
configuration files in the corresponding subject- and
session-specific directory. If a primary configuration file
is found but a secondary configuration file is not,
PandaEPL will load the primary configuration file and
will not look for the secondary configuration file in any
other place. If a primary configuration file is not found,
PandaEPL will look elsewhere for both files. By de-
fault, PandaEPL expects both files to be located in the

1304 Behav Res (2013) 45:1293–1312

http://www.blender.org

current working directory (i.e., the directory from which
the experiment is launched) and to be named

config.py and sconfig.py for the primary and
subject configuration file, respectively. It is possible to
override these defaults with the --config= and

--sconfig= command line options. The primary con-
figuration file and, if it exists, the secondary configura-
tion file, are copied into the corresponding subject- and
session-specific directory. Future runs of the same sub-
ject and session number will load the configuration files
from that location. This allows users to continue
updating configuration files as the experiment evolves,
while retaining the ability to easily run old sessions and
reference old configuration values.

Command-line options

In addition to options for overriding the names of the
configuration files, PandaEPL supports a number of
other command-line options and arguments. These are
displayed in Table 2. The only required argument is
-s, specifying a unique identifier for the current sub-
ject. For example, the following command starts the

delivery experiment for Subject 0 with synchronization
disabled:

python dboyLite.py --no-eeg -s0

Allowed values for the subject identifier are limited
by the restrictions set by the local file system for
naming files. All of the data generated by PandaEPL
are stored in the directory data/[subject_id]. In
general, it is a good idea to restrict subject identifiers to
consist of alphanumeric characters and underscores.

Logging events

A separate log file is written for each subject and session to

data/[subject_id]/session_[num]/log.txt.
If the same session is restarted, new events are
appended to the end of the existing file. Each line
corresponds to a single event and is tab-delimited with
a variable number of fields. The first three columns are
always the same and correspond to, respectively, the
estimated start time, the estimated duration, and the
name of the event type. As is demonstrated in the
example, each event has a corresponding event type

Table 2 Command-line options recognized by PandaEPL

-s Subject identifier (required)

--config Path to the primary configuration file (default: config.py)

--sconfig Path to the secondary configuration file (default: sconfig.py)

--no-fs Runs the experiment in a window (default: when option is not present, the

experiment is run in full-screen mode)

--resolution Screen resolution (default: 800 × 600)

--show-fps Displays the number of frames rendered per second (default: when option is not

present, the number of frames rendered per second is not reported)

--js-zero-

threshold

Value beyond which a joystick axis is considered “active.” Axis values are in the

range [0, 1] (default: 0.2)

--no-eeg Do not send synchronization pulses (default: when option is not present,

synchronization pulses are sent).

Behav Res (2013) 45:1293–1312 1305

registered with a call to the addType method of the

singleton Log object. The event type consists of a
name, a list of name–class pairs describing the data
fields, and a flag indicating whether duplicate events
should be logged. The third column of the log contains
the name of the event Type. Each additional column
corresponds to a single data field, with the number of
additional columns matching the number of fields reg-
istered for the specified event type.

Events are written by calling the writeLine meth-
od of either the singleton Log or the singleton video

log queue (VLQ) object. Before writing the event to

the log, the Log class checks to make sure that the
number of given values matches the number of fields
registered for that event type, and that the class of
each value matches the class registered for the corre-
sponding field. Attempting to log an event that does
not meet these criteria results in a LogException
exception. When using the video log queue, type
checking is performed only when the queue is flushed.
The type checking performed by the Log class makes
logging less error-prone and provides helpful guaran-
tees for log parsers.

It is up to the user to parse and analyze the tab-
delimited log files as they see fit. PandaEPL does not
provide built-in utilities for data analysis. Tab-delimited
files are widely supported and can easily be loaded into
packages ranging from complete programming environ-
ments like MATLAB (The MathWorks, Inc., Natick,
MA) and R (R Development Core Team, 2012), to
spreadsheet programs like Excel (Microsoft Corp.,
Redmond, WA).

