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Summed-similarity models of short-term item recognition posit that participants base their judgments of
an item’s prior occurrence on that item’s summed similarity to the ensemble of items on the remembered
list. We examined the neural predictions of these models in 3 short-term recognition memory experiments
using electrocorticographic/depth electrode recordings and scalp electroencephalography. On each ex-
perimental trial, participants judged whether a test face had been among a small set of recently studied
faces. Consistent with summed-similarity theory, participants’ tendency to endorse a test item increased
as a function of its summed similarity to the items on the just-studied list. To characterize this behavioral
effect of summed similarity, we successfully fit a summed-similarity model to individual participant data
from each experiment. Using the parameters determined from fitting the summed-similarity model to the
behavioral data, we examined the relation between summed similarity and brain activity. We found that
4–9 Hz theta activity in the medial temporal lobe and 2–4 Hz delta activity recorded from frontal and
parietal cortices increased with summed similarity. These findings demonstrate direct neural correlates
of the similarity computations that form the foundation of several major cognitive theories of human
recognition memory.
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Behavioral and model-theoretic analyses of recognition memory
agree that similarity is a major determinant of both recognition
accuracy and speed (e.g., Hintzman, 1988; Nosofsky, Little,
Donkin, & Fific, 2011). Specifically, participants’ recognition
responses are influenced by a probe’s similarity to items on the
just-studied list. When a lure is similar to one or more studied
items, participants tend to commit false alarms, and when they
correctly reject those similar items, their response times (RTs) are
significantly increased. Moreover, a target is more likely to be
endorsed when it is similar to the nontarget items on the studied
list (see Kahana, 2012, for a review).

Assessing the psychological similarity of a probe (be it a target
or lure) to the stored representation of the items on a just-presented
list requires a quantitative model of the mapping between physical
and psychological coordinates and of the way in which similarities
combine across multiple study items. Summed-similarity models,
which describe both of these processes, have been highly success-
ful in accounting for behavioral data on item recognition (e.g.,
Hintzman, 1988; Kahana & Sekuler, 2002; Lamberts, Brockdorff,
& Heit, 2003; Nosofsky, 1991; Nosofsky & Kantner, 2006; Nosof-
sky et al., 2011; Shiffrin & Steyvers, 1997). These models posit
that item recognition is a signal-detection process, in which a
participant computes the probe’s summed similarity to all study
items and bases her or his recognition decision on this measure.
Whenever the computed summed similarity exceeds a decision
threshold, the participant will respond yes. Thus, when summed
similarity is high for probes that are targets, there is little interfer-
ence and the participant is likely to respond yes. For probes that are
lures, high summed similarity constitutes high interference, which
also increases the participant’s tendency to incorrectly respond yes.

Summed-similarity models are generally viewed as models of
familiarity. There is evidence that people can base recognition
judgments both on recall of specific features of the encoding trial
(termed “recollection”) and on item familiarity. However, for lists
of perceptually similar items, pure summed-similarity (familiarity)
models provide an excellent fit to the data without positing a
recollection component. Given summed-similarity models’ suc-
cess in describing trial-by-trial variation in participants’ behavior
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(e.g., the noisy exemplar model; NEMo; Kahana & Sekuler, 2002;
Nosofsky & Kantner, 2006), we sought to determine whether there
is an electrophysiological correlate of the model-defined summed-
similarity signal. Such a demonstration would provide neural sup-
port for the existence of the cognitive construct of summed simi-
larity.

In three studies we examined whether oscillatory activity in both
electrocorticographic (ECoG) recordings in neurosurgical patients
and scalp EEG recordings in healthy controls correlate with
summed-similarity computations, with other relevant variables
being controlled for. We focused our attention on oscillatory
responses because an extensive body of work has linked neural
oscillations to cognitive processes in both humans and animals
(see Jacobs & Kahana, 2010, for a review). Of particular relevance
to the current studies is the finding that during memory retrieval,
slow oscillations, in the theta (4–9 Hz) and delta (2–4 Hz) fre-
quency bands, are of higher amplitude for targets than for lures
(Düzel, Neufang, & Heinze, 2005; Jacobs, Hwang, Curran, &
Kahana, 2006) and also of higher amplitude for high-confidence
correct decisions than for low-confidence correct decisions (Gud-
erian & Düzel, 2005). In contrast, oscillations at higher frequen-
cies, specifically in the gamma band (28–128 Hz), have primarily
been associated with manipulations of memory load (Howard et
al., 2003; van Vugt, Schulze-Bonhage, Litt, Brandt, & Kahana,
2010). The ECoG study reported here builds on a prior study by
van Vugt et al. (2009), which involved a subset of the same group
of neurosurgical patients. By combining novel analyses of those
ECoG data with data from two new scalp EEG studies we assayed
neural data recorded at multiple spatial scales for direct evidence
of summed-similarity computations. To parametrically investigate
the neural correlates of similarity in item recognition, we used
specially designed synthetic faces whose similarity is well defined
both in physical and psychological representational spaces (see
Method below).

Experiments 1–3

Method

Because similar experimental and data-analytic methods were
used in Experiments 1–3, we present the methods for all three
experiments together and note differences between studies as ap-
propriate.

Synthetic faces. We chose human faces as stimuli because of
their ecological validity and because their similarities can be both
quantified and parametrically varied. Rather than using photo-
graphs of faces as stimuli, we adopted a set of synthetic faces
derived from real photographs but filtered to remove components
such as hair and skin texture while preserving the shape, size, and
position of key facial features (Wilson, Loffler, & Wilkinson,
2002). Wilson’s technique for generating synthetic faces begins by
taking 37 physical measurements on a set of (normalized) photo-
graphs of Caucasian males and then reconstructing the faces from
the principal components that could be extracted from the matrix
of these measurements. A stimulus set of 16 faces was constructed
from all permutations of steps of one standard deviation away from
the mean face (of the 37-dimensional face space) in the directions
of each of the first four principal components (one standard devi-
ation is approximately the threshold for 75% correct discrimina-

tion between two faces that are flashed for 110 ms; see Appendix
A). The resulting faces were low-pass filtered at 10 cycles per face
width, which is optimal for face processing and removes compo-
nents like hair and skin texture (Wilson et al., 2002). The advan-
tages of using this face set are that, although the faces are well
controlled, they still can be identified with high accuracy, and it is
possible to measure their interitem similarity precisely. Moreover,
the faces are realistic enough to generate strong responses in the
fusiform face area (Loffler, Yourganov, Wilkinson, & Wilson,
2005). This is important because previous studies have shown that
the fusiform face area is sensitive to similarity distances between
faces (e.g., Harris & Aguirre, 2010). As such, it should be possible
to find neural effects of similarity for these faces.

