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Short-Term Episodic Memory
for Visual Textures
A Roving Probe Gathers Some Memory
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ABSTRACT—Cognition is shaped by the way that past experiences
are represented in memory. To examine the representation of
recent visual experiences, we devised a novel procedure that
measures episodic recognition memory for synthetic textures.
On each trial, two brief study stimuli were followed by a probe,
which either replicated one of the study stimuli or differed in
spatial frequency from both. The probe’s spatial frequency
roved from trial to trial, testing recognition with a range of
differences between probe and study items. Repeated testing
of recognition generated mnemometric functions, snapshots of
memory strength’s distribution. The distributional characteristics
of the mnemometric functions rule out several hypotheses about
memory representation, including the hypothesis that representa-
tions are prototypes constructed from previously seen stimuli; in-
stead, stimuli are represented in memory as noisy exemplars.

Important everyday tasks depend on the ability to recognize previously

seen objects and events. In broad terms, this ability requires encoding

and storing visual information for later retrieval and matching stored

information against subsequent visual input. The nature and fidelity of

the stored information has been the subject of continuing controversy,

which we address with a novel approach that makes use of con-

tinuously varying probe items to characterize memory representation.

In order to characterize stimulus variables’ influence over visual

memory, we combined Sternberg’s (1966) recognition procedure with a

simple signal detection model. On each trial in Sternberg’s task, a set,

S, of n study stimuli is followed by a probe stimulus, P, which may or

may not have been a member of S. P is characterized as a ‘‘target’’ if it

had been a member of S, and is characterized as a ‘‘lure’’ otherwise. A

subject judges whether P was or was not in S. The members of S vary

from trial to trial, forcing subjects to use episodic information, that is,

to compare P against some stored representation of the most recent S.

We are especially interested in the character of that representation,

which might comprise separate exemplars (e.g., Hintzman, 1988;

Nosofsky, 1984), a prototype reflecting a weighted mean of items in S

(Reed, 1972), or some combination of these alternatives. Our para-

digm permits a choice among these possibilities; later, in the Dis-

cussion section, this choice is explained in more detail.

Sternberg’s (1966) paradigm bridges sensory research, which empha-

sizes discriminal processes, and memory research, particularly research

on recognition memory (Kahana & Sekuler, 2002). When the set size, n,
is reduced to just one item, the paradigm reduces to the same/different

procedure used to study sensory discrimination (Sternberg, 1998). Our

stimuli were textures synthesized by summing horizontal and vertical

sinusoidal gratings. These stimuli offer a number of advantages for

studying memory (Kahana & Sekuler, 2002), including a reduced like-

lihood that verbal description will aid recognition (McIntosh et al., 1999),

and an increased ability to manipulate interstimulus differences.

In the study we report here, on each trial, two brief, sequentially pre-

sented study textures, S1 and S2, were followed by a single probe texture,

P. Samples are shown in Figure 1. The spatial frequencies present in S1,

S2, and P varied trial by trial. Participants judged whether P’s vertical

spatial frequency matched that of either S1 or S2, or whether it differed

from both. An important and novel aspect of our procedure is that from

trial to trial the spatial frequency of the probe texture ‘‘roved,’’ or varied in

spatial frequency. The roving probe sampled memory strength at various

points along the spatial-frequency continuum, sweeping out a prob-

ability function that is a unique snapshot of the distribution of memory

strength. Such snapshots, which we call mnemometric functions, open
windows onto the workings of memory. In particular, the central ten-

dency and shape of mnemometric functions make it possible to test

hypotheses about participants’ representation of the stimuli.

After presenting the empirical results, we explain how mnemo-

metric functions can be used to evaluate alternative hypotheses about

the memorial representation of study stimuli. We then introduce a

simple signal detection model of the visual and memory processes that

are used in the experimental task.

METHOD

Participants
Participants were 10 paid volunteers whose ages ranged from 19 to

24 years. They had normal or corrected-to-normal Snellen acuity and
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normal contrast sensitivity as measured with Pelli-Robson charts

(Pelli, Robson, & Wilkins, 1988).