Recording the timing of events

Timing information in PandaEPL is based on two
values: the time just before an event and the estimated
duration of the event. Because the start time is queried
before an event is executed, the estimate is guaranteed
to be less than or equal to the actual start time.
Likewise, the end time is queried after an event is
executed, and the duration is guaranteed to be greater
than or equal to the actual duration. On modern com-
puters processing simple events, the recorded duration
is small (only 1–2 ms). Events are timed using the
timedCall function. The first argument specifies the
function to time, and the remaining arguments are
passed to this function unchanged. timedCall
returns a 2-tuple containing information about the
timing of the call and the function’s return value,
respectively. The timing information is itself a 2-
tuple containing the approximate start time and dura-
tion of the call.

The same 2-tuple format for specifying the beginning
and duration of an event is used by the writeLine
method of the Log class. The writeLine method
saves this information in the first two columns of the
log. PandaEPL uses timedCall internally to track the
timing of several different events, and users may use it
to track custom events of their own. For events for
which precise timing is not required, such as instantiat-
ing a PandaEPL class or modifying the value of a
setting, PandaEPL approximates the time of the event
with a single value. Such events are recorded in the log
as having zero duration.

Obtaining a precise range of execution times in the man-
ner described above requires that the time obtained at each
end of the interval is precise. The timedCall function

uses the Python datetime module to obtain the current
system time, and it in turn uses the local implementation of
the POSIX standard gettimeofday function. Although

gettimeofday returns time in microseconds on all plat-
forms, its actual precision varies.

Precision also varies between platforms when it comes to
the display. The video log queue (VLQ), used extensively
by PandaEPL itself and recommended for logging most
custom event types, assigns to its events the timestamp
corresponding to flipping the display buffer. This makes
the next frame “visible” on the screen. However, additional
latencies associated with displaying the next screen may
occur after the requisite function call. Some platforms will,
depending on the value of a global setting, wait until the
next vertical screen refresh, while others will not. On all
platforms, additional latency is associated with actually
producing each part of the screen.

Because PandaEPL is a cross-platform library, general
guarantees about timing cannot be made. If high-precision
timing is required, it is important to carefully assess and test
the local environment.

Other features

The underlying Panda3D game engine has a number of
other features for creating rich and complex environments.
Most users will want to keep their experiments as simple
as possible, but the reader should be aware that much more
is possible. The best way to explore the available features
is to look through the Panda3D website. PandaEPL in-
terfaces with two additional Panda3D features not
presented in the example above: lighting and fog effects.
PandaEPL’s only contribution to these features is to track
their use in the experiment log. The complete source code
for the delivery experiment, downloadable from our lab’s
website, provides a simple example of how these effects
may be used.

1306 Behav Res (2013) 45:1293–1312

Listing 1

11. stores.append(store[:-4])

12.
13. # Shuffle store list and reduce to the number of

14. # stores in the environment.

15. shuffle(stores)

16. stores = stores[:config[‘numStores’]]

17.

18. # Load list of buildings.

19. buildingDirList = os.listdir(config[‘buildingDir’])

20. buildings = []

21. for building in buildingDirList:

22. if building[-4:] == ‘.egg’:

23. buildings.append(building[:-4])

24.

25. # Shuffle building list and reduce to the number of

26. # buildings in the environment.

27. shuffle(buildings)

28. buildings = buildings[:config[‘numBuildings’]]

29.

30. # Construct random sequence of deliveries.

31. deliveries = []

32. while len(deliveries) < config[‘numDeliveries’]:

33. nextSequence = range(config[‘numStores’])

34. shuffle(nextSequence)

35. if len(deliveries) == 0 or deliveries[-1] != nextSequence[0]:

36. deliveries.extend(nextSequence)

37. deliveries = deliveries[:config[‘numDeliveries’]]

38.

39. # Save experiment parameters.