Multidimensional scaling study. We carried out a prelimi-
nary multidimensional scaling (MDS) study to characterize the
psychological similarities among the items (see Appendix A for
details). In this MDS study, 23 participants served for two ses-
sions, in which they saw all combinations of three faces (triads)
twice and had to determine the “odd-one-out” (i.e., the face that is
least similar to the other two). From these ratings, a similarity
matrix was constructed by increasing the similarity value for each
of the two nonchosen faces (see Kahana & Bennett, 1994, for
details). This similarity matrix was transformed into similarity
coordinates for every face using individual-differences multidi-
mensional scaling (INDSCAL/ALSCAL; Takane, Young, & de
Leeuw, 1977). We used the four-dimensional stimulus coordinates
derived from this procedure (see Appendix A) in our summed-
similarity analyses. The normalized raw stress measure for this
solution was 0.022, which had a dispersion accounted for (DAF) of
0.98. (DAF is analogous to variance accounted for in a regression
analysis; Heiser & Bennani, 1997.) The attentional weights were
very similar across participants, as demonstrated by the small
standard deviation for each of the four dimensions: mean atten-
tional weight (standard deviation) � 0.34 (0.026); 0.34 (0.042);
0.34 (0.024); 0.33 (0.015).

Short-term item recognition paradigm. Figure 1 illustrates
the sequence of events during each trial of the experiment. Fol-
lowing the appearance of a fixation stimulus (an asterisk that
appeared for 1,000–1075 ms, jittered) participants viewed a short
series of faces. Each stimulus appeared for 700–775 ms, followed
by a 275- to 350-ms interstimulus interval. After a 3,000- to
3,300-ms retention interval, a probe item appeared and participants
indicated with a keypress whether the probe was a member of the
just-presented list (a target) or an item not shown on the current list
(a lure). After each trial, participants were given accuracy feed-
back. The participant advanced to the next trial with a keypress.
Temporal jitter was used to avoid spurious correlations between
ongoing brain activity and task events. Participants were encour-
aged to be both fast and accurate, and participants in Experiments
2 and 3 were paid a bonus based on their accuracy and response
time. The experiment was programmed in the Python Experimen-
tal Programming Library PyEPL (http://pyepl.sourceforge.net; de-
scribed in Geller, Schleifer, Sederberg, Jacobs, & Kahana, 2007).

The three experiments differed in the number of faces presented
in each series. Lists used in Experiments 1 and 2 comprised a
variable number of faces, whereas lists in Experiment 3 always
comprised three faces. In Experiment 1, lists could have one, two,
or three faces; in Experiment 2, lists could have two, three, or four
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faces. Experiments 1 and 2 also contained lists of nonface stimuli,
which are not analyzed in the present report.1

Each experiment employed a “recent negatives” manipulation to
study the effects of proactive interference on brain activity (Mon-
sell, 1978). Whenever a lure probe was shown, it always had been
a study item one, two, or three lists back (we refer to this lure
recency as “list lag”). Lures that appeared as study items on recent
lists are expected to give rise to significant proactive interference.
Although we report on the behavioral effects of lure recency, these
effects are not a major focus of the present study. With the
exception of those probe items that were part of the recent nega-
tives manipulation, lists were constructed so that items could not
be repeated on successive lists. Lists were also constructed so that
the frequencies of targets and lures and each of the list lengths and
the three levels of the recent negatives manipulation were all
matched. In addition, targets were equally likely to match a study
item from each serial position. Blocks were then constructed by
drawing lists at random from the pool, subject to the above
constraints.

Every session was preceded by two 16-trial training blocks; for
Experiment 1, there were 40 additional one-item lists to familiarize
the participant with the face stimuli. Participants were given feed-
back on their average accuracy and RT at the end of each 30-trial
block. Incorrect trials and trials with RTs shorter than 200 ms or
longer than 2,500 ms (for Experiment 1) or 2,000 ms (for Exper-
iments 2 and 3) were removed from the analysis.

Participants. Participants in Experiment 1 were 16 neurosur-
gical patients being treated for medically refractory epilepsy (ages
15–58; six female). Patients were monitored with arrays of sub-
dural and/or depth electrodes to localize seizure onset and to map
cognitive functions prior to resective surgery. Patients were re-
cruited from Brigham and Women’s Hospital (Boston, Massachu-
setts), the Hospital of the University of Pennsylvania (Philadel-
phia), and Universitäts Klinikum Freiburg (Freiburg, Germany),
and the research protocol was approved by the appropriate insti-
tutional review boards at each hospital. Informed consent was
obtained from all participants.

In Experiment 2, 37 young adults (ages 20–32) recruited from
the University of Pennsylvania student community participated in
two experimental sessions for payment. Each session involved 10
blocks of 30 trials, as described above. In Experiment 3, 20 young

adults (ages 19–29) participated in four experimental sessions for
payment. Over the course of their four sessions, participants saw
the same set of 66 study lists 16 times. The lists were divided into
three blocks, the order of which was randomized across the four
repetitions in each testing session.

ECoG and depth electrode recordings in Experiment 1.
The local field potential was amplified and digitally recorded at
sampling rates between 250 and 1,024 Hz and bandpass filtered
between 0.1 and 100 Hz. Data were subsequently notch filtered
with a Butterworth filter with zero phase distortion to eliminate
line noise. The intervals of interest were scanned for epileptic
spikes and sharp waves by means of a kurtosis threshold; events
were discarded if their kurtosis exceeded a threshold of 5 (see van
Vugt et al., 2010, for details).

