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Materials and Methods

We captured intraoperative activity of SN in ten Parkinson’s patients (6 men, 4 women,
mean age 60.75 years). Seven subjects had completed college level education or higher.
Three subjects did not attend college. Subjects participated voluntarily in the study
after informed consent was obtained during pre-operative consultation for DBS surgery.
Per routine presurgical protocol, Parkinson’s medications were stopped on the night prior
to surgery (12 hours preoperatively); hence, subjects engaged in the study while in an
OFF state. In routine DBS procedures, microelectrodes are used to localize STN and
advanced into SN to identify the inferior border of STN. We used this opportunity to
capture microelectrode recordings from SN while subjects were awake and engaged in a
probabilistic learning task (see (1) for recording details), in accordance with a University
of Pennsylvania IRB approved protocol. Ethical constraints limited recordings to only
subjects with clinical indications for DBS surgery.

Because DBS electrodes are often implanted bilaterally, we captured activity from 17
microelectrode SN recordings. We converted stereotactic coordinates for each recording
site to Schaltenbrand-Wahren coordinates, referenced to the mid-commisural point (2).
Mean electrode coordinates were x = 12.21 £+ 0.28 mm (mean + SEM), y = —1.28 +0.42
mm, and z = —7.02 & 0.51 mm for left electrode recordings, and x = —11.93 + 0.23 mm,
y = —1.45 £+ 0.29 mm, and z = —7.65 + 0.47 mm for right electrode recordings. These
coordinates correspond to left and right SN on the Schaltenbrand-Wahren brain atlas.

Intraoperative microelectrode recordings were performed with 1um diameter tungsten
tip electrodes advanced with a power-assisted microdrive (3). Microelectrode recordings
were captured using a StimPilot® recording system and Spike2® data acquisition soft-
ware (1). Signals are sampled at 24 kHz (16-bit A/D converter) for data analysis.

The probability learning task we use to examine reinforcement learning involves repeat-
edly drawing cards from two decks presented on a computer screen. Probabilities of
financial reward are randomly assigned prior to the experiment — the good deck carries



a 65% chance of yielding a reward and the bad deck carries a 35% chance of yielding a
reward. Subjects are instructed to try to win as much virtual money as they can in the
five minutes allocated for the experiment. They have up to four seconds to make each
choice, and feedback is presented for two seconds. Following feedback, the two decks are
immediately presented on the screen for the subject to make the next choice. Limitations
of the intraoperative recording environment on human subjects constrained the cognitive
task to five minutes. Accumulated financial rewards were virtual in nature and were not
paid out to participants.

We quantified learning rates by dividing the number of total trials (draws) in a session
of the experiment into ten blocks and calculating how often the subjects chose the higher
payoff deck within each block. Because every subject completed a different number of
trials per experiment (depending on how quickly they made their selections) dividing the
trials in this manner allowed us to compare learning rates across subjects.

For our model of expectation (see text, Equation 1), we set initial Ey[1] = 0.5 for each
deck. We set « such that the weights of the power function approximate one over infinite
trials for a given 7. This ensures an unbiased estimate of the effect of prior outcomes
on expectation and limits expectation to the range between zero and one. We assumed
subjects would make a choice on each trial based on this estimate of expectation. Thus,
we fit 7 for each subject to the sequence of choices and rewards observed in each ex-
perimental session. We performed a grid search optimization, varying 7 and computing
how often each subject chose the deck with the higher expected reward, as determined by
Equation 1, on each trial. For each subject, we chose the 7 that corresponded to the high-
est rate of optimal choices (i.e. choices that corresponded to the deck with the higher Ej,).