40. exp.setState(‘stores’: stores,

41. ‘buildings’: buildings,

42. ‘deliveries’: deliveries,

43. ‘currentDelivery’: 0,

44. ‘score’: config[‘startingScore’])

1. # If this is the first time running this subject,

2. # initialize the experiment state.

3. if not exp.getState():

4. # Load list of available stores.

5. # Each store has an associated ‘.egg’ file in the

6. # stores directory.

7. storeDirList = os.listdir(config[‘storeDir’])

8. stores = []

9. for store in storeDirList:

10. if store[-4:] == ‘.egg’:

Behav Res (2013) 45:1293–1312 1307

Listing 2

1. def updateScore(self, deltaScore):

2. # Get experiment parameters.

3. state = Experiment.getInstance().getState()

4.
5. # Update score.

6. state[‘score’] = max(0, state[‘score’] + deltaScore)

7.
8. # Log new score.

9. VLQ.getInstance().writeLine(“SCORE”, [state['score']])

10.
11. # Update heads-up display.

12. self.score.setText(str(state[‘score’]))

13.
14. # Save new score.

15. Experiment.getInstance().setState(state)

1308 Behav Res (2013) 45:1293–1312

Listing 3

1. def loadEnvironment(self):

2. # Get configuration dictionary.

3. config = Conf.getInstance().getConfig()

4.

5. # Get experiment parameters.

6. state = Experiment.getInstance().getState()

7.

8. # Load terrain.

9. self.terrainModel = Model(“terrain”, config[‘terrainModel’],

10. config[‘terrainCenter’])

11.

12. # When hitting an object that is part of the terrain, slide across it.

13. self.terrainModel.setCollisionCallback(MovingObject.handleSlideCollision)

14.

15. # Load sky.

16. self.skyModel = Model(“sky”, config[‘skyModel’])

17. self.skyModel.setScale(config[‘skyScale’])

18.

19. # Load buildings.

20. self.buildingModels =[]

21. for i, building in enumerate(state[‘buildings’]):

22. buildingModel = Model(building,

23. os.path.join(config[‘buildingDir’], building + “.bam”),

24. Point3(config[‘buildingLocs’][i][0],

25. config[‘buildingLocs’][i][1],

26. config[’buildingZ’]),

27. MovingObject.handleSlideCollision)

28. self.buildingModels.append(buildingModel)

29.

30. # Load stores.

31. self.storeModels =[]

32. for i, store in enumerate(state[‘stores’]):

33. storeModel = Model(store,

34. os.path.join(config[‘storeDir’], store + “.bam”)

35. Point3(config[‘storeLocs’][i][0],

36. config[‘storeLocs’][i][1],

37. config[‘storeZ’]),

38. self.collideStore)

39. storeModel.setH(config[‘storeLocs’][i][2])

40. self.storeModels.append(storeModel)

Behav Res (2013) 45:1293–1312 1309

Listing 4

1. def collideStore(self, collisionInfoList):

2. # Get configuration dictionary.

3. config = Conf.getInstance().getConfig()

4.

5. # Get experiment parameters.

6. state = Experiment.getInstance().getState()

7.

8. # ID of the store the participant collided with.

9. store = collisionInfoList[0].getInto().getIdentifier()

10.

11. # Log collision.

12. VLQ.getInstance().writeLine(“ARRIVED”, [store])

13.

14. # If a delivery is currently assigned, is this the store where it is going ?

15. if state[‘currentDelivery’] >= 0 and \

16. state[‘currentDelivery’] < len(state[‘deliveries’]) and \

17. store == state[’stores’][state[‘deliveries’][state[‘currentDelivery’]]]:

18. # Update score.

19. self.updateScore(config[‘deliveryBonus’])

20.

21. # Inform participant they have made the delivery and assign the next

one.

22. Instructions(“deliveryMade”,

23. config[‘deliveryMadeText’] % self.storeName(store),

24. self.nextDelivery).display()

25.

26. # Don’t let the participant move inside the store.