Apparatus
Stimuli were generated and displayed using Matlab 5 and extensions

from the Psychophysics and Video Toolboxes (Brainard, 1997; Pelli,

1997). Stimuli were presented on a 14-in. computer monitor with a

screen resolution of 800 by 600 pixels, refreshed at 95Hz. Mean

screen luminance was maintained at 36 cd/m2.

Stimuli
In each stimulus, one vertical and one horizontal sinusoidal lumi-

nance grating were superimposed, generating a luminance profile,

L(x,y), given by

Lðx;yÞ ¼ Lavg½1þ a1 cosðpfxÞ þ a2 cosðpgyÞ&

where Lavg is the mean luminance, f is the spatial frequency of the

stimulus’ vertical component (vertical frequency) in cycles per degree,

g is the frequency of the horizontal component (horizontal frequency),

and a1 and a2 are the Michelson contrasts of the two components.

Each component’s contrast was 0.4, which was well above threshold.

The gratings subtended 61 of visual angle at the viewing distance,

82 cm. Stimuli were windowed by a circular two-dimensional Gaus-

sian function, to eliminate edges.

Prior to memory testing, each participant’s spatial-frequency dis-

crimination was measured with an adaptive procedure (Wetherill &

Levitt, 1965), which identified the spatial-frequency difference that

permitted 79% correct discrimination between gratings. Participants’

Weber fractions ranged from 0.06 to 0.12. Each participant’s own Weber

fraction was used to scale the stimuli for testing that participant’s rec-

ognition memory. This minimized differences in visual encoding as a

source of between-subjects differences in recognition performance.

During memory testing, the horizontal and vertical spatial

frequencies of the study stimuli varied randomly over trials. This

randomization minimized learning effects, and forced observers to

base each trial’s judgment on information obtained from that trial.

Vertical frequencies were randomly drawn from a uniform distribution,

which ranged from 0.5 to 3.0 cycles/deg; horizontal frequencies came

from a slightly broader distribution, 0.0 (no variation along the hor-

izontal) to 3.0 cycles/deg.

On each trial, the same randomly chosen spatial frequency was

used for the horizontal component of all three gratings, S1, S2, and P;

differences among the items were generated only by variation in their

vertical frequencies. A new random phase shift was applied to the

vertical component of each stimulus. These phase shifts, which ranged

from 0 to p/2 radians, made it difficult to base recognition judgments

on the spatial information contained in some residual, retino-

topic image (Averbach & Coriell, 1961).

Within a block of trials, the difference between the study textures’

vertical frequencies, |S1' S2|, was set to 1, 2, 4, or 8 threshold units.

(A threshold unit is the product of spatial frequency and an in-

dividual’s Weber fraction.) The four values of |S1' S2| occurred

randomly but equally often. On half the trials, S1’s vertical spatial

frequency was higher than S2’s; on the remaining trials, the reverse was

true. Moreover, on half the trials, P constituted a target stimulus; that is,

it replicated either S1 or S2. Because a target stimulus was equally

likely to replicate either one of the study items, observers had to

attend to both. On the remaining trials, P constituted a lure; that is, it

replicated neither S1 nor S2. On lure trials, P’s vertical frequency

was drawn from a uniform random distribution in the range

of (6 threshold units relative to the mean of S1’s and S2’s vertical

frequencies.

At the start of each trial, a fixation point was centered on the screen

for 750ms. The fixation point was followed by a 750-ms period of

uniform luminance. S1 and then S2 followed, each for 1,000 ms. S1 and

S2 were separated by an interstimulus interval of 1,000 ms, during

which the display area was filled with uniform luminance. Finally,

1,000 ms after S2, P was presented, remaining visible until the ob-

server responded, but for no more than 1,000 ms.

Procedure
Participants served in four sessions of two 180-trial blocks each.