To synchronize electrophysiological recordings with behavioral
events, the computer generating the task sent pulses via an optical
isolator into an unused recording channel or digital input on the
amplifier to time stamp the digital intracranial EEG (iEEG) re-
cording. The time stamps associated with these pulses aligned the
experimental computer’s clock with the iEEG clock to a precision
well under the sampling interval of the iEEG recording (�4 ms).
For all participants, the locations of implanted electrodes were
determined by means of co-registered postoperative computed
tomographies and preoperative magnetic resonance imaging
(MRI) or from postoperative MRIs by an indirect stereotactic
technique and converted into Montreal Neurological Institute
(MNI) coordinates. Localization of depth electrode contacts in the
hippocampus was done manually through clinician’s inspection of
the postoperative MRIs.

Scalp EEG recordings in Experiments 2 and 3. We re-
corded scalp EEG signals using a 129-channel EGI Inc. system,
with an AC-coupled, high-input-impedance amplifier (200 M�,
Net Amps, Electrical Geodesics, Inc., Eugene, OR). The sampling
rate was 500 Hz, and data were recorded with a 0.1–250 Hz
bandpass filter. Individual channels were adjusted until imped-

1 Experiment 1 included lists of consonants, and Experiment 2 included
lists of compound sinuosoidal gratings. For these experiments, trials of
each list type were presented in blocks of 30 lists with the order of the
blocks randomized across participants.

Figure 1. Trial structure of the Sternberg task. This figure illustrates the sequence and timing of events in a trial
with three faces.
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ances were below 50 k�. Bad channels were detected manually
off-line, and the remaining channels were used for average re-
referencing. Eye blinks were detected using a running-average
threshold and a voltage threshold of 100 �V. Data from seven
participants for whom more than 20% of events were rejected due
to eye blinks were excluded, leaving us with 30 participants. One
additional participant was excluded because of average accuracy
below 60%. For Experiment 3, one participant was excluded
because of average accuracy below 60%, and another was ex-
cluded for failure to exhibit serial position effects (and accuracy
below 70%). All data were notch filtered in the 58–62 Hz fre-
quency band to remove line noise.

Regression-based analysis of EEG and ECoG oscillations.
We used a multiple-regression approach (e.g., Jacobs et al.,
2006) to assess the neural correlates of summed similarity while
controlling for the effects of proactive interference and within-
list recency (i.e., serial position effects that cause the first and
last items of a list to be remembered better). We computed the
ordinary least squares regression coefficient of summed-
similarity S, response time, and recency on z-transformed os-
cillatory power during the interval between probe onset and the
moment the participant responded. Oscillatory power was de-
termined using six-cycle Morlet wavelets at logarithmically
spaced frequencies (2(x/8) Hz for x � 8, . . . , 56). Recency was
defined separately for targets (lagT; in units of item position)
and lures (lagL; the number of lists ago the probe was last
presented). Note that lure recency is a measure of proactive
interference, with more recent lures corresponding to conditions
of higher proactive interference. S was computed by fitting a
summed-similarity model (Kahana & Sekuler, 2002, described
below) to the behavioral data from each individual participant.
The parameters of this model were optimized with a pattern
search algorithm that searched for the minimum of a goodness-
of-fit measure that consisted of the sum of the root-mean-square
deviation between modeled and empirical summed similarity
and the difference between modeled and empirical d prime. In
Experiments 1 and 2, S was binned into five levels of summed
similarity; in Experiment 3, we had multiple repetitions of each
list so we could fit the model to participants’ accuracy data on
each individual list.

To assess whether the neural correlates of S changed over the
course of the trial and/or differed between low- and high-
frequency bands, we included terms representing the interaction
between S and frequency band F (2–4 Hz delta, 4–9 Hz theta, and
9–14 Hz alpha were coded as low frequencies; 14–28 Hz beta and
28–90 Hz gamma were coded as high frequencies) and between S
and time interval T (first half or second half of the recognition
probe-to-response interval). We also included the triple interaction
term between S, F, and T. The length of the probe interval varied
from trial to trial as a function of the participant’s RT (i.e.,
oscillatory power was Vincentized; it was resampled into time bins
whose size scaled with the length of the trial such that each trial
had two time bins, but their size increased with the participant’s
response time; Workman & Adams, 1950). Because recency was
defined separately for targets and lures, we fit separate models to
the electrophysiological data recorded during these two types of
trials. For target trials we fit the model

Z(P)e � �0 � �1S � �2lagT � �3S � F � �4S � T

� �5S � F � T � �6RT,

and for lure trials we fit the model

Z(P)e � �0 � �1S � �2lagL � �3S � F � �4S � T

� �5S � F � T � �6RT,

where Z(P)e indicates the z-transformed power at electrode e.
The resulting regression coefficients were then submitted to an

across-subject t test to establish population effects. For Experi-
ments 2 and 3, we used a cluster-based method on the t statistics
to correct for multiple comparisons (Maris & Oostenveld, 2007).
Clusters reflect the intuition that results are more likely to be true
if they are present in groups of adjacent EEG channels. The
procedure starts by comparing the p value from each channel’s t
test (on the regression coefficients) to a threshold of 0.01. We then
assessed to what extent this binarized significance map consisted
of clusters of spatially adjacent channels. For each cluster, we
summed the t statistics from all the channels comprising that
cluster, which we compared to a permutation distribution to de-
termine whether the cluster was significant. The permutation dis-
tribution was created by randomly swapping the sign of individual-
subject regression coefficients and recomputing the clusters.
Significant clusters are those whose summed t statistic is in the
upper tail of the distribution of summed t statistics based on
randomized data. For Experiment 1, no such clustering was nec-
essary, because we restricted our analyses to a small set of pre-
defined regions of interest (ROIs).

The ROIs (predefined for Experiment 1; based on the S � F
interaction for Experiments 2 and 3) were then used to examine the
slope of oscillatory power on S. We used this S � F interaction to
define our ROIs because we were primarily interested in oscilla-
tory correlates of S that were specific for a frequency band. To
ensure that any differences we would observe between Experi-
ments 2 and 3 were not an artifact of having ROIs comprising
different sets of electrodes, we defined a parietal and frontal ROI
based on the intersection of the ROIs for the two experiments in
the lures condition. For each of these ROIs, we then assessed
whether the slope of S on oscillatory power was consistent be-
tween target and lure trials and between the two experiments.