27. MovingObject.handleRepelCollision(collisionInfoList)

28.

29. def nextDelivery(self):

30. # Get configuration dictionary.

31. config = Conf.getInstance().getConfig()

32.

33. # Get experiment parameters.

34. state = Experiment.getInstance().getState()

35.

36. # If all deliveries have not been made prior to this one.

37. if state[‘currentDelivery’] < len(state[‘deliveries’]):

38. # Move on to next delivery.

39. state[‘currentDelivery’] += 1

40.

1310 Behav Res (2013) 45:1293–1312

References

Alvarez, R. P., Biggs, A., Chen, G., Pine, D. S., & Grillon, C. (2008).
Contextual fear conditioning in humans: Cortical-hippocampal
and amygdala contributions. Journal of Neuroscience, 28, 6211–
6219.

Astur, R., Taylor, L., Mamelak, A., Philpott, L., & Sutherland, R.
(2002). Humans with hippocampus damage display severe spatial
memory impairments in a virtual Morris water task. Behavioural
Brain Research, 132, 77–84.

Ayaz, H., Allen, S. L., Platek, S. M., & Onaral, B. (2008). Maze Suite
1.0: A complete set of tools to prepare, present, and analyze
navigational and spatial cognitive neuroscience experiments. Be-
havior Research Methods, 40, 353–359. doi:10.3758/
BRM.40.2.353

Cornwell, B., Johnson, L., Holroyd, T., Carver, F., & Grillon, C.
(2008). Human hippocampal and parahippocampal theta during
goal-directed spatial navigation predicts performance on a virtual
Morris water maze. Journal of Neuroscience, 28, 5983–5990.

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells
in a human memory network. Nature, 463, 657–661.

Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and
hippocampal systems for landmarks and boundaries in spatial
memory. Proceedings of the National Academy of Sciences, 105,
5915–5920.

Ekstrom, A. D., Copara, M. S., Isham, E. A., Wang, W. C., &
Yonelinas, A. P. (2011). Dissociable networks involved in spatial
and temporal order source retrieval. NeuroImage, 56, 1803–1813.
doi:10.1016/j.neuroimage.2011.02.033

Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E.
A., Newman, E. L. (2003). Cellular networks underlying human
spatial navigation. Nature, 425, 184–188. doi:10.1038/
nature01964

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Kahana,
M. J. (2007). PyEPL: A cross-platform experiment-programming
library. Behavior Research Methods, 39, 950–958.

Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W.
(2000). Brain activation during human navigation: Gender-
different neural networks as substrate of performance. Nature
Neuroscience, 3, 404–408.

Hassabis, D., Chu, C., Rees, G., Weiskopf, N., Molyneux, P., &
Maguire, E. (2009). Decoding neuronal ensembles in the human
hippocampus. Current Biology, 19, 546–554.

52.

53. # If all deliveries have been made, end the experiment.

54. if state[‘currentDelivery’] == len(state[‘deliveries’]):

55. Instructions(“experimentComplete”, config[‘experimentCompleteText’],

56. Experiment.getInstance().stop).display()

57. # Otherwise, display information about the current delivery.

58. else:

59. store = state[’stores’][state[’deliveries’][state[‘currentDelivery’]]]

60. VLQ.getInstance().writeLine(“ASSIGNED”, [store])

61. self.assignment.setText(self.storeName(store))

62. Instructions(“assignmentInstruct”,

63. config[‘assignmentText’] % self.storeName(store)).display()

64.

65. def storeName(self, store):

66. return store.replace(“_”, “ ”)

41. # Save next delivery.

42. Experiment.getInstance().setState(state)

43.

44. self.showDeliveryInfo()

45.

46. def showDeliveryInfo(self):

47. # Get configuration dictionary.

48. config = Conf.getInstance().getConfig()

49.

50. # Get experiment parameters.