Sessions were separated by between 24 hr and 72 hr. Each participant

sat with head supported by a chin-and-forehead rest, viewing the

computer display binocularly. A trial was initiated by the press of a

key on the computer keyboard. Participants were instructed to re-

spond as accurately and quickly as possible. By pressing computer

keys representing ‘‘yes’’ and ‘‘no,’’ the participants signaled their

judgment whether or not P was identical to either S1 or S2 (‘‘yes’’) or

differed from both (‘‘no’’). The computer produced distinctly different

tones after correct and incorrect responses, providing trial-wise

knowledge of results.

RESULTS

We compared accuracy on the two types of probe-target trials: when

P matched S1 and when P matched S2. Over all trials, recognition that

P matched the second study item, S2, was significantly higher than

recognition that P matched the first study item, S1; mean hit rates and

standard errors of the mean were .61 (.01) and .73 (.01) for S1 and S2,

Fig. 1. Sample texture stimuli from two trials. In the upper panel, the
probe stimulus (P) replicates neither of the study items, S1 and S2. In
the lower panel, P replicates S2. As noted in the text, horizontal spatial
frequency varied randomly from trial to trial, but was constant within a
trial.
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respectively, t(9)5 4.52, p < .01. This result is a recency effect,

which is consistent with previous experiments using compound grat-

ings (Kahana & Sekuler, 2002) and Sternberg-type experiments using

verbal stimuli (Monsell, 1978).

For lure trials, parametric variation in P’s spatial frequency relative

to S1 and S2 generates information not otherwise available from rec-

ognition experiments. As an example, Figure 2 plots the proportion of

incorrect ‘‘yes’’ responses (false alarms) to lures as a function of the

difference between P’s spatial frequency and the spatial frequency

of whichever study item, S1 or S2, was closer to P’s spatial frequency.

Separate functions are shown for cases in which P more closely ap-

proximated S1 and for cases in which P more closely approximated S2.

For either case, as P diverged from the more similar study item, the

proportion of false alarms declined. The figure shows that for small

study-probe distances, the rate of false alarms was higher when P was

more similar to S2 than when P was more similar to S1. We return to

this result later, in the context of a signal detection model.

To explore how interstimulus similarity influences episodic rec-

ognition, we tabulated hit and false alarm rates for various differences

between P’s vertical frequency and the vertical frequencies of

S1 and S2. The resulting curves, which constitute mnemometric func-

tions, are shown in Figure 3; empirical data are represented by filled

and open symbols, for lures and targets, respectively. Each panel

presents the mean mnemometric function for one signed value of

[S1' S2]. Note that P’s spatial frequency has been normalized to zero

relative to the mean of S1’s and S2’s spatial frequencies. The vertical

axis in Figure 3 represents the proportion of ‘‘yes’’ responses, hits plus

false alarms. The horizontal axis shows values of P, expressed in

normalized threshold units. When a lure was very close to S1 or S2,

represented by the vertical lines in each panel of the figure, the false

alarm rate coincided well with the nearby hit rate. This coincidence

suggests that under these conditions, the observers were likely using

the same decision rule to generate responses to both lure and target

probes.

The empirical mnemometric functions in Figure 3 allowed us to

discriminate among alternative ways in which remembered spatial

frequencies (S1
0 and S2

0) might relate to the frequencies actually

presented (S1 and S2). For example, we wanted to determine whether

memory involved some single prototype constructed from S1 and S2 or

separate exemplars. In the following discussion, we illustrate how a

simple signal detection approach can link empirical results with the

character of representations in memory.

Imagine that the study series S consists of a single compound

grating, S1, and an observer must judge whether a subsequently

presented probe, P, had been or had not been in S. Suppose that over

trials, repetition of S1 gives rise to a distribution of neural events.

Suppose also that P and S1 differ on only one stimulus dimension, say,

vertical spatial frequency. S1
0, the remembered value of S1 at the time

P is presented, can be written as S1
0 5 S1 1 c1 1 e1, where c1 is a

constant shift in remembered frequency, and e1 is a random error

produced by additive noise in memory.