Results

Behavioral analyses
Serial position effects. We observed standard serial position

effects in all three experiments, with the general pattern being a
large recency effect and a small primacy effect. Serial position had
a significant effect on accuracy but not RT in Experiment 1, as
revealed by a repeated-measures analysis of variance: accuracy,
F(2, 44) � 5.67, p � .01; RT, F(2, 44) � 1.29, ns. In Experiment
2 we observed significant serial position effects for both accuracy
and RT: accuracy, F(3, 84) � 23.5, p � .001; RT, F(3, 84) � 8.0,
p � .001. In Experiment 3 we also observed reliable serial position
effects for both accuracy and RT: accuracy, F(2, 53) � 16.9, p �
.001; RT, F(2, 53) � 35.6, p � .001. For these analyses of variance
we considered the longest list length in each of the experiments,
which was list length 4 in Experiment 2 and list length 3 in
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Experiments 1 and 3. Similar results were observed for list length
3 in Experiment 2.

Proactive interference effects. We next examined whether
recently studied lures (i.e., lures that were members of recent prior
lists) were more likely to be endorsed as targets. Although we did
not observe a significant effect of our proactive interference ma-
nipulation in Experiment 1, we did observe clear proactive inter-
ference effects in both Experiment 2 and Experiment 3. In Exper-
iment 2, both RT and accuracy showed a significant proactive
interference effect. We quantified this proactive interference effect
separately for each participant by regressing his or her accuracy on
list lag (where a list lag of 1 corresponds to high proactive
interference and a list lag of 3 corresponds to low proactive
interference). The mean slope of this regression (0.028) was sig-
nificantly larger than zero, t(28) � 3.31, p � .001. The mean slope
of RT (�27.7 ms) exhibited an analogous effect, t(28) � �3.72,
p � .001. In Experiment 3, we found a significant proactive
interference effect for accuracy; the mean slope of accuracy on the
list lag of lures was 0.063, t(17) � 8.5, p � .001, but there was no
effect of lure lag on RT (mean slope � 0.59 ms), t(17) � 0.14, ns.

Application of summed-similarity model. We hypothesized
that the basic computation underlying short-term item recognition
is the summed pairwise similarity between an item’s memorial
representation and the representation of the test probe (Kahana &
Sekuler, 2002; Nosofsky et al., 2011). If stimuli are randomly
selected from a multidimensional space, the summed similarity of
a target to the contents of memory will typically exceed the
summed similarity for a lure. Kahana and Sekuler (2002) extended
the basic summed-similarity framework for item recognition
(Hintzman, 1988; Nosofsky, 1991) by showing that the degree of
summed similarity required to respond yes varies with list homo-
geneity (i.e., the mean similarity among list items). With greater
list homogeneity, participants will respond yes at lower levels of
summed similarity (Kahana, Zhou, Geller, & Sekuler, 2007;
Nosofsky & Kantner, 2006; Visscher, Kaplan, Kahana, & Sekuler,
2007). Specifically, according to Kahana and Sekuler’s noisy
exemplar model (NEMo), participants respond yes when the sim-
ilarity signal (S) defined as

S � �
i�1

LL

�ie
���si�p� �

2�

LL�LL � 1� �
i�1

LL�1

�
j�i�1

LL

e���si�sj� (1)

exceeds a decision threshold cLL (the subscript LL indicates there
is a separate optimal decision criterion for every list length). In
Equation 1, LL is list length, �i is a forgetting parameter, �
determines the form of the exponential generalization gradient
(Shepard, 1987), si is the vector representing the coordinates of the
memorial representation of stimulus i as determined by a prior
MDS study, p is the representation of the probe item, and 	
determines the influence of list homogeneity (bold typeface indi-
cates vectors). A Gaussian random variable with mean zero and
standard deviation 
 is added to each item’s memorial represen-
tation to simulate the variability in participants’ responses across
different occurrences of the same item.

Our implementation is a reduced form version of previous
versions of NEMo insofar as we assume that 
 does not vary
across stimulus dimensions and that each dimension is weighted
equally in the similarity computation. We also assume that the
decision threshold is chosen to yield the maximum likelihood of

the simulated data. Although NEMo does not offer a process
account of primacy or recency effects, the set of parameters
�i (i � 1 indicating the most recently studied item) allows the
model to differentially weight items from different serial positions,
thereby matching any forgetting or primacy effects that may be
present in the data (see also Nosofsky et al., 2011).

Although most previous applications of summed-similarity the-
ory have involved fitting group data, we chose to fit the model
separately to each individual’s behavioral data. In this way our aim
of examining the neural correlates of summed similarity would not
be subject to model misspecification at the level of individual
participants. This approach enabled us to examine the relation
between brain activity and summed similarity at the individual
subject level and then to aggregate those tests across participants.

Estimates of the best fitting parameters we obtained (see Table
1) are similar across the three experiments and also similar to those
reported in previous applications of NEMo (Kahana & Sekuler,
2002; Kahana et al., 2007; Nosofsky & Kantner, 2006; Visscher et
al., 2007; Yotsumoto, Kahana, Wilson, & Sekuler, 2007). Not
surprisingly, the alpha parameters mirror the serial position effects
in the data, with a large recency effect and a small primacy effect
across studies. The list homogeneity parameter, 	, was negative in
all studies and significantly negative in Experiments 2 and 3,
which had the most statistical power, t(28) � �2.295, p � .05 and
t(17) � �5.58, p � .01 for Experiments 2 and 3, respectively. This
indicates that in general, list homogeneity decreases the decision
threshold for responding yes.

The central tenet of summed-similarity theory is that the prob-
ability of responding yes to lures and to targets should increase
with summed similarity. Figure 2 shows this effect in each of the
three experiments. In all of the experiments, the false alarm rate
reliably increased with summed similarity: Experiment 1: M �
4.75, t(15) � 4.06, p � .01; Experiment 2: M � 6.15, t(28) � 7.94,
p � .001; Experiment 3: M � 6.56, t(17) � 6.23, p � .001. For
targets, the effect was generally smaller, but nonetheless the hit
rate was statistically significant in both Experiment 1, M � 2.32,
t(15) � 3.22, p � .01, and Experiment 3, M � 1.66, t(17) � 4.72,
p � .001.

