Research

From Computational Memory Lab
Revision as of 18:25, 27 June 2008 by MattMollison (Talk)

Jump to: navigation, search

The Computational Memory Lab uses mathematical modeling and computational techniques to study human memory. We apply these quantitative methods both to data from laboratory studies of human memory and from electrophysiological studies done on patients with implanted electrodes.

Our current research is focused on basic mechanisms of episodic, spatial, and working memory.

We are located at: 3401 Walnut St. (Entrance C), Room 303 Philadelphia, PA 19104 Tel. 215-746-3500; Fax 215-746-6848 For directions to the lab, click here. (pdf)

Episodic Memory

Episodic memory refers to memory for events that are embedded in a temporal context. This includes both memory for significant life events and memory for common daily activities. In the laboratory, episodic memory is investigated by presenting lists of words for study, and then asking participants to recall the words. We have focused on the use of conditional probability and latency analysis (Kahana, M. J., 1996) to examine how participants transition from one recalled word to the next. These techniques quantify the order in which participants recall list items and the inter-response times between successive recalls (see Fig. 1).

Fig. 1: The contiguity effect in free recall. This curve shows the probability of making a recall to serial position i+lag immediately following recall of serial position i---that is, the conditional-response probability (CRP) as a function of lag.

Fig. 2: Brain oscillations associated with successful encoding are reinstated during correct retrieva. The top row of brain maps contrasts gamma-band oscillatory activity during the two second item presentation for items subsequently recalled and those that were forgotten. The bottom row contrasts gamma-band oscillations during the 500 milliseconds preceding recall verbalization for correct items and for prior-list intrusions. In each map, red corresponds to regions where the contrast was significant, gray to non-significant contrasts, and black indicates brain regions excluded from the analysis due to insufficient electrode coverage.

To explain the recency and contiguity effects in free recall, Howard and Kahana (2002) developed the Temporal Context Model of episodic memory. TCM is a distributed memory model that specifies the mechanisms of contextual drift and contextual retrieval. Through the drift mechanism, TCM describes how a temporal code is created by the integration of recently retrieved contextual states. As such, TCM represents the first formal model of how memories become 'episodic' (linked to the time when they occurred). TCM also provides an alternative explanation for associative tendencies in recall. Rather than resulting from co-occurrence in short-term memory (the standard earlier view), TCM suggests that these tendencies appear because recall of an item recovers the temporal context for the item, which in turn cues recall of subsequent items. Similarly, recency effects appear because the temporal context at the time of the memory test is most similar to the temporal context associated with recent items. Unlike short-term memory based models, TCM predicts that recency and associative effects should be approximately time-scale invariant (Howard, M. W. and Kahana, M. J., 1999, Sederberg, et al., 2008).

In addition to behavioral and theoretical analyses of episodic memory, we also explore the neurophysiology of episodic memory with both scalp and intracranial electroencephalographic (iEEG) recordings. Intracranial recordings can be obtained from epilepsy patients who have had electrodes surgically implanted on the cortical surface of the brain or through the medial temporal lobes (including hippocampus) as part of the clinical process of localizing seizure foci. One focus of this research is to determine the oscillatory correlates of successful episodic memory formation. Our lab has found that 44-100 Hz (gamma) brain oscillations increase while participants are studying words that they will successfully, as opposed to unsuccessfully, recall (Sederberg, et al., 2006). The same distribution of gamma activity across both hippocampus and neocortex is reactivated just prior to recalling an item, with higher levels of gamma predicting whether or not the recalled item was actually studied (Sederberg, et al., 2007; see Fig. 2).