Figure 4a illustrates the probability distribution for S1’s rep-

resentation in memory. In the case shown, c15 0, and the probability

density function of e1 is Gaussian. Figure 4b illustrates one plausible

way that a response might be generated. Assume that P is presented at

some spatial frequency, for example, the frequency pointed to by the

arrow in the figure. To generate a response, an observer adopts a

criterion, k, and when |P' S1
0| < k, the observer responds, ‘‘Yes, P

was in the study series.’’ When |P' S1
0| > k, the observer responds,

‘‘No, P was not in the study series.’’ In the figure’s lower panel, k is

represented by the half width of the light-gray zone centered on the

probe position. The proportion of ‘‘yes’’ responses, summing hits and

false alarms, will vary with P’s position relative to S1. As the value of

P varies over trials, the repeated calculation of proportion of ‘‘yes’’

responses sweeps out the curve that we designate a mnemometric

function.1 This account can be easily extended to study sets of more

than one item.

With this description of recognition judgments and mnemometric

functions, we can evaluate hypotheses about the relationship between

the study stimuli and their representation in memory.

Fig. 2. Proportion of ‘‘yes’’ responses to lure trials (false alarms) as a
function of the distance between the probe (P) and whichever study item
(S1 or S2) was closer to the probe. Separate curves are shown for the case
in which S1 was the closer study item and the case in which S2 was the
closer study item. Values on the x-axis are threshold units. Error bars
represent 95% confidence intervals (Loftus & Masson, 1994).

1In the text, mnemometric functions were motivated by a discrete sampling
process represented by variation in P. More properly, mnemometric functions
are generated by the process of convolution. In particular, with P positions
distributed densely over spatial frequency, the function relating the proportion
of ‘‘yes’’ responses to P’s spatial frequency is given by the convolution of the
observer’s criterion and the probability density function for remembered values
of the stimulus. Let both the distribution of memories, m, and the criterion, k,
be vectors defined over values of spatial frequency, x. The equation for the
convolution, g(x), of vector m(x) with the convolution kernel for the criterion,
k(x), is

gðxÞ ¼ mðxÞ ) kðxÞ ¼
X

all*k
kðx' kÞmðkÞ:

As is customary, values of the convolution kernel k are zero outside the
region of support, which is the region (light gray bar in Fig. 4) in which kernel
values are valid. The graph of g(x), the convolution output, constitutes a the-
oretical mnemometric function, which is a snapshot of the memory for S1
averaged over many trials. As in all applications of convolution, linearity and
shift invariance are assumed. Our application requires one other assumption,
about the composition of k(x). If k(x) is constant over x, or if k(x) has a
Gaussian distribution, so long as the values are not asymmetrical about the
midpoint of k(x), the shape of g(x) will approximate the shape of m(x). As k(x)
broadens, so too will g(x), but its shape will be preserved, as will the x value on
which g(x) is centered.
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Fig. 3. Hit and false alarm rates as a function of spatial frequency of the probe stimulus (P). Data from each trial were
normalized by setting the arithmetic mean of the frequencies of the study items (S1 and S2) to zero. P’s position is plotted
against multiples of threshold units. In the four graphs on the left, S2’s vertical spatial frequency was higher than S1’s; in
the four graphs on the right, the reverse was true. In each panel, the normalized spatial frequencies of S1 and S2 are
indicated by thick vertical lines. From top to bottom, |S1'S2|5 1, 2, 4, and 8 threshold units, respectively. Results,
represented by filled circles for lures and open circles for targets, were averaged across 10 subjects, and sorted into bins
1 threshold unit wide. Values predicted by the three-parameter model are shown by the dotted lines (parameters:
e15 2.0, e25 1.15, and k5 1.3). Error bars show 95% confidence intervals.
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Hypothesis 1: prototype: The remembered frequencies are rep-

resented on each trial by a single value, a prototype, whose

distribution over trials is centered on the mean of S1
0 and S2

0.