Electrophysiological results. To avoid contaminating any
observed interference-based effects with effects caused by differ-
ences in accuracy, we restricted our analyses to correct trials. For
lure trials, where proactive interference was explicitly manipu-

Table 1
Best Fitting Parameter Values for NEMo’s Fit to Behavioral
Data in Experiments 1–3

Parameter

Experiment 1 Experiment 2 Experiment 3

M SEM M SEM M SEM

	 �0.31 0.52 �1.06 0.46 �1.68 0.30
� 1.32 0.17 1.65 0.12 1.89 0.16

 1.21 0.084 0.99 0.061 0.82 0.048
�2 0.58 0.041 0.76 0.038 0.71 0.032
�3 0.67 0.051 0.65 0.042 0.81 0.033
�4 0.72 0.038
RMSD 0.047 0.0026 0.021 0.0022 0.0811 0.0040

Note. NEMo � noisy exemplar model; RMSD � root-mean-square
deviation; SEM � standard error of the mean.
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lated, we regressed oscillatory power at each electrode on summed
similarity, lure recency (a measure of proactive interference), and
RT. For target trials, where proactive interference was not manip-
ulated, we regressed oscillatory power on summed similarity,
target item recency, and RT. We fit the regression models (see
Method) to each individual’s data, using the NEMo fits to deter-
mine the value of S on each trial. We then asked whether the
distribution of regression coefficients across participants deviated
significantly from zero and whether this difference was modulated
by time interval (first half vs. last half of retrieval period), fre-
quency range (low vs. high), or both. On the basis of previous
studies of the target-lure effect (e.g., Düzel et al., 2005; Jacobs et
al., 2006), we expected to find a neural correlate of summed
similarity in the lower frequency bands (particularly delta and
theta).

For our ECoG and depth electrode recordings in Experiment 1,
we computed an average regression coefficient for every partici-
pant across all the electrodes in a set of five predefined regions
(see Table 2). Statistical significance was determined using a
p-value threshold set by a false discovery rate (FDR) procedure
(Benjamini & Hochberg, 1995). A FDR of 0.05, as used here,
means that one expects to find 5% of the effects deemed signifi-
cant to be false positives. In our study, a FDR of 0.05 corresponded
to a conventional p-value threshold of .011.

We would expect an oscillatory correlate of summed simi-
larity to be present for both targets and lures. Whereas a main

effect of summed similarity, S, would suggest a broadband
power modulation, an interaction between S and F (low- vs.
high-frequency bands) would lend support to a frequency-
specific oscillatory correlate. Given prior findings of delta and
theta band activity correlating with target-lure status and of
gamma-band activity correlating with memory load, we hypoth-
esized that an oscillatory correlate of summed similarity would
appear as an interaction between S and F or as a three-way
interaction between S, F, and T (time epoch: early vs. late
portion of the retrieval period).

For lures, we found reliable (p � .011) neural correlates of S in
all five ROIs; however, only the temporal cortex and medial
temporal lobe (MTL) exhibited reliable effects for both targets and
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Figure 2. Summed-similarity effect. The probability (P) of saying yes is shown as a function of binned summed
similarity (defined in Equation 1) for both targets (open circles) and lures (filled circles). Bins are defined as the
lowest and highest 50% of the summed-similarity distribution. Error bars reflect Loftus–Masson corrected 95%
confidence intervals. The fits for Experiment 1 are based on summed similarity for list length 3 only to make
it comparable to the fits for Experiment 2, in which there were only list length 3 trials.

Table 2
Numbers of Patients and Electrodes in Each of Five Anatomical
Regions of Interest

Region of interest Brodmann areas
No.

patients
No.

electrodes

Dorsolateral prefrontal
cortex 9, 10, 46 9 95

Temporal cortex 20, 21, 22 16 413
Medial temporal lobe 28, 35, 36 14 126
Hippocampus 6 32
Parietal cortex 1, 2, 3, 5, 7, 39, 40 13 126
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lures, and in both of those ROIs we found significant interactions
between S and F. In temporal cortex we observed a significant S �
F interaction for both targets and lures; in MTL we observed a
significant S � F � T interaction for both targets and lures (see the
complete table in Appendix B). To further explore these interac-
tions, we examined whether regression betas showed a monotonic
increase or decrease with S across both target and lure trials. The
frequency bands that show such monotonic increases or decreases
are shown in Table 3.

In temporal cortex, lower frequency oscillatory power (4–14
Hz) decreases with S and higher frequency oscillatory power
(24–90 Hz) increases with S for both targets and lures. In the
MTL, 4–9 Hz theta and 28–128 Hz gamma power increase with S
in the early epoch, but the low-frequency effect switches sign in
the late time bin (second half of the retrieval interval), resulting in
a three-way interaction between S, F, and T. Figure 3 shows that
in temporal cortex, theta power decreases with summed similarity
and gamma power increases in the late epoch (this change in
direction of the relation produces the significant interaction term).
In MTL, both theta and gamma power increase with summed
similarity but do so in the early epoch. The 2–4 Hz delta band does
not show a consistent increase or decrease with summed similarity
across target and lure trials.

Results from our scalp EEG studies (Experiments 2 and 3) are
shown in Figures 4 and 5. These figures summarize the regression
results for the targets model and the lures model, respectively. The
first row of each figure shows clusters of electrodes (see Method)
that exhibit significant oscillatory correlates of S that are not
modulated by frequency band, retrieval epoch (early vs. late), or
item recency. The subsequent rows of topographical plots show
clusters of electrodes that exhibit significant interactions between
S and frequency range F (low vs. high); between S and time epoch
(T); and between S, frequency range, and time window. Red-
shaded clusters indicate significantly positive regression coeffi-

cients, and blue-shaded clusters indicate significantly negative
regression coefficients.