To restrict our analysis to dopaminergic cells, we extracted and sorted single-unit activity
using the WaveClus spike sorting package (4). Previous work on non-human primates
relied on published examples of rat SN dopaminergic neurons to establish criteria for
postulating the dopaminergic nature of the neurons studied (5, 6). We followed a similar
approach and applied the following criteria to each recorded spike cluster. We considered
only spike clusters with firing rates between 1.5 and 12 Hz, corresponding to findings for
typical dopaminergic cells in animals (6-8). We then compared the average waveform of
each such cluster with published examples of extracellular action potential morphologies
for mammalian SN neurons recorded in a similar configuration to ours (5-7, 9). Typical
extracellular recordings of dopaminergic SN neurons exhibit broader bi- and tri-phasic
waveforms (> 2 msec) than GABAergic neurons (< 1.5 msec) (5, 6,8, 9). To estimate the
width of recorded waveforms, we calculated the average time from the beginning of an
individual spike’s waveform to its return to baseline ("baseline width”) and the average
time between the two positive peaks of the waveform (”peak-to-peak width”). We required
that clusters have an average baseline width exceeding 2 msec and a peak-to-peak width



exceeding 0.8 msec. Finally, we assumed that dopaminergic cells would exhibit physio-
logic responses to feedback (5, 6), whereas GABAergic neurons would not. To determine
which clusters exhibited feedback responses, we tabulated the total number of spikes in
response to both positive and negative feedback for the first 500 msec after feedback onset;
we then performed a Wilcoxon rank-sum test on the difference between total spike count
in trials corresponding to positive and negative feedback during this period. We used a
liberal threshold (p < 0.2) to retain for analysis only those clusters that demonstrated a
difference in spike count between the two conditions in either direction.

To quantify spike activity, we generated peri-event spike histograms (75 msec bins; 1250
msec time window: 250 msec pre-feedback, 1000 msec post-feedback) for each trial, and
averaged over all positive and all negative feedback trials to create a single mean his-
togram for each case. We calculated a continuous time firing rate by smoothing the spike
train from a given trial with a Gaussian kernel with standard deviation of 25 msec, and
normalizing by sampling rate. We compared continuous time firing rates and spike his-
tograms to baseline spiking activity, defined as activity occurring in the interval 250 msec
prior to card presentation on every trial. Spiking activity on every trial is z-scored by
subtracting the mean and dividing by the standard deviation of baseline spiking activity
in order to compare across cells and across subjects. We found significant effects only
for the three continuous 75 msec intervals between 150 msec and 375 msec. We used
non-overlapping 225 msec intervals (temporal epochs: -75 to 150; 150 to 375; 375 to 600;
600 to 825; 825 to 1050 msec relative to feedback onset) for all statistical analyses.

For statistical analysis of pooled data, we used a three-way ANOVA to examine differences
in response to positive and negative feedback. We set feedback (positive vs negative) and
expectation (unexpected vs expected) as fixed variables and cell as a random variable.
To insure statistical significance of independent temporal events, we used a Bonferroni-
corrected significance threshold of 0.009, taking into account six 225 msec epochs. For
two-way ANOVAs, we set feedback as a fixed variable and cell as a random variable. In
total there were 17.7 + 1.5 (mean + SEM) trials per experiment corresponding to unex-
pected gains, 20.6 + 1.8 corresponding to unexpected losses, 30.1 4+ 2.6 corresponding to
expected gains, and 21.5 £+ 1.9 corresponding to expected losses.

To examine the correlation between spike activity and prediction error, we a defined pre-
diction error surrogate as the change in expected value for a given deck from one draw to
the next. For each experimental session, we identified the median positive and negative
differences in expected value and divided prediction errors associated with each trial into
those positive and negative differences larger and smaller than the positive and negative
median, respectively. This allowed us to normalize prediction error across subjects, who
may have different peak and trough levels of expectation. We grouped spike activity into
one of four categories — large positive, small positive, large negative, and small negative