Hypothesis 2: shifted exemplars: The memory contains separate

representations, S1
0 and S2

0, but these are systematically shifted

relative to the presented frequencies, producing a constant error.

Harvey (1986) reported such a result with long-term memory for

scenes.

Hypothesis 3: unshifted exemplars: Memory comprises separate

representations, S1
0 and S2

0, whose distributions over trials are

centered on S1 and S2. This hypothesis is mute about the relative

variability in the distributions for S1
0 and S2

0, which can be es-

timated from recognition judgments.

We devised a simple, three-parameter signal detection model to

evaluate these hypotheses. Following signal detection theory, we treat

the remembered spatial frequency of a study item (S0) as a random

deviate from a normal distribution centered on the spatial frequency of

that study stimulus (S). This treatment of memory acknowledges that

Weber’s law holds for spatial frequency, as demonstrated by Campbell,

Nachmias, and Jukes (1970). Therefore, e0, the standard deviation of

the distribution of S0, is expressed as a proportion of S0 (the coefficient

of variation). On any trial, S1
0 + N(S1, e1), and S2

0 + N(S2, e2), where
S0 is a random sample from a Gaussian distribution, with a mean of S

and a standard deviation of e. For simplicity’s sake, we assume that

the covariance of S1
0 and S2

0 is zero.

The predicted response on any trial is determined by only three

parameters, e1, e2, and k, the threshold criterion used in comparing

P and S0. Over trials, the parameter set, e1, e2, and k, is constant, and
S1

0 and S2
0 are samples from zero-mean Gaussian distributions. A

decision is assumed to depend on the relationship between P and either

S1
0 or S2

0. When |P' S1
0| < k, or |P' S2

0| < k, the model predicts a
‘‘yes’’ response; otherwise, the model predicts a ‘‘no’’ response.

We fit the experimental data in Figure 3 using a downhill simplex

search (Nelder & Mead, 1965). The resulting optimal parameters were

e15 2.0, e25 1.15, and k5 1.3, w2(117)5 513.78, p > .90. All

parameter values are expressed in discrimination threshold units.

The optimal value for k was only 30% higher than the sensory

discrimination threshold, suggesting that observers used a consistent

criterion across the two types of judgments, discrimination and rec-

ognition. This agreement strengthens the claim that the Sternberg task

can bridge sensory and memory domains.

Note that in the model’s optimal parameter set, e1 is greater than e2,
signifying that the variability of S1

0 is greater than the variability of S2
0.

This difference in parameters reflects the higher fidelity of memory

for S2 than for S1. Figure 5 plots the obtained proportion of ‘‘yes’’ re-

sponses versus corresponding values predicted by the model. Using only

three free parameters, the model captures 87% of the variance in the data.

Figure 3 shows the predicted values (dotted lines) superimposed

on the empirical results (filled symbols for lures, open symbols for

Fig. 4. The generation of mnemometric functions. The graph in (a)
shows a hypothetical distribution of remembered spatial frequencies
generated by repeated presentation of a study stimulus whose spatial
frequency is indicated by the arrow. The graph in (b) shows the pre-
sumed basis for deciding whether the probe matches the study stimulus.
A probe is presented with spatial frequency represented by the arrow.
The participant employs a criterion k units wide on either side of the
probe’s spatial frequency. If the remembered frequency on a trial falls
within the criterion range (indicated by the width of the light gray ver-
tical bar), the participant decides, ‘‘The probe matches the study stim-
ulus.’’