The most consistent effect across the two scalp EEG studies and
the targets and lures models was the finding of clusters of primar-
ily frontal but also left parietal electrodes that exhibited a signif-
icant interaction between summed similarity and frequency range
(see Figures 4 and 5). In electrodes for which this interaction was
significant, the oscillatory summed-similarity effect differed be-
tween lower frequencies (delta, theta, and alpha) and higher fre-
quencies (beta and gamma). Blue electrodes indicate that the
summed-similarity effect was more positive for the lower fre-
quency bands; red electrodes indicate the opposite. Whereas in
both experiments we observed similar clusters that exhibited a
stronger summed-similarity effect for the lower frequency bands,
in Experiment 2 we also observed a cluster of central electrodes
that exhibited a summed-similarity effect that was more positive
for high frequencies. In Experiment 2 we further observed clusters
of significant electrodes that exhibited significant modulation of
broadband power with summed similarity.

In Experiment 2, a set of frontal electrodes also showed an
interaction between S and time epoch (see Figure 5c), indicating
that the summed-similarity effect varied between the early and late
epoch (i.e., first half vs. second half of the retrieval period). In this
condition, frontal electrodes exhibited a more positive summed-
similarity effect for the early than for the late epoch. There was a
small group of right parietal electrodes for lures that exhibited a
triple interaction between S, frequency, and time (see Figures 4d
and 5d). The interaction between S and frequency band in these
electrodes indicates that the frequency-specific summed-similarity
effect changes over the course of the trial. There was no significant
effect of lag or RT on oscillatory activity during retrieval.

To further examine the frequency specificity of the summed-
similarity effect, we computed normalized oscillatory power in the
ROI defined by the summed similarity-by-frequency interaction in

Table 3
Sign of Slope of Oscillatory Power on Similarity Bins, Grouped by ROI and Time Bin

Epoch
and ROI

Frequency band

Delta (2–4 Hz) Theta (4–9 Hz) Alpha (9–14 Hz) Beta (14–28 Hz)
Low-gamma
(28–48 Hz)

Mid-gamma
(48–90 Hz)

High-gamma
(90–128 Hz)

Experiment 1
Early

TC 0 0 � � � 0 �
MTL 0 � 0 0 0 � �

Late
TC 0 � � 0 � � �
MTL 0 0 0 0 0 � �

Experiment 2 (and Experiment 3)

Early
Frontal 0 (0) � (0) � (0) 0 (0) � (0) � (0) 0 (0)
Parietal � (�) 0 (0) � (0) � (0) � (0) 0 (0) � (0)

Late
Frontal 0 (0) � (�) � (0) 0 (0) 0 (0) 0 (0) 0 (0)
Parietal � (0) 0 (�) � (0) � (0) � (0) 0 (0) 0 (0)

Note. ROIs for Experiment 1 are based on Table 1; ROIs for Experiments 2 and 3 are based on Figures 4b and 5b. In the lower half of the table, the first
symbol refers to Experiment 2, and the second symbol refers to Experiment 3. A plus sign denotes a positive slope for both targets and lures. A minus sign
denotes a negative slope for both targets and lures. Boldface indicates frequency bands that have consistent slopes between targets and lures in both
experiments. 0 � no consistent slopes between targets and lures; ROI � region of interest; TC � temporal cortex; MTL � medial temporal lobe.
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Figure 5b. The ROIs were kept the same between Experiments 2
and 3 by taking the intersection of electrodes that were significant
for both experiments. We then examined which of the frequency
bands (2–4 Hz delta, 4–9 Hz theta, 9–14 Hz alpha, 14–28 Hz beta,
28–48 Hz low gamma, 48–90 Hz mid gamma, and 90–128 Hz
high gamma) displayed the pattern of regression slopes expected

of a neural correlate of summed similarity. A neural correlate of
summed similarity should show a correlation with summed simi-
larity in the same direction for targets and lures. Because we fit our
regression model separately for targets and lures, a significant
summed similarity-by-frequency band interaction in the regression
model does not guarantee that this condition is satisfied. Table 3

(a) Medial Temporal Lobe (early)
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(b) Temporal Cortex (late)

Figure 3. Experiment 1. Average normalized oscillatory power as a function of summed-similarity bin is
shown (a) in the early time bin in the medial temporal lobe and (b) in the late time bin in temporal cortex. In
the medial temporal lobe, both 4–9 Hz theta and 48–90 Hz gamma power increase with summed similarity. In
temporal cortex, theta decreases whereas gamma increases with summed similarity. Error bars reflect standard
error of the mean.

(a) S

(b) S × F

(c) S × T

(d) S × F × T

3 tnemirepxE2 tnemirepxE

Figure 4. Experiments 2 and 3. Topographical plots of significant (p � .05) electrode clusters for regression
coefficients of the targets model. Electrodes shown in red exhibit a significantly positive regression coefficient
across participants for (a) summed similarity (S), (b) interaction between S and frequency (F), (c) interaction
between S and time (T), (d) triple interaction between S, frequency, and time. Similarly, electrodes shown in blue
exhibit a significantly negative regression coefficient across participants. We do not show topographical plots for
lag or response time, because those regression coefficients produce no statistically significant clusters.
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shows that there are patterns of oscillations in all frequency bands
that satisfy this criterion.

In Experiment 3 we also observed a significant interaction
between summed similarity and oscillatory frequency in frontal
and left parietal electrodes (see Figures 4c and 5c). We did not
observe the negative interaction between summed similarity and
frequency in central electrodes that was present in Experiment 2.
There was a significant interaction between S and time epoch in a
few frontal electrodes. There was no significant triple interaction
between S, time, and frequency band. The main effect of summed
similarity occurred in a small set of right parietal and bilateral
frontal electrodes, which increased in oscillatory power with S. As
in Experiment 2, there was no statistically significant effect of lag
or RT on oscillatory activity.

Considering the data from the two scalp EEG studies together,
the most consistent positive correlate of summed similarity across
both targets and lures and across both experiments is the delta band
activity observed in parietal and frontal cortices (see Figure 6). The
theta band shows a pattern similar to that in the delta band, but the
direction of the theta effect is not consistent across the same time
epochs in the two experiments (see Figure 7). In Experiment 2,
theta increases with S in the first time bin, whereas in Experi-
ment 3 it increases with S in the second time bin. Although the
increase in delta activity with S replicated nicely across both
scalp studies, the effect was somewhat less consistent in the
theta band, appearing at different time epochs in Experiments 2
and 3. This difference is not too surprising, given the two major

differences in procedure across the experiments: In Experiment
3, participants studied a fixed set of lists many times, whereas
in Experiment 2, they saw each list once. Another possibility is
that the difference is driven by the fact that in Experiment 2,
different list lengths were intermixed, which was not the case in
Experiment 3. Consequently, participants had to continuously
update their decision threshold in Experiment 2 but did not have
to do so in Experiment 3.