51. state = Experiment.getInstance().getState()

Behav Res (2013) 45:1293–1312 1311

http://dx.doi.org/10.3758/BRM.40.2.353
http://dx.doi.org/10.3758/BRM.40.2.353
http://dx.doi.org/10.1016/j.neuroimage.2011.02.033
http://dx.doi.org/10.1038/nature01964
http://dx.doi.org/10.1038/nature01964

Iaria, G., Chen, J., Guariglia, C., Ptito, A., & Petrides, M. (2007).
Retrosplenial and hippocampal brain regions in human navigation:
Complementary functional contributions to the formation and use of
cognitive maps. European Journal of Neuroscience, 25, 890–899.

Jacobs, J., Kahana, M. J., Ekstrom, A. D., Mollison, M. V., & Fried, I.
(2010a). A sense of direction in human entorhinal cortex. Pro-
ceedings of the National Academy of Sciences, 107, 6487–6482.

Jacobs, J., Korolev, I., Caplan, J., Ekstrom, A., Litt, B., Baltuch, G., ...
Kahana, M. (2010b). Right-lateralized brain oscillations in human
spatial navigation. Journal of Cognitive Neuroscience, 22, 824–836.

Maguire, E., Burgess, N., Donnett, J. G., Frackowiak, S. J., Frith, C.
D., & O’Keefe, J. (1998). Knowing where and getting there: A
human navigation network. Science, 280, 921–924.

Miller, J. F., Lazarus, E. M., Polyn, S. M., & Kahana, M. J. (in press).
Spatial clustering during memory search. Journal of Experimental
Psychology: Learning, Memory, and Cognition. doi:10.1037/
a0029684.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial
map: Preliminary evidence from unit activity in the freely-moving
rat. Brain Research, 34, 171–175.

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map.
New York: Oxford University Press.

R Development Core Team. (2012). R: A language and environment
for statistical computing. Vienna: R Foundation for Statistical
Computing. Retrieved from www.R-project.org

Shipman, S. L., & Astur, R. S. (2008). Factors affecting the hippocam-
pal BOLD response during spatial memory. Behavioural Brain
Research, 187, 433–441.

Suthana, N., Haneef, Z., Stern, J., Mukamel, R., Behnke, E.,
Knowlton, B., & Fried, I. (2012). Memory enhancement and
deep-brain stimulation of the entorhinal area. The New England
Journal of Medicine, 366, 502–510.

van der Ham, I. J. M., van Zandvoort, M. J. E., Meilinger, T., Bosch, S.
E., Kant, N., & Postma, A. (2010). Spatial and temporal aspects of
navigation in two neurological patients. NeuroReport, 21, 685–
689.

Watrous, A. J., Fried, I., & Ekstrom, A. D. (2011). Behavioral
correlates of human hippocampal delta and theta oscillations
during navigation. Journal of Neurophysiology, 105, 1747–
1755.

Weidemann, C. T., Mollison, M. V., & Kahana, M. J. (2009). Electro-
physiological correlates of high-level perception during spatial
navigation. Psychonomic Bulletin & Review, 16, 313–319.
doi:10.3759/PBR.16.3.313

1312 Behav Res (2013) 45:1293–1312

http://dx.doi.org/10.1037/a0029684
http://dx.doi.org/10.1037/a0029684
http://www.r-project.org/
http://dx.doi.org/10.3759/PBR.16.3.313

	PandaEPL: A library for programming spatial navigation experiments
	Abstract
	Comparison with existing approaches
	Timing
	Building an experiment
	Overview of the experiment
	Initializing a new session
	Logging custom events
	Constructing the heads-up display
	Registering tasks to run between frames
	Responding to input events
	Loading and managing 3-D models
	Displaying instructions
	Starting the experiment

	Conclusion
	Appendix: Implementation details
	Dependencies
	Sound playback and recording
	Joystick support
	Synchronizing multiple computers
	Model file formats
	Collisions
	Configuration files
	Command-line options
	Logging events
	Recording the timing of events
	Other features
	Listing 1
	Listing 2
	Listing 3
	Listing 4

	References