Fig. 5. Proportion of ‘‘yes’’ responses actually obtained plotted against
the proportion predicted by the three-parameter model. Also shown is a
line representing the empirical results regressed against the model’s
predictions. The equation for the line is shown in the graph.
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targets). The model simulations reproduced most of the observed

variation of hit and false alarm rates generated as P roved across the

spatial-frequency dimension. For example, the model reproduced the

difference between hit rates when P matched S1 and when P matched

S2 (i.e., hit rate|S1 < hit rate|S2). The model also reproduced the

observed difference between false alarm rates with lure frequencies

near S1 versus S2 (as shown in Fig. 2): The empirical results and the

model predictions agree that lures in the vicinity of S1 attract fewer

false alarms than do lures in the vicinity of S2. From some perspec-

tives, this result seems counterintuitive, as S1 is associated with the

noisier representation in memory but attracts fewer false alarms. But

this result falls out naturally from the three-parameter model, so long

as S1
0 has a broader distribution than S2

0, as our best-fitting param-

eters suggest, and the criterion for saying ‘‘yes’’ operates as described

earlier.

The empirical mnemometric functions in Figure 3 are approxima-

tions to the underlying memory distributions. These approximations,

which afford the first close-up views of representations in memory,

allow us to evaluate the three hypotheses we introduced earlier. If, as

Hypothesis 1 suggests, recognition decisions were made with respect

to a prototype of the study series, the mnemometric curves would be

unimodal. The spatial frequency of the predicted mode would depend

on a precise specification of how the prototype was generated, for

example, whether the prototype represented an equal or an unequal

mixture of S1 and S2. For small values of |S1' S2|, the empirical

mnemometric curves are ambiguous with respect to the prototype

hypothesis, but for large values of |S1' S2|, the curves’ clear bimo-

dality is contrary to the hypothesis.

Hypothesis 2 proposes that decisions are based on separate

exemplars in memory, but that these exemplars are systematically

shifted in frequency relative to S1 and S2. Such frequency shifts are

absent from the bimodal mnemometric functions, whose modes tend to

lie at S1 and S2 (see Fig. 3). The data set contained some exceptions,

but these tended to occur in conditions with relatively large standard

errors. Although our data cannot conclusively rule out the possibility

of very small systematic shifts, the data are consistent with Hypothesis

3: Stimuli are represented in memory not as prototypes, but as ex-

emplars whose remembered spatial frequencies vary randomly and

symmetrically around the frequencies of the corresponding study

stimuli.

DISCUSSION

The mnemometric functions in Figure 3 reveal several important

features of short-term episodic memory. First, the functions support an

exemplar rather than a prototype account of memory. At least when the

to-be-remembered textures are separated by several threshold units,

each texture leaves a separate and distinct representation in memory.

Second, trial-wise variation in a memorial representation is well

described by a Gaussian or near-Gaussian function centered on the

spatial frequency actually presented. Third, this random variation is

smaller for the more recent study item than for the study item that

preceded it.

The recency effect in our data was not caused by a time-dependent

loss in memory, which could have arisen from the fact that S2 was

nearer in time to P than S1 was. In fact, time alone does not change

memory for spatial frequency for delays up to 10 s (Magnussen, 2000;

Magnussen, Greenlee, Asplund, & Dyrnes, 1991) or more (Bennett

& Cortese, 1996). The experiments just cited used one-dimensional

gratings, but we (Kahana & Sekuler, 2002) have reported a similar

finding for textures synthesized from a trio of sinusoidal components.

On any trial in our experiment, the stimuli differed from one an-

other only in vertical spatial frequency; all stimuli on a trial shared

the same horizontal frequency. Our model assumes that observers

process the textures’ vertical component without interference from the

accompanying horizontal component. Although the literature supports

the validity of this assumption (Graham, 1989), we wanted to verify it

for our data. To determine whether processing of vertical frequency

was influenced by the co-occurring horizontal frequency, we sorted the

trials into 10 equal-width bins of horizontal frequency. An analysis of

variance showed no significant effect of horizontal frequency on the

recognition of the vertical frequency component, F(9, 81)5 0.51,

p > .50.