General Discussion

A number of the most successful cognitive theories of recogni-
tion memory posit that people judge a test item as old when its
summed similarity to the list items exceeds a threshold value (e.g.,
Hintzman, 1988; Kahana & Sekuler, 2002; Lamberts et al., 2003;
Nosofsky, 1991; Nosofsky & Kantner, 2006; Shiffrin & Steyvers,
1997). This summed-similarity signal is regarded as a likely mech-
anism for the familiarity component of dual process theories of
recognition (Rugg & Yonelinas, 2003). The same computational
account has also been offered as the basis for categorization
decisions when categories are defined by complex regions in
multidimensional feature space (Fific, Little, & Nosofsky, 2010).
In view of summed similarity’s broad significance as a latent
construct in cognitive theories of memory, we asked whether
summed similarity exhibited a distinct electrophysiological signa-
ture beyond the electrophysiological correlates of recognition ac-
curacy, study-test lag, and other experimental factors.

(a) S

(b) S × F

(c) S × T

(d) S × F × T

3tnemirepxE2tnemirepxE

Figure 5. Experiments 2 and 3. Topographical plots of significant (p � .05) electrode clusters for regression
coefficients of the lures model. Electrodes shown in red exhibit a significantly positive regression coefficient
across participants for (a) summed similarity (S), (b) interaction between S and frequency (F), (c) interaction
between S and time (T), (d) triple interaction between S, frequency, and time. Similarly, electrodes shown in blue
exhibit a significantly negative regression coefficient across participants. We do not show topographical plots for
lag or response time, because those regression coefficients produce no statistically significant clusters.
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Across three experiments we found that brain oscillations
measured using depth electrodes and cortical surface electrodes
in temporal cortex and the medial temporal lobe (Experiment 1)
and measured at the scalp (Experiments 2 and 3) are reliably
modulated by summed similarity both for targets and for lures.
In particular, we found that lower frequency oscillations, in the
delta and theta bands, increased with summed similarity for
both targets and lures in the medial temporal lobe (Experiment

1) and in clusters of parietal and frontal electrodes (Experi-
ments 2 and 3). Although the general trend is present in all three
studies, there were also differences between the experiments:
Summed similarity correlated with theta band oscillations in the
medial temporal lobe, whereas in the scalp recordings the effect
was found in the delta band. Between the two scalp experi-
ments, which varied in the list lengths used and the degree of
practice that participants had, we observed the summed-

(a) Experiment 2 (b) Experiment 3
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Figure 6. Neural summed-similarity effect for Experiments 2 and 3. Normalized oscillatory power shown as
a function of binned summed similarity (defined in Equation 1) for both targets (dashed lines) and lures (solid
lines). Bins are defined as the lowest and highest 50% of the summed-similarity distribution. Power is averaged
over all frequencies in the 2–4 Hz delta band and in the channels within the frontal region of interest (see Figures
4b and 5b) in the first half of the trial. Error bars reflect standard error of the mean.
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Figure 7. Neural summed-similarity effect in the 4–9 Hz theta band for Experiments 2 and 3. Normalized
oscillatory power as a function of binned summed similarity (defined in Equation 1) for both targets (dashed
lines) and lures (solid lines). Bins are defined as the lowest and highest 50% of the summed-similarity
distribution. Power is averaged over all frequencies in the 4–9 Hz theta band and in the channels within the
parietal region of interest (see Figures 4b and 5b), separately for the first half of the trials (Early) and the second
half of the trials (Late). Error bars reflect standard error of the mean.
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similarity correlate in the theta band earlier in the retrieval
period in Experiment 2 and later in Experiment 3.

Although the prior literature suggests that theta oscillations are
a stronger correlate of target-lure status than are delta oscillations,
the strongest effects in the literature have often been observed at
around 4 Hz, which is right at the boundary between the traditional
theta and delta frequency bands. In addition, several studies have
observed that delta and theta oscillations are similarly modulated
during cognitive tasks (e.g., Jacobs et al., 2006; Lega, Jacobs, &
Kahana, 2012; Mormann et al., 2005).

Related to the present work, several recent studies have begun to
look at the neural correlates of similarity itself. For example,
Loffler et al. (2005) showed that in the fusiform face area, the
fMRI BOLD signal responds to changes in structural distance
between a mean face and a face further away in the face space.
Similarly, Aguirre showed that distance in similarity space was
associated with the magnitude of fMRI adaptation in the fusiform
face area (Aguirre, 2007). As such, they observed a neural simi-
larity matrix that was correlated with the similarity matrix derived
from the stimulus structure. Similarly, Kriegeskorte et al. (2008)
demonstrated the existence of neural similarity matrices of a wide
range of objects and faces in area IT (inferior temporal cortex), in
both BOLD signal and single-unit activity. For verbal stimuli,
Manning, Sperling, Sharan, Rosenberg, and Kahana (2012)
showed that predominantly low-frequency oscillations across the
cortex varied with their semantic similarity distances. Moving
from perception to memory, Yago and Ishai (2006) compared the
BOLD response in an item recognition task to probes that were the
same as, ambiguous, similar to, or dissimilar to a studied prototype
image (painting). They found an increase in BOLD activity with
the level of similarity between probe and study item in the bilateral
inferior parietal sulcus and superior parietal lobe. In addition, they
found a decrease of BOLD activation with probe-item similarity in
the superior frontal gyrus and precuneus.