prediction errors — and examined the mean z-scored spike rates associated with each cat-
egory in the interval between 150 and 375 msec after feedback onset. We used a two-way
ANOVA to determine whether activity associated with large positive prediction errors
differed from activity associated with small positive prediction errors. We set prediction
error (large positive vs small positive) as a fixed variable and cell as a random variable.
We also computed a linear regression of differences in expected reward to mean z-scored
spike rate during this interval for each subject. For each regression, a positive slope sug-
gests that spike activity increases with prediction error. We compared the distribution
of these slopes (6 = 0.95 4+ 0.53, mean+SEM) to the null hypothesis using a two-tailed
t-test (p = 0.09).
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In addition to z-scored continuous time firing rates and spike counts, we also compared
raw, unnormalized spike counts in response to unexpected and expected positive and neg-
ative feedback using a three-way ANOVA for the interval between 150 and 375 msec after
feedback onset. We found a significant difference between responses to positive and neg-
ative feedback [F(1,14) = 12.6, MSE = 20, p < 0.005]. We found that this main effect
of feedback was modulated by a significant interaction with expectation [F'(1,14) = 12.1,
MSE = 21.6, p < 0.005]. Examining only unexpected trials during the same post-
feedback interval, raw spike counts in response to unexpected gains were significantly
greater than spike rates in response to unexpected losses [F(1,14) = 13.8, MSE = 30.5,
p < 0.005]. Expected trials, however, demonstrated no significant difference in raw spike
counts during this interval between expected gains and losses [F(1,14) < 1, n.s.]. We
used z-scored firing rates and spike counts for our analyses in the main text to insure
unbiased comparisons across different cells.

To assess whether recorded neurons encode the presentation of the stimulus cue, we mea-
sured changes in firing rate at the time of deck presentation. We found no significant
changes in firing rate, compared to baseline, during any interval after the time of deck
presentation [F'(1,14) < 1, n.s]. This did not change over the course of the experiment,
and suggests that a visual stimulus alone is not enough to elicit responses in our SN
neurons. We also compared firing rates at the time of deck presentation during trials
when subjects chose the better deck to trials associated with the worse deck. We found
no significant difference in continuous time firing rates in the interval between 150 and
375 msec after deck presentation between the two conditions [F(1,14) < 1, n.s.]. The
remaining intervals after deck presentation exhibited no significant differences between
the two conditions as well. This suggests that the response to cue presentation could not
predict the choice made for each trial in our study. Recent data conflict about whether
firing rates at the time of cue presentation correlate with choice (10, 11). In these studies,



multiple cues are learned and presented. It is possible that after learning, the novel pre-
sentation of the rewarding cue acts as a surrogate for the reward itself. In our study, on
the other hand, the same cues are presented on every trial. Since cue presentation rapidly
loses its novelty in our paradigm, we would not expect a reward response until a choice
is actually made and a reward presented.

The differences we observe in spike activity following unexpected gains versus losses could
be driven by an increase in response to unexpected gains, a decrease in response to unex-
pected losses, or both. To probe this issue, we compared responses to baseline firing rates.
Continuous time spike rates in response to unexpected gains were significantly greater than
baseline firing rates during the 150 to 375 msec post-feedback interval [F(1,14) = 8.9,
MSE = 53, p < 0.005]. Spike rates in response to unexpected losses demonstrated a
relative decrease in activity, but this response did not differ significantly from baseline
firing rates during any interval [F(1,14) = 1.0, MSE = 2.7, p = 0.32]. We hypothesize
that low baseline firing rates prevented a significant decrease below baseline in response
to unexpected losses. We found similar results when examining z-scored spike counts.

We found significant differences in neuronal responses in the 150 to 375 msec post-feedback
interval. Direct measurements of non-human primate dopaminergic neurons in response
to reward feedback demonstrate similar response onset time, albeit with longer depres-
sions in activity in response to negative feedback (12, 13). This correspondence is further
evidence that we are indeed studying the human analog of non-human primate reinforce-
ment learning. That the response duration we measured is shorter than that observed
in non-human primates, however, may be explained by differences in the saliency of the
reward signals used by human and non-human primates, or by neuroanatomic differences
between species that may lend these neurons different electrophysiologic profiles (14, 15).

In our study, although a relatively small number of cells (22%) exhibited responses to
feedback, the responses within these cells were quite robust. Because of the degenera-
tive nature of Parkinson’s disease, the number of functioning dopaminergic neurons is
depleted, thus compromising the ability to respond to behavioral feedback (16-18). This
could explain the small number of behaviorally responsive cells we recorded. It seems
plausible that healthy individuals who have larger populations of viable dopaminergic
cells could mount more significant SN responses to unexpected feedback.
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