Summed-Similarity Exemplars
As noted earlier, our empirical results are not consistent with the

proposition that recognition is based on a prototype constructed from

the study stimuli on each trial. In fact, our results suggest that at the

moment of the probe’s presentation, a participant has access to a

separate representation of each study stimulus. This does not guar-

antee, however, that recognition decisions are generated as our

model assumes. For example, such decisions could reflect a summed-

similarity computation (Clark & Gronlund, 1996; McKinley & No-

sofsky, 1996; Nosofsky, 1984; Shiffrin & Steyvers, 1997). Summed

similarity refers to the sum of similarities between the probe and each

individual study item. In a previous study (Kahana & Sekuler, 2002),

we successfully incorporated a summed-similarity operation in a

model for short-term episodic recognition memory for visual textures.

On its face, the three-parameter model used here seems to be able to

account for the data without assuming summed similarity. But our data

cannot entirely rule out a version of summed similarity in which pair-

wise differences contributing to the sum are weighted differentially,

depending on each study item’s own similarity to P. Choosing between

the three-parameter model and a summed-similarity model will

require enough additional data so that the mnemometric functions’

x-axes could be sampled much more densely than in Figure 3.

However, this unresolved question is not related to the distinction

between prototype and exemplar memorial representations: A summed-

similarity computation requires that each study stimulus be rep-

resented separately in memory at the time the computation is performed.

Extensions of the Paradigm
The stimuli used to test recognition memory were scaled to match

each participant’s own visual discriminative capacity. This form of

stimulus scaling, which represents a novel contribution to the study of

cognition, affords two related advantages. First, by compensating for

individual differences in visual encoding, stimulus scaling tends to

equate various participants’ overall performance levels, thereby re-

ducing between-subjects differences in recognition. Second, when

data are pooled across participants, the use of scaled stimuli tends to

preserve theoretically important distributional features of individual

participants’ data. Here, such distributional features include the lo-

cations and relative sizes of modes in the mnemometric functions

(Fig. 3). In other domains, researchers have long recognized the dif-
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ficulty of ensuring that any distribution derived from averaging over

subjects is a fair representation of the subjects’ individual distribu-

tions. When experimental results involve reaction time distributions,

statistical adjustments are applied in order to preserve a resemblance

between an average distribution and its component distributions

(Ratcliff, 1979; van Zandt, 2002). By adjusting stimuli beforehand,

our approach avoids the need for statistical correction.

The roving-probe procedure introduced here can be used in studies

of recognition memory for other types of visual, as well as nonvisual,

sensory stimuli. The limiting factor would be the ability to generate a

useable stimulus metric that allows control of the psychological dis-

tance between study items, and allows the probe value to vary relative

to those study items. Although our study stimuli varied along only one

dimension, with horizontal frequency rendered irrelevant, there is no

obstacle to using a roving-probe procedure with more complex, mul-

tidimensional stimuli, including naturalistic stimuli such as synthetic

faces (Wilson, Wilkinson, & Loffler, 2002).

In the memory literature, most episodic recognition experiments in

the Sternberg framework have used verbal or symbolic stimuli. It

would be valuable to know how well our basic findings, including

differences in noisiness for S1
0 and S2

0, hold up for verbal stimuli.

Applying a roving-probe procedure to such stimuli would require

controlling interitem similarities, which is not easy, but not impossible

(Howard & Kahana, 2002). It may be that with verbal stimuli, or re-

hearsable stimuli in general, a roving-probe procedure would yield

results appreciably different from those reported here. For one thing,

some Sternberg experiments show both primacy as well as recency

effects, but with compound grating stimuli, we (Kahana & Sekuler,

2002) found recency effects only. Moreover, there is evidence that the

neural networks that support memory for certain types of visual stim-

uli may be distinct from the networks that support memory for

symbolic material, such as words (Bennett, Sekuler, McIntosh, &

Della-Maggiore, 2001; McIntosh et al., 1999). This hypothesis is

consistent with behavioral demonstrations of striking differences

between visual and verbal memory (e.g., Melcher & Kowler, 2001).
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