A key assumption in summed-similarity theories of item recog-
nition is that participants use all items in the contextually defined
memory set to help distinguish between targets and lures. This
assumption leads to the prediction that participants are more likely
to endorse a target or a lure when there are other similar items
stored in memory. However, summed-similarity theory also as-
sumes a nonlinear (exponential) function relating similarity to
distance in psychological space. The rate at which similarity de-
cays with distance is a parameter of the model, and for the
decay-rate parameters estimated in most studies, the actual contri-
bution of most items to the summed-similarity computation will be
negligible. This means that in practice a summed-similarity model
will give most weight to items that are very similar to the target or
lure and that less similar list items contribute minimally to the
summed-similarity calculation. Because of this nonlinearity, it
would require considerable statistical power to distinguish a
summed-similarity model from a model that uses only the simi-
larity of the most similar lure or target. Prior studies that have
carefully explored this issue have shown that the summed-
similarity models do in fact provide a better quantitative fit to
behavioral data on item recognition than models considering only
the most similar list item (e.g., Huang, Kahana, & Sekuler, 2012;
Kahana et al., 2007).

Our study provides neural evidence for the summed-similarity
computation hypothesized to underlie recognition memory and

category learning (Brown, Neath, & Chater, 2007; Hintzman,
1988; Kahana & Sekuler, 2002; Lamberts et al., 2003; Nosofsky,
1991). Similarity-based interference is reflected in frontal and
parietal delta and theta oscillations measured in scalp EEG and in
theta oscillations recorded from depth electrodes in the human
medial temporal lobe. Given that previous studies have found
similar neural correlates for old–new item recognition and catego-
rization (Nosofsky, Little, & James, 2012), we would expect to
find similar oscillatory correlates of summed similarity in catego-
rization tasks.
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Appendix A

Multidimensional Representation of Synthetic Faces

Faces were constructed from four orthogonal dimensions, as
shown in Figure A1. Inspection of the figure and of the measure-
ment vector that makes up each of the four theoretical dimensions
demonstrates that the first orthogonal dimension corresponds
mostly to head width and mouth height. The second orthogonal
dimension corresponds mostly to a hairline parameter and lip

thickness. The third dimension is related to the curvature of the
bottom of the face, and the fourth dimension reflects curvature of
the hairline.

The empirically derived MDS coordinates for this face set are
shown in Table A1. They map onto slightly different sets of
measurements. One of the reasons for this difference with the

dim 1

di
m

 2

1 2
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Figure A1. Two-dimensional projection of the four-dimensional theoretical face space. Each face was con-
structed by moving a fixed distance (distance-unit), equal to the 75% correct discrimination threshold (just
noticeable difference), in positive or negative directions away from the mean face. All possible permutations of
positive and negative shifts for the four principal components of face space yielded a set of 16 faces. Each
quadrant shows four faces that have the same coordinates for dimension 1 and 2 but differ in their coordinates
for dimensions 3 and 4. For example, the faces in the right bottom quadrant are constructed by a positive
distance-unit in the direction of dimension 1 and a negative distance-unit in the direction of dimension 2. For
each of the four faces, the coordinates in the third and fourth dimension are different. The numbers below each
face correspond to those in Table A1. dim � dimension.

(Appendices continue)
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theoretically derived coordinates is that the empirically derived
MDS coordinates were not Procrustes transformed. We chose not
to Procrustes transform the empirically derived MDS coordinates,
such that we would not alter the data. The first dimension correlates
highest with nose width, r(15) � .89, p � .001, and one of the
components of the head shape, r(15) � .88, p � .01. The second
dimension from the MDS study correlates highest with a hairline
parameter, r(15) � .89, p � .001, as well as eye separation, r(15) �
.85, p � .001. The third dimension correlates highest with thickness
of the top lip, r(15) � 0.82, p � .001, as well as a component of head
shape, r(15) � �.73, p � .01. Finally, MDS dimension four corre-
lates most strongly with thickness of the top lip, r(15) � �.72, p �
.01, and with head shape, r(15) � 0.70, p � .01.

This demonstrates that perception of these stimuli emphasizes
specific aspects of the synthetic face stimuli (hairline, head shape,
and lips), which led us to use the empirically derived MDS
coordinates in our summed-similarity analyses. This was further
justified by the fact that we found very similar attentional weights
on these four dimensions (see Method).

Appendix B

Complete Overview of the Normalized Regression Betas for Experiment 1

Model

DLPFC TC MTL Hippocampus Parietal

Targets Lures Targets Lures Targets Lures Targets Lures Targets Lures

S 0.021 0.044 0.008 0.041* 0.011 0.044* 0.032 0.060 0.022 0.032
RT �0.003 0.007 �0.009 �0.005 �0.015 0.002 �0.013* 0.014 �0.012 0.002
S � F �0.018 0.044* �0.023* �0.049* �0.003 �0.023 �0.032 �0.040 �0.010 �0.025
S � T �0.017 �0.060* �0.008 �0.044* �0.025* �0.068* �0.005 �0.038* �0.015 �0.060*

S � F � T 0.023 0.069* 0.007 0.041* 0.017* 0.055* 0.003 0.041 0.016 0.066*

Note. Rows are regression coefficients (S � summed similarity; F � frequency band; T � time bin (early vs. late portion of the retrieval period);
RT � response time; � � interaction term). Columns are brain regions (DLPFC � dorsolateral prefrontal cortex; TC � temporal cortex; MTL � medial
temporal lobe). Models are T (targets model) and L (lures model). Boldface type denotes significant for both targets and lures. An asterisk denotes
significance with a 0.05 false discovery rate (corresponding to a p-value threshold of .011).
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Table A1
Similarity Coordinates of the Face Stimuli Derived From the
MDS Study

Face dim 1 dim 2 dim 3 dim 4

1 0.901 0.706 1.060 �1.079
2 1.886 �0.683 �0.227 0.498
3 1.128 0.942 0.022 �1.137
4 1.284 �1.257 �0.231 0.891
5 �0.075 1.511 �1.029 �0.483
6 0.484 �0.390 �1.059 1.690
7 0.384 1.504 �0.951 0.552
8 0.268 �0.468 �0.106 2.199
9 �0.723 0.215 1.953 0.039

10 �0.248 �1.602 0.534 �0.860
11 �0.342 0.087 1.801 �0.789
12 0.402 �1.269 �0.481 �1.391
13 �1.298 1.292 0.925 0.165
14 �1.249 �0.599 �1.242 �0.532
15 �1.725 0.840 0.301 �0.444
16 �1.079 �0.828 �1.271 0.682

Note. MDS � multidimensional scaling; dim � dimension